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From a delta series f (t) and its compositional inverse g(t), Hsu defined the generalized
Stirling number pair ( Ŝ(n,k), ŝ(n,k)). In this paper, we further define from f (t) and g(t)
the generalized higher order Bernoulli number pair (B̂(z)

n , b̂(z)
n ). Making use of the Bell

polynomials, the potential polynomials as well as the Lagrange inversion formula, we
give some explicit expressions and recurrences of the generalized higher order Bernoulli
numbers, present the relations between the generalized higher order Bernoulli numbers of
both kinds and the corresponding generalized Stirling numbers of both kinds, and study
the relations between any two generalized higher order Bernoulli numbers. Moreover, we
apply the general results to some special number pairs and obtain series of combinatorial
identities. It can be found that the introduction of generalized Bernoulli number pair
and generalized Stirling number pair provides a unified approach to lots of sequences in
mathematics, and as a consequence, many known results are special cases of ours.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The Stirling numbers of both kinds and the Bernoulli numbers of both kinds are among the most interesting and impor-
tant sequences in mathematics and have numerous applications in combinatorics, number theory, numerical analysis, and
other fields. The Stirling number pair is (S(n,k), s(n,k)), where s(n,k) and S(n,k) are the Stirling numbers of the first and
second kinds. Analogously, the Bernoulli number pair is (Bn,bn), where Bn and bn are the Bernoulli numbers of the first and
second kinds. In this paper, we will make a systematical study on various number pairs analogous to the Stirling number
pair and the Bernoulli number pair.

Let

f (t) =
∞∑

i=0

f i
ti

i!

be a formal power series, then the order o( f (t)) of f (t) is the smallest integer k for which the coefficient of tk does
not vanish. As showed in [15, Section 1.12], the series f (t) has a compositional inverse, denoted by f̄ (t) and satisfying
f ( f̄ (t)) = f̄ ( f (t)) = t , if and only if o( f (t)) = 1. We call any series with o( f (t)) = 1 a delta series.

Given a delta series f (t) = ∑∞
i=1 f iti/i! and its compositional inverse g(t) = ∑∞

i=1 giti/i!, Hsu [21,22] introduced the
generalized Stirling number pair ( Ŝ(n,k), ŝ(n,k)), where Ŝ(n,k) and ŝ(n,k) are defined by the following generating functions:
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1

k!
(

f (t)
)k =

∞∑
n=k

Ŝ(n,k)
tn

n! and
1

k!
(

g(t)
)k =

∞∑
n=k

ŝ(n,k)
tn

n! . (1.1)

We may call ŝ(n,k) and Ŝ(n,k) the generalized Stirling numbers of the first and second kinds.
Let f (t) = et − 1 and g(t) = log(1 + t), then the pair turns to the classical Stirling number pair (S(n,k), s(n,k)). Let

f (t) = t/(1 − t) and g(t) = t/(1 + t), then the pair turns to((
n − 1

k − 1

)
n!
k! , (−1)n−k

(
n − 1

k − 1

)
n!
k!

)
,

where
(n−1

k−1

)n!
k! are the Lah numbers (see [15, Section 3.3]). Various special generalized Stirling number pairs can be found

in Hsu’s papers [21,22]. The readers are also referred to [19,37,39,40] for more results on generalized Stirling number pairs.
Note that the generalized Stirling numbers defined above, say Ŝ(n,k), can be viewed as the elements of the exponential
Riordan array (1, f (t)) or of the iteration matrix associated with f (t). The theory of Riordan arrays can be found in the
papers of Shapiro, Sprugnoli, et al. [30,31], and the results on the iteration matrix can be found in Comtet’s book [15, Sec-
tion 3.7]. Close relations between Riordan arrays, iteration matrices, Sheffer sequences, binomial sequences and generalized
Stirling number pairs are demonstrated explicitly in [19,37].

On the other hand, for the delta series f (t) and its compositional inverse g(t) given above, we can define the generalized
higher order Bernoulli number pair (B̂(z)

n , b̂(z)
n ), where B̂(z)

n and b̂(z)
n satisfy the following generating functions:

(
f1t

f (t)

)z

=
∞∑

n=0

B̂(z)
n

tn

n! and

(
g1t

g(t)

)z

=
∞∑

n=0

b̂(z)
n

tn

n! . (1.2)

The numbers B̂(z)
n and b̂(z)

n may be called the generalized higher order Bernoulli numbers of the first and second kinds, or more
explicitly, the higher order Bernoulli numbers of the first and second kinds associated with the delta series f (t). Additionally, the
numbers B̂n := B̂(1)

n and b̂n := b̂(1)
n may be called the generalized Bernoulli numbers of the first and second kinds.

Within our knowledge, Carlitz [8,9] was the first to seriously consider generalized (higher order) Bernoulli numbers
and he was mainly interested in arithmetic properties of them. Clarke [14] and Adelberg [2] introduced respectively the
universal Bernoulli numbers B̃n and the higher order universal Bernoulli numbers B̃(z)

n . Let the “universal” power series F (t)
be defined by F (t) := t + ∑∞

i=1 citi+1/(i + 1) where c1, c2, . . . are indeterminates, and let G(t) := F̄ (t) be the compositional

inverse. Then B̃n and B̃(z)
n are defined by

t

G(t)
=

∞∑
n=0

B̃n
tn

n! and

(
t

G(t)

)z

=
∞∑

n=0

B̃(z)
n

tn

n! .

From the definitions, it is clear that the (higher order) universal Bernoulli numbers are essentially the generalized (higher
order) Bernoulli numbers. For more results on universal Bernoulli numbers, the readers may consult [3,4,34,35].

If f (t) = et − 1 and g(t) = log(1 + t), then the corresponding Bernoulli number pair is (B(z)
n ,b(z)

n ). The B(z)
n are just the

classical higher order Bernoulli numbers, which are also called Nörlund polynomials [27, Chapter 6] (see, e.g., [1,11,25] for
various properties). Setting z = 1 gives the famous Bernoulli numbers (of the first kind). The b(z)

n are called the higher order
Bernoulli numbers of the second kind and the bn := b(1)

n are the Bernoulli numbers of the second kind. Some care must be
taken here because the (higher order) Bernoulli numbers of the second kind are frequently defined as bn/n! (or correspond-
ingly, b(z)

n /n!) (see, e.g., [24, pp. 265–287] and [10,20,25]). Our definition of b̂(z)
n coincides with Roman’s [29, Section 3.2]

and will bring us more convenience.
Now, given two delta series f (t) and g(t) with f (g(t)) = g( f (t)) = t , we have two pairs

(
Ŝ(n,k), ŝ(n,k)

)
and

(
B̂(z)

n , b̂(z)
n

)
.

Since there are many studies on generalized Stirling number pairs, in this paper, we give emphasis to generalized higher
order Bernoulli number pairs.

In Section 2, we show that the generalized Stirling numbers and the generalized higher order Bernoulli numbers are
essentially the Bell polynomials and the potential polynomials. Section 3 gives some special generalized Stirling number
pairs and the corresponding generalized higher order Bernoulli number pairs. Sections 4 and 5 are devoted to the expres-
sions and recurrences of the generalized higher order Bernoulli numbers. Sections 6 and 7 present some relations between
the generalized higher order Bernoulli numbers of both kinds and the corresponding generalized Stirling numbers of both
kinds. Finally, in Section 8, we establish the relations between any two generalized higher order Bernoulli numbers. It can
be found that the study of generalized higher order Bernoulli number pairs and generalized Stirling number pairs provides
a unified approach to many sequences in combinatorics. As a consequence, many results obtained before are special cases
of ours.
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2. Bell polynomials and potential polynomials

Essentially, the generalized Stirling numbers and the generalized higher order Bernoulli numbers defined in Section 1
are the Bell polynomials and the potential polynomials, respectively.

The exponential partial Bell polynomials [15, pp. 133 and 134] are the polynomials

Bn,k = Bn,k(x1, x2, . . .)

in an infinite number of variables x1, x2, . . . , defined by the series expansion:

1

k!

( ∞∑
m=1

xm
tm

m!

)k

=
∞∑

n=k

Bn,k
tn

n! , k = 0,1,2, . . . .

Their exact expression is

Bn,k(x1, x2, . . .) =
∑

σ (n,k)

n!
c1!c2! · · ·

(
x1

1!
)c1( x2

2!
)c2

· · · , (2.1)

where the summation takes place over the set σ(n,k) of all partitions of n into k parts, that is, over all integers
c1, c2, c3, . . . � 0, such that c1 + 2c2 + 3c3 + · · · = n and c1 + c2 + c3 + · · · = k. Thus, the generalized Stirling numbers,
say Ŝ(n,k), are equal to Bn,k( f1, f2, . . .).

Let f (t) := ∑∞
i=1 f iti/i! be a generic delta series. For each complex number z, define the potential polynomials P (z)

n by

1 +
∞∑

n=1

P (z)
n

tn

n! =
(

1 +
∞∑

i=1

f i
ti

i!

)z

.

Denote P (z)
0 := 1, then according to [15, p. 141, Theorem B], we have

P (z)
n = P (z)

n ( f1, f2, . . . , fn) =
n∑

k=0

(z)k Bn,k( f1, f2, . . .). (2.2)

By the definition of the potential polynomials, it can be found that

B̂(z)
n =

[
tn

n!
](

f1t

f (t)

)z

=
[

tn

n!
](

1 +
∞∑

i=1

f i+1

(i + 1) f1

ti

i!

)−z

= P (−z)
n

(
f2

2 f1
,

f3

3 f1
, . . .

)
, (2.3)

where [tn/n!]H(t) = n![tn]H(t) and [tn]H(t) is the coefficient of tn in the power series H(t).

3. Some special number pairs

In this section, we give some special number pairs. Each of the pairs is related to a delta series f (t) and its compositional
inverse f̄ (t). For clarity, these pairs are listed in Table 1.

As showed in Section 1, the classical Stirling number pair (S(n,k), s(n,k)) and the classical higher order Bernoulli number
pair (B(z)

n ,b(z)
n ) construct an example. They correspond to the delta series et −1 and log(1+ t), and are given by entries (A1)

and (A2) of Table 1.
In [12], Carlitz defined the degenerate Stirling numbers of the second kind S(n,k|λ) and the higher order degenerate

Bernoulli numbers of the first kind β
(z)
n (λ), by means of

1

k!
(
(1 + λt)

1
λ − 1

)k =
∞∑

n=k

S(n,k|λ)
tn

n!
and (

t

(1 + λt)
1
λ − 1

)z

=
∞∑

n=0

β
(z)
n (λ)

tn

n! ,

respectively. These give us entry (B1). The compositional inverse of (1 + λt)1/λ − 1 is ((1 + t)λ − 1)/λ, from which we can
obtain entry (B2). It is obvious that when λ → 0, (B1) and (B2) will reduce to (A1) and (A2), respectively.

Entries (E1), (E2), (F1), (F2), (G1) and (G2) are in fact special cases of (B1) and (B2). However, they are of particular
interest.
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Table 1
Several generalized higher order Bernoulli number pairs and the corresponding generalized Stirling number pairs.

f (t) f̄ (t) Ŝ(n,k) or ŝ(n,k) B̂(z)
n or b̂(z)

n

(A1) et − 1 S(n,k) B(z)
n

(A2) log(1 + t) s(n,k) b(z)
n

(B1) (1 + λt)
1
λ − 1 S(n,k|λ) β

(z)
n (λ)

(B2) (1+t)λ−1
λ

s(n,k|λ) = λn−k S(n,k| 1
λ
) α

(z)
n (λ) = λnβ

(z)
n ( 1

λ
)

(C1) tet
(n

k

)
kn−k (−z)n

(C2) (tet )〈−1〉 (−1)n−k
(n−1

k−1

)
nn−k z(z − n)n−1

(D1) 2 sinh t
2 T (n,k) = (n

k

)
B(−k)

n−k (− k
2 ) B(z)

n ( z
2 )

(D2) 2 arcsinh t
2 t(n,k) = (n−1

k−1

)
B(n)

n−k(
n
2 ) −z

n−z B(n−z)
n ( n−z

2 )

if z �= n;
Bn if z = n, n is even;

0 if z = n, n is odd

(E1) t
1−t L(n,k) = (n−1

k−1

) n!
k! (−1)n(z)n = β

(z)
n (−1)

(E2) t
1+t (−1)n−k

(n−1
k−1

) n!
k! (z)n = (−1)nβ

(z)
n (−1)

(F1) t − t2 (−1)n−k n!
k!

( k
n−k

) 〈z〉n = (−4)nβ
(z)
n ( 1

2 )

(F2) 1−√
1−4t

2
(n−1)!
(k−1)!

(2n−k−1
n−1

) −z(n − 1)!(2n−z−1
n−1

) = (−2)nβ
(z)
n (2)

(G1) 2t + t2 n!
k!

( k
n−k

)
22k−n (−z)n

2n = 2nβ
(z)
n ( 1

2 )

(G2)
√

1 + t − 1 (−1)n−k (n−1)!
(k−1)!

(2n−k−1
n−1

) 1
22n−k

(−1)n−1(n−1)!z
4n

(2n−z−1
n−1

) = 2−nβ
(z)
n (2)

With some computation, we can verify entries (E1) and (E2), which are the λ = −1 case of (B1) and (B2). Note that
the generalized Stirling number pair is now (L(n,k), (−1)n−k L(n,k)), where L(n,k) = (n−1

k−1

)n!
k! are the Lah numbers. The

corresponding generalized higher order Bernoulli number pair is ((−1)n(z)n, (z)n), where (z)n are the falling factorials
[15, p. 6, Eq. (4f)] defined by (z)0 = 1 and (z)n = z(z − 1) · · · (z − n + 1) for n � 1.

Entry (F1) can be obtained directly. Note that 〈z〉n are the rising factorials [15, p. 6, Eq. (4g)] defined by 〈z〉0 =
1 and 〈z〉n = z(z + 1) · · · (z + n − 1) for n � 1. To obtain entry (F2), we may use the Lagrange inversion formula
[15, Section 3.8, Theorems A and B]:

Lemma 3.1 (The Lagrange inversion formula). Let f (t) be a delta series and f̄ (t) be the corresponding compositional inverse, then for
any formal power series Φ(t) we have

Φ
(

f̄ (t)
) = Φ(0) +

∞∑
n=1

tn

n

[
tn−1]Φ ′(t)

(
f (t)

t

)−n

.

Equivalently, for positive integer n we have

[
tn]Φ(

f̄ (t)
) = 1

n

[
tn−1]Φ ′(t)

(
f (t)

t

)−n

. (3.1)

Particularly, if Φ(t) = tk, where k is a nonnegative integer, then (3.1) reduces to

[
tn]( f̄ (t)

)k = k

n

[
tn−k]( f (t)

t

)−n

. (3.2)
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By appealing to (3.1) and (3.2), we derive for n � k � 1 that

ŝ(n,k) =
[

tn

n!
]

1

k!
(

1 − √
1 − 4t

2

)k

= n!
k!

k

n

[
tn−k]( t − t2

t

)−n

= (n − 1)!
(k − 1)!

(
2n − k − 1

n − 1

)
,

and for n � 1 that

b̂(z)
n =

[
tn

n!
](

2t

1 − √
1 − 4t

)z

= − z

n
n![tn−1](1 − t)z−1−n = − z

n
n!

(
2n − z − 1

n − 1

)
.

Thus, entry (F2) is obtained (see also [15, Exercise 3.21(2)]). As a by-product, we have

1

n! b̂(−1)
n = 1

n + 1

(
2n

n

)
= Cn,

where Cn are the famous Catalan numbers [18, p. 203].
In a similar way, entries (G1) and (G2) can be verified. Note that the generalized Stirling numbers given by (G1) and

(G2) can be found in [15, Exercise 3.7].
Entry (C1) can be obtained directly, and entry (C2) can be verified by means of the Lagrange inversion formula. Note that

Ŝ(n,k) = (n
k

)
kn−k in (C1) are the idempotent numbers (see [15, p. 135, Theorem B]), and |ŝ(n,k)| = (n−1

k−1

)
nn−k in (C2) are the

numbers of planted forests with k components on the vertex set [n] (see [33, Section 5.3]).
Finally, let us verify entries (D1) and (D2). The generalized Stirling numbers T (n,k) and t(n,k) are called central factorial

numbers, which were studied systematically by Butzer and his cooperators [6,7]. As evaluated by Mathematical Reviews,
“the central factorial numbers are at least as important as Stirling’s numbers, if judged by their performance in expansions”.
To obtain the explicit expression of T (n,k), note that sinh t = (et − e−t)/2, then

T (n,k) =
[

tn

n!
]

1

k!
(

2 sinh
t

2

)k

=
[

tn

n!
]

1

k!
(
e

t
2 − e− t

2
)k

= n!
k!

[
tn−k]( t

et − 1

)−k

e− k
2 t =

(
n

k

)
B(−k)

n−k

(
−k

2

)
,

where B(z)
n (x) are the higher order Bernoulli polynomials defined by (for details, see [26, Section 2.8] and [32, Section 1.6])(

t

et − 1

)z

ext =
∞∑

n=0

B(z)
n (x)

tn

n!
(|t| < 2π

)
.

Similarly, we have B̂(z)
n = B(z)

n (z/2). By means of the Lagrange inversion formula, we can also find that

t(n,k) =
(

n − 1

k − 1

)
B(n)

n−k

(
n

2

)
.

To obtain b̂(z)
n , more computation is required. According to the Lagrange inversion formula and the expansion

coth t = cosh t

sinh t
= 1

t
+

∞∑
n=1

22n B2n

(2n)! t2n−1 (
0 < |t| < π

)
of the hyperbolic cotangent [38], for n � 1 we obtain

b̂(z)
n =

[
tn

n!
](

t

2 arcsinh t
2

)z

= (n − 1)![tn−1]( d

dt

(
2 sinh t

2

t

)z)(
2 sinh t

2

t

)−n

= z

[
tn−1

(n − 1)!
](

2 sinh t
2

t

)z−n(1

2
coth

t

2
− 1

t

)

= z

[
tn−1

(n − 1)!
]( ∞∑

i=0

B(n−z)
i

(
n − z

2

)
ti

i!

)( ∞∑
j=1

B2 jt2 j−1

(2 j)!

)

= z

[
tn−1

(n − 1)!
] ∞∑

l=2

(
l−2∑
i=0

(
l

i

)
B(n−z)

i

(
n − z

2

)
Bl−i

)
tl−1

l!

= z

n

[
tn

n!
] ∞∑(

B(n−z+1)

l

(
n − z

2

)
+ l

2
B(n−z)

l−1

(
n − z

2

)
− B(n−z)

l

(
n − z

2

))
tl

l! .

l=2
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Therefore, b̂(z)
1 = 0 and

b̂(z)
n = z

n

(
B(n−z+1)

n

(
n − z

2

)
+ n

2
B(n−z)

n−1

(
n − z

2

)
− B(n−z)

n

(
n − z

2

))

for n � 2. Since (see [29, Eq. (4.2.7)])

B(a+1)
n (x) =

(
1 − n

a

)
B(a)

n (x) + n

(
x

a
− 1

)
B(a)

n−1(x) (a �= 0),

then for n � 2, we have b̂(z)
n = −z

n−z B(n−z)
n (n−z

2 ) if z �= n and b̂(z)
n = Bn if z = n. Making use of the facts that B(z)

1 ( z
2 ) = 0 and

Bn = 0 when n = 3,5,7, . . . , we can obtain the final result.
In the following sections, we will study the properties of the generalized higher order Bernoulli numbers and the rela-

tions between the generalized higher order Bernoulli numbers and the corresponding generalized Stirling numbers. We will
also apply the general results obtained later to the special number pairs given in this section. All of these general results
have dual forms by the substitutions B̂(z)

n � b̂(z)
n , Ŝ(n,k) � ŝ(n,k) and fn � gn . However, for simplicity, most of the dual

results will not be presented explicitly.

4. Expressions and recurrences

Theorem 4.1. For integer n � 1, we have the expression

B̂(z)
n = n!

n∑
k=0

∑
σ (n,k)

( −z

c1, c2, . . . , cn

)
f −k

1

(
f2

2!
)c1( f3

3!
)c2

· · ·
(

fn+1

(n + 1)!
)cn

, (4.1)

where
( −z

c1,c2,...,cn

)
are the multinomial coefficients defined by( −z

c1, c2, . . . , cn

)
= (−z)c1+c2+···+cn

c1!c2! · · · cn! .

Proof. By appealing to Eqs. (2.2) and (2.3), we have

B̂(z)
n =

n∑
k=0

(−z)k Bn,k

(
f2

2 f1
,

f3

3 f1
, . . .

)
=

n∑
k=0

(−z)k f −k
1 Bn,k

(
f2

2
,

f3

3
, . . .

)

=
n∑

k=0

∑
σ (n,k)

(−z)k f −k
1 n!

c1!c2! · · · cn!
(

f2

2!
)c1( f3

3!
)c2

· · ·
(

fn+1

(n + 1)!
)cn

,

which is just (4.1). �
For example, the classical Bernoulli numbers Bn satisfy

Bn = n!
n∑

k=0

∑
σ (n,k)

(−1)k
(

k

c1, c2, . . . , cn

)
1

2!c1 3!c2 · · · (n + 1)!cn

and the Bernoulli numbers of the second kind bn satisfy

bn = n!
n∑

k=0

∑
σ (n,k)

(−1)n−k
(

k

c1, c2, . . . , cn

)
1

2c1 3c2 · · · (n + 1)cn
.

Based on Theorem 4.1, the following special values of the generalized higher order Bernoulli numbers can be obtained
without difficulty:

B̂(z)
0 = 1, B̂(z)

1 = − f2

2 f1
z, B̂(z)

2 = f 2
2

4 f 2
1

z2 +
(

f 2
2

4 f 2
1

− f3

3 f1

)
z,

B̂(z)
3 = − f 3

2

8 f 3
1

z3 +
(

−3 f 3
2

8 f 3
1

+ f2 f3

2 f 2
1

)
z2 +

(
− f 3

2

4 f 3
1

+ f2 f3

2 f 2
1

− f4

4 f1

)
z.

Setting fn = 1 and fn = (−1)n−1(n − 1)! respectively, we can obtain some values of the classical higher order Bernoulli
numbers of both kinds (see Liu and Srivastava’s paper [25]).
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From the special values, it can be seen that B̂(z)
n are polynomials in z. In fact, we have

∞∑
n=0

B̂(z)
n

tn

n! =
(

f (t)

f1t

)−z

=
(

1 +
∞∑

i=1

f i+1

(i + 1) f1

ti

i!

)−z

=
∞∑
j=0

(−z

j

)( ∞∑
i=1

f i+1

(i + 1) f1

ti

i!

) j

.

Let

F (t) =
∞∑

i=1

f i+1

(i + 1) f1

ti

i! ,

then degt F (t) j � j, which indicates that

B̂(z)
n =

[
tn

n!
] ∞∑

j=0

(−z

j

)
F (t) j =

[
tn

n!
] n∑

j=0

(−z

j

)
F (t) j .

Therefore, B̂(z)
n are indeed polynomials in z of degree not greater than n. Moreover, since

[
zn]B̂(z)

n = [
zn][ tn

n!
](−z

n

)
F (t)n = [

zn][ tn

n!
]

(−z)n

n!
(

f2

2 f1

)n

tn =
(

− f2

2 f1

)n

,

then we have degz B̂(z)
n = n and [zn]B̂(z)

n = (− f2/(2 f1))
n when f2 �= 0.

We now determine the general coefficients of B̂(z)
n . Let σ(n,k) = [zk]B̂(z)

n for 0 � k � n and define the associated Stirling
numbers A(n,k) related to the delta series f (t) by

1

k!
(

f (t) − f1t
)k =

∞∑
n=2k

A(n,k)
tn

n! , (4.2)

then the next theorem can be established.

Theorem 4.2. We have

B̂(z)
n =

n∑
k=0

σ(n,k)zk

and

σ(n,k) = (−1)k
n∑

j=k

f − j
1

n!
(n + j)! s( j,k)A(n + j, j), (4.3)

where s( j,k) are the classical Stirling numbers of the first kind and A(n, j) are the associated Stirling numbers defined in (4.2).

Proof. Based on the generating functions of B̂(z)
n and A(n, j), it can be found that

B̂(z)
n =

[
tn

n!
](

f1t

f (t)

)z

=
[

tn

n!
](

1

1 + 1
f1t ( f (t) − f1t)

)z

=
[

tn

n!
] ∞∑

j=0

(−1) j
(

z + j − 1

j

)(
f (t) − f1t

) j
f − j

1 t− j

=
[

tn

n!
] ∞∑

j=0

(
− 1

f1

) j

(z + j − 1) j

∞∑
n=2 j

A(n, j)
tn− j

n!

=
n∑

j=0

(
− 1

f1

) j 〈z〉 jn!
(n + j)! A(n + j, j).

Because (see [15, p. 213, Eq. (5f)])

〈z〉 j =
j∑

(−1) j−ks( j,k)zk,
k=0
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we have

B̂(z)
n =

n∑
j=0

(
− 1

f1

) j n!
(n + j)! A(n + j, j)

j∑
k=0

(−1) j−ks( j,k)zk

=
n∑

k=0

(
(−1)k

n∑
j=k

f − j
1

n!
(n + j)! s( j,k)A(n + j, j)

)
zk.

This completes the proof. �
Similarly, let τ (n,k) = [zk]b̂(z)

n for 0 � k � n and define the associated Stirling numbers a(n,k) related to the delta series
g(t) by

1

k!
(

g(t) − g1t
)k =

∞∑
n=2k

a(n,k)
tn

n! .

Then

b̂(z)
n =

n∑
k=0

τ (n,k)zk =
n∑

k=0

(
(−1)k

n∑
j=k

g− j
1

n!
(n + j)! s( j,k)a(n + j, j)

)
zk. (4.4)

When f (t) = et − 1 and g(t) = log(1 + t), the above results (4.3) and (4.4) will reduce to the ones due to Liu and Srivastava
[25, Theorems 1 and 3].

Next, let us establish some recurrence relations for the generalized higher order Bernoulli numbers B̂(z)
n .

Theorem 4.3. For n � 0, we have

(z − n) f1 B̂(z)
n = z

n∑
k=0

(
n

k

)
fn+1−k B̂(z+1)

k . (4.5)

Proof. Differentiate with respect to t the generating function of B̂(z)
n and then identify the corresponding coefficients. �

Theorem 4.4. For integers n � 0 and l � k � 1, we have

n∑
j=0

(
n + l

j

)
Ŝ(n + l − j, l)B̂(k)

j = f k
1

(
n + l

k

)(
l

k

)−1

Ŝ(n + l − k, l − k). (4.6)

Proof. Consider the equation(
f (t)

f1t

)l( f1t

f (t)

)k

=
(

f (t)

f1t

)l−k

. (4.7)

Since (
f (t)

f1t

)l

= l!
f l

1tl

∞∑
n=l

Ŝ(n, l)
tn

n! =
∞∑

n=0

Ŝ(n + l, l)

f l
1

(n+l
l

) tn

n! ,

then by extracting the coefficients of tn/n!, we obtain from (4.7) that

n∑
j=0

(
n

j

)
Ŝ(n − j + l, l)

f l
1

(n− j+l
l

) B̂(k)
j = Ŝ(n + l − k, l − k)

f l−k
1

(n+l−k
l−k

) ,

which is equivalent to (4.6). �
Corollary 4.5. For integers n � 0 and l � 1, we have

n∑(
n + l

j

)
Ŝ(n + l − j, l)B̂ j = f1

n + l

l
Ŝ(n + l − 1, l − 1). (4.8)
j=0
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For integers n � 1 and l � 1, we have

n∑
j=0

(
n + l

j

)
Ŝ(n + l − j, l)B̂(l)

j = 0, (4.9)

n∑
j=0

(
n + 1

j

)
fn+1− j B̂ j = 0. (4.10)

Proof. The substitution k = 1 in (4.6) gives (4.8). Since Ŝ(n,0) = δn,0, then the substitution k = l in (4.6) gives (4.9). Setting
further l = 1 in (4.9) and taking into account that Ŝ(n,1) = fn , we finally obtain (4.10). �
5. Applications of the results in Section 4

Example 5.1. For entries (A1) and (A2), Theorem 4.3 gives

(z − n)B(z)
n = z

n∑
k=0

(
n

k

)
B(z+1)

k , (z − n)b(z)
n = z

n∑
k=0

(−1)n−k n!
k!b(z+1)

k ,

and Theorem 4.4 gives

n∑
j=0

(
n + l

j

)
S(n + l − j, l)B(k)

j =
(

n + l

k

)(
l

k

)−1

S(n + l − k, l − k), (5.1)

n∑
j=0

(
n + l

j

)
s(n + l − j, l)b(k)

j =
(

n + l

k

)(
l

k

)−1

s(n + l − k, l − k), (5.2)

where n � 0 and l � k � 1. The following are special cases of (5.1) and (5.2). For integers n � 0 and l � 1, we have

n∑
j=0

(
n + l

j

)
S(n + l − j, l)B j = n + l

l
S(n + l − 1, l − 1),

n∑
j=0

(
n + l

j

)
s(n + l − j, l)b j = n + l

l
s(n + l − 1, l − 1). (5.3)

For integers n � 1 and l � 1, we have

n∑
j=0

(
n + l

j

)
S(n + l − j, l)B(l)

j = 0,

n∑
j=0

(
n + l

j

)
s(n + l − j, l)b(l)

j = 0,

n∑
j=0

(
n + 1

j

)
B j = 0,

n∑
j=0

(
n + 1

j

)
(−1)n− j(n − j)!b j = 0. (5.4)

Identity (5.3) was given by Agoh and Dilcher [5, Theorem 5.1]. The first identity of (5.4) is a well-known recurrence of
Bernoulli numbers (for example, see [18, p. 284, Eq. (6.79)] and [24, p. 233, Eq. (7)]). Similar results can be obtained for
entries (B1) and (B2); however, we chose not to present them here.

Example 5.2. For entry (C1), applying Theorems 4.3 and 4.4, we have

(z − n)zn−1 =
n∑

k=0

(−1)n−k
(

n

k

)
(n + 1 − k)(z + 1)k,

n∑
j=0

(
n

j

)
ln− j(−k) j = (l − k)n.

It is obvious that these two equations can be derived immediately from the binomial identity. For entry (C2), Theorem 4.3
gives
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(z − n)n = (z + 1)

n∑
k=0

(
n

k

)
(k − n − 1)n−k(z + 1 − k)k−1,

and Theorem 4.4 gives

n∑
j=0

(
n

j

)
(n + l − j)n− j−1( j − k) j−1 = − l − k

lk
(n + l − k)n−1,

where n � 0 and l � k � 1. These two equations can also be obtained from the Abel identities [28, Section 1.5, Eqs. (13)
and (20)].

Example 5.3. For entries (D1) and (D2), Theorem 4.3 yields

(z − n)B(z)
n

(
z

2

)
= z

n∑
k=0

2|n−k

(
n

k

)
1

2n−k
B(z+1)

k

(
z + 1

2

)

and

B(n−z)
n

(
n − z

2

)
=

n∑
k=0

2|n−k

(−1)
n−k

2

(
n

k

)(
n − k

n−k
2

)
(n − k)!(z + 1)

4n−k(z + 1 − k)
B(k−z−1)

k

(
k − z − 1

2

)
.

For entry (D1), Theorem 4.4 gives

n∑
j=0

(
n + l

j

)
T (n + l − j, l)B(k)

j

(
k

2

)
=

(
n + l

k

)(
l

k

)−1

T (n + l − k, l − k).

Since T (n,k) = (n
k

)
B(−k)

n−k (− k
2 ), then the above identity turns into

n∑
j=0

(
n

j

)
B(k)

j

(
k

2

)
B(−l)

n− j

(
− l

2

)
= B(k−l)

n

(
k − l

2

)
,

which is a well-known property of the higher order Bernoulli polynomials. For entry (D2), Theorem 4.4 gives

n∑
j=0

(
n + l

j

)
k

k − j
t(n + l − j, l)B( j−k)

j

(
j − k

2

)
=

(
n + l

k

)(
l

k

)−1

t(n + l − k, l − k),

where n � 0, l � k � n + 1. Replacing t(n,k) by
(n−1

k−1

)
B(n)

n−k(
n
2 ), we have

l − k

n + l − k
B(n+l−k)

n

(
n + l − k

2

)
=

n∑
j=0

(
n

j

)
kl

(n + l − j)(k − j)
B(n+l− j)

n− j

(
n + l − j

2

)
B( j−k)

j

(
j − k

2

)
.

Example 5.4. For entries (E1) and (E2), we can obtain from Theorems 4.3 and 4.4 the following two identities:(
z − 1

n

)
=

n∑
k=0

(−1)n−k(n − k + 1)

(
z + 1

k

)
,

n∑
j=0

(−1) j
(

n

j

)(
k

j

)(
n + l − 1

j

)−1

=
(

n + l − k − 1

n

)(
n + l − 1

n

)−1

,

where the first one can be verified by the Vandermonde convolution formula.

Example 5.5. For entry (F1), Theorem 4.3 gives a trivial result, because now the coefficients f i are all zero for i � 3.
Additionally, Theorem 4.4 yields

n∑(
l

n − j

)(−k

j

)
=

(
l − k

n

)
,

j=0
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which is the Vandermonde convolution formula. For entry (F2), we can obtain from Theorems 4.3 and 4.4 the next two
identities:

z − n

n

(
2n − z − 1

n − 1

)
= −

(
2n

n

)
+

n∑
k=1

(
2n − 2k

n − k

)(
2k − z − 2

k − 1

)
z + 1

k
,

1

2n + l

(
2n + l

n

)
− l − k

(2n + l − k)l

(
2n + l − k

n

)
=

n∑
j=1

(
2 j − k − 1

j − 1

)(
2n + l − 2 j

n + l − j

)
k

j(2n + l − 2 j)
,

where n � 1 and l � k � 1. It can be verified that applying Theorems 4.3 and 4.4 (and, in fact, most of the results in
Sections 6 and 8) to entries (G1) and (G2) gives us the same results.

6. Relations between Bernoulli numbers and corresponding Stirling numbers

We now present some relations between the generalized higher order Bernoulli numbers of both kinds and the corre-
sponding generalized Stirling numbers of both kinds.

Theorem 6.1. For integers n and k with 0 � n < k, the following relations hold:

B̂(k)
n = f k

1
ŝ(k,k − n)(k−1

n

) = g−n
1

k

k − n
b̂(n−k)

n (6.1)

= f k
1(k−1

n

) n∑
i=0

(
k − 1

i

)
gi+1 ŝ(k − 1 − i,k − 1 − n) = g−n−1

1

n∑
i=0

(
n

i

)
gi+1b̂(n+1−k)

n−i . (6.2)

Proof. According to the Lagrange inversion formula, we have

B̂(k)
n =

[
tn

n!
](

f1t

f (t)

)k

= n! f k
1

[
tn]( f (t)

t

)−k

= n! f k
1

k

k − n

[
tk](g(t)

)k−n
. (6.3)

Thus, combining the generating function of ŝ(n,k) with (6.3) gives

B̂(k)
n = n! f k

1
k(k − n)!

k − n

[
tk] ∞∑

j=k−n

ŝ( j,k − n)
t j

j! = f k
1

ŝ(k,k − n)(k−1
n

) .

Combining the generating function of b̂(z)
n with (6.3) gives

B̂(k)
n = n! f k

1
k

k − n

[
tn]( g(t)

t

)k−n

= g−n
1

k

k − n

[
tn

n!
](

g1t

g(t)

)n−k

= g−n
1

k

k − n
b̂(n−k)

n .

Now, let us define(
g(t)

t

)k−n

=
∞∑

i=0

ait
i .

Differentiating the above series and identifying the coefficients of ti−1 yield

ai = k − n

k − n + i

[
ti]( g(t)

t

)k−n−1

g′(t),

where g′(t) is the formal derivative of g(t). Hence

B̂(k)
n = n! f k

1

[
tn]( g(t)

t

)k−n−1

g′(t), (6.4)

from which we can obtain (6.2). �
In fact, Eqs. (6.3) and (6.4) were proposed by Adelberg [2, Proposition 2.1], who also pointed out the duality between

the generalized higher order Bernoulli numbers of both kinds. However, the relations between the generalized higher order
Bernoulli numbers and the generalized Stirling numbers have not been given.
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Theorem 6.2. For integers n � 1 and k � 1, the following relations hold:

B̂(−k)
n = Ŝ(n + k,k)

f k
1

(n+k
k

) = g−n
1

k

n + k
b̂(n+k)

n (6.5)

= gk
1(n+k

k

) n+k−1∑
i=0

(
n + k − 1

i

)
fn+k−i Ŝ(i,k − 1) = kf −1

1

n + k

n∑
i=0

(
n

i

)
fn−i+1 B̂(1−k)

i (6.6)

= g−n
1

n∑
j=0

(−1) j
(

2n + k

n − j

)(
n + k + j

j

)
k

n + k + j
b̂(− j)

n . (6.7)

Proof. Of course, following a similar way to the proof of Theorem 6.1 gives us Eqs. (6.5) and (6.6). However, there exists a
more straightforward proof. Replacing k by n+k in Theorem 6.1, multiplying each term by a factor gn

1k/(n+k), and applying

the substitutions B̂(z)
n � b̂(z)

n , Ŝ(n,k) � ŝ(n,k) and fn � gn , we can also obtain the final results. From the proof, it can be
found that Theorems 6.1 and 6.2 are actually dual.

Next, let us verify Eq. (6.7). In [15, p. 142, Theorem C], it is shown that for any complex number z, the potential
polynomials satisfy

P (−z)
n =

n∑
j=0

(−1) j
(

n + z

n − j

)(
z + j − 1

j

)
P ( j)

n , (6.8)

thus we have

B̂(−k)
n =

[
tn

n!
](

f1t

f (t)

)−k

= n!
f k

1

[
tn+k]( f (t)

)k = n!
f k

1

k

n + k

[
tn]( g(t)

t

)−n−k

= g−n
1

k

n + k

[
tn

n!
](

g(t)

g1t

)−n−k

= g−n
1

k

n + k

n∑
j=0

(−1) j
(

2n + k

n − j

)(
n + k + j − 1

j

)
b̂(− j)

n ,

from which Eq. (6.7) can be obtained. �
Combining (6.1) with (6.5) and taking into account the duality, we can see for n � 0 that

B̂(k)
n = g−n

1
k

k − n
b̂(n−k)

n , b̂(k)
n = f −n

1
k

k − n
B̂(n−k)

n (k > n or k � −1).

The following four relations also deserve emphasis:

B̂(k)
n = f k

1
ŝ(k,k − n)(k−1

n

) , b̂(k)
n = gk

1
Ŝ(k,k − n)(k−1

n

) (0 � n < k), (6.9)

B̂(−k)
n = Ŝ(n + k,k)

f k
1

(n+k
k

) , b̂(−k)
n = ŝ(n + k,k)

gk
1

(n+k
k

) (n,k � 0). (6.10)

Now, replacing the numbers B̂(−k)
n and b̂(− j)

n in (6.7) by (6.10) and doing some transformations, we can finally obtain the
Schlömilch formula (see [15, Section 5.7, Theorem A] and [22, Section 2, Eq. (14)]):

Ŝ(n,k) =
n−k∑
j=0

(−1) j
(

n + j − 1

n + j − k

)(
2n − k

n − k − j

)
g−n− j

1 ŝ(n − k + j, j), (6.11)

where n � k � 1. In [22, Section 2], Hsu proved that the Schlömilch formula (6.11) is equivalent to the Lagrange inversion
formula (3.2), i.e., they are deducible from each other. Since (6.11) is equivalent to (6.7), then (6.7) is also equivalent to the
Lagrange inversion formula.

Additionally, define Fn(k) = Ŝ(n + k,k)/ f k
1 and Gn(k) = (−1)nŝ(k,k − n)/gk

1, then Fn(k) and Gn(k) are polynomials in k.
By the fundamental theorem of algebra, relations (6.1) and (6.5) hold for all k ∈ Z. Thus, replacing k by −k in (6.1) and
combining with (6.5), we obtain

Fn(k) = Gn(−k), for all k ∈ Z,

which coincides with the classical result (e.g., see [1, pp. 12–13] and [16, Proposition 1.2]).
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Theorem 6.3. For any complex number z and integers n � 1 and k � 0, we have

B̂(kz)
n =

n∑
j=0

(−1) j
(

n + z

n − j

)(
z + j − 1

j

)
B̂(−kj)

n (6.12)

=
n∑

j=0

(−1) j f −kj
1

(
n + z

n − j

)(
z + j − 1

j

)(
n + kj

n

)−1

Ŝ(n + kj,kj) (6.13)

= g−n
1

n∑
j=0

(−1) j
(

n + z

n − j

)(
z + j − 1

j

)
kj

n + kj
b̂(n+kj)

n . (6.14)

Proof. According to the property (6.8) of the potential polynomials, we have

B̂(kz)
n =

[
tn

n!
](

f1t

f (t)

)kz

=
[

tn

n!
](

f (t)k

f k
1 tk

)−z

=
n∑

j=0

(−1) j
(

n + z

n − j

)(
z + j − 1

j

)[
tn

n!
](

f (t)k

f k
1 tk

) j

,

which yields identity (6.12). Next, by means of (6.5), identities (6.13) and (6.14) can also be established. Moreover, replacing
k by k − n in Eq. (6.7), applying the substitutions b̂(z)

n � B̂(z)
n and g1 � f1, and then using Eq. (6.1), we can obtain the k = 1

case of (6.12). �
The substitution z = 1 in Theorem 6.3 leads us to the corollary below.

Corollary 6.4. For integers n � 1 and k � 0, we have

B̂(k)
n =

n∑
j=0

(−1) j
(

n + 1

j + 1

)
B̂(−kj)

n =
n∑

j=0

(−1) j f −kj
1

(
n + 1

j + 1

)(
n + kj

n

)−1

Ŝ(n + kj,kj)

= g−n
1

n∑
j=0

(−1) j
(

n + 1

j + 1

)
kj

n + kj
b̂(n+kj)

n . (6.15)

7. Applications of the results in Section 6

Example 7.1. Applying Theorem 6.1 to entries (A1) and (A2), we have

B(k)
n = s(k,k − n)(k−1

n

) = k

k − n
b(n−k)

n

= 1(k−1
n

) n∑
i=0

(−1)i i!
(

k − 1

i

)
s(k − 1 − i,k − 1 − n) =

n∑
i=0

(−1)i i!
(

n

i

)
b(n+1−k)

n−i ,

b(k)
n = S(k,k − n)(k−1

n

) = k

k − n
B(n−k)

n

= 1(k−1
n

) n∑
i=0

(
k − 1

i

)
S(k − 1 − i,k − 1 − n) =

n∑
i=0

(
n

i

)
B(n+1−k)

n−i ,

where 0 � n < k. Next, using Theorem 6.2, we have

B(−k)
n = S(n + k,k)(n+k

k

) = k

n + k
b(n+k)

n

= 1(n+k)
n+k−1∑ (

n + k − 1

i

)
S(i,k − 1) = k

n + k

n∑(
n

i

)
B(1−k)

i

k i=0 i=0
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=
n∑

j=0

(−1) j
(

2n + k

n − j

)(
n + k + j

j

)
k

n + k + j
b(− j)

n ,

b(−k)
n = s(n + k,k)(n+k

k

) = k

n + k
B(n+k)

n

= 1(n+k
k

) n+k−1∑
i=0

(−1)n+k−1−i (n + k − 1)!
i! s(i,k − 1) = k

n + k

n∑
i=0

(−1)n−i n!
i! b(1−k)

i

=
n∑

j=0

(−1) j
(

2n + k

n − j

)(
n + k + j

j

)
k

n + k + j
B(− j)

n ,

where n,k � 1. Finally, using Theorem 6.3, we have

B(kz)
n =

n∑
j=0

(−1) j
(

n + z

n − j

)(
z + j − 1

j

)
B(−kj)

n

=
n∑

j=0

(−1) j
(

n + z

n − j

)(
z + j − 1

j

)(
n + kj

n

)−1

S(n + kj,kj)

=
n∑

j=0

(−1) j
(

n + z

n − j

)(
z + j − 1

j

)
kj

n + kj
b(n+kj)

n (7.1)

and

b(kz)
n =

n∑
j=0

(−1) j
(

n + z

n − j

)(
z + j − 1

j

)
b(−kj)

n

=
n∑

j=0

(−1) j
(

n + z

n − j

)(
z + j − 1

j

)(
n + kj

n

)−1

s(n + kj,kj)

=
n∑

j=0

(−1) j
(

n + z

n − j

)(
z + j − 1

j

)
kj

n + kj
B(n+kj)

n ,

where n � 1 and k � 0. When z = 1, identity (7.1) reduces to

B(k)
n =

n∑
j=0

(−1) j
(

n + 1

j + 1

)(
n + kj

n

)−1

S(n + kj,kj),

which can be found in [23, p. 60]. Setting further k = 1 in the above identity yields

Bn =
n∑

j=0

(−1) j
(

n + 1

j + 1

)(
n + j

n

)−1

S(n + j, j),

which is a known result also (see [17, p. 49, Eq. (17)], [18, p. 317, Exercise 78] and [24, p. 219]). Additionally, setting k = 1
in (7.1) gives us a result due to Todorov [36, p. 665, Eq. (3)]. As Example 5.1, by applying the theorems to entries (B1)
and (B2), we can obtain similar results involving the higher order degenerate Bernoulli numbers and the degenerate Stirling
numbers. The readers may consult the paper of Cenkci and Howard [13].

Example 7.2. Let us consider entries (C1) and (C2). Now, Theorem 6.1 gives

kn = (k − n − 1)

n∑
i=0

(
n

i

)
(k − i − 1)n−i−1(i + 1)i, (7.2)

k(k − n)n−1 =
n∑

i=0

(
n

i

)
(i + 1)(k − n − 1)n−i, (7.3)

where 0 � n < k. Theorem 6.2 gives
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kn = k

n + k

n∑
i=0

(
n

i

)
(n − i + 1)(k − 1)i

=
n∑

j=0

(−1)n− j
(

2n + k

n − j

)(
n + k + j

j

)
kj

n + k + j
(n + j)n−1 (7.4)

and

(k + n)n−1 = k − 1

k + n

n∑
i=0

(
n

i

)
(n − i + 1)n−i(k + i − 1)i−1

=
n∑

j=0

(−1)n− j
(

2n + k

n − j

)(
n + k + j

j

)
jn

n + k + j
, (7.5)

where n,k � 1. Moreover, for integers n � 1 and k � 0, Theorem 6.3 yields

zn =
n∑

j=0

(−1)n− j
(

n + z

n − j

)(
z + j − 1

j

)
jn,

z(kz − n)n−1 =
n∑

j=0

(−1)n− j
(

n + z

n − j

)(
z + j − 1

j

)
j(kj + n)n−1.

It is not difficult to verify that (7.2) and (7.5) can be derived from the Abel identity [28, p. 18, Eq. (13)], while (7.3) and (7.4)
can be derived from the binomial identity.

Example 7.3. We present the results related to entry (D1). Theorem 6.1 gives

B(k)
n

(
k

2

)
=

n∑
i=0

i even

(−1)
i
2

(
n

i

)(
i
i
2

)
i!(k − n − 1)

4i(k − i − 1)
B(k−i−1)

n−i

(
k − i − 1

2

)
, (7.6)

where 0 � n < k − 1. Theorems 6.2 and 6.3 give

B(−k)
n

(
−k

2

)
= k

n + k

n∑
i=0

i even

(
n

i

)(
1

2

)i

B(1−k)
n−i

(
1 − k

2

)

=
n∑

j=0

(−1) j
(

2n + k

n − j

)(
n + k + j

j

)
kj

(n + k + j)(n + j)
B(n+ j)

n

(
n + j

2

)
(7.7)

and

B(kz)
n

(
kz

2

)
=

n∑
j=0

(−1) j
(

n + z

n − j

)(
z + j − 1

j

)
B(−kj)

n

(
−kj

2

)
,

respectively, where n � 1 and k � 0. Note that Eqs. (7.6) and (7.7) coincide with the first two identities of Example 5.3.

Example 7.4. Apply Theorems 6.1–6.3 to entries (E1) and (E2). For 0 � n < k, we have(
k

n

)
=

n∑
i=0

(−1)n−i
(

n + 1 − k

n − i

)
(i + 1).

For n � 1 and k � 0, we have(
n + k − 1

n

)
= k

n + k

n∑
i=0

(−1)i
(

1 − k

i

)
(n − i + 1)

=
n∑

(−1)n− j
(

2n + k

n − j

)(
n + k + j

j

)(
n + j − 1

n

)
k

n + k + j

j=0
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and (
kz

n

)
=

n∑
j=0

(−1)n− j
(

n + z

n − j

)(
z + j − 1

j

)(
n + kj − 1

n

)
.

Example 7.5. Let us consider entries (F1) and (F2) (entries (G1) and (G2) give the same results). Combining Theorem 6.1
with entry (F1), we obtain(

k + n − 1

n

)
=

n∑
i=0

(
2i

i

)(
k + n − 1 − 2i

n − i

)
k − 1 − n

k + n − 1 − 2i
,

where 0 � n < k. Since now f i = 0 for i � 3, then combining Theorem 6.1 with entry (F2) gives us trivial results. Applying
Eq. (6.7) of Theorem 6.2 to (F1) yields(

k − 1

n − 1

)
=

n∑
j=0

(−1)n− j
(

2n + k

n − j

)(
n + k + j

j

)(
2n + j − 1

n − 1

)
j

n + k + j
,

and applying Eq. (6.6) of Theorem 6.2 to (F2) yields(
2n + k − 1

n

)
=

n∑
i=0

(
2i + k − 2

i

)(
2n − 2i

n − i

)
k − 1

i + k − 1
,

where n,k � 1. Finally, from Theorem 6.3, we obtain(
kz + n − 1

n

)
=

n∑
j=0

(−1)n− j
(

n + z

n − j

)(
z + j − 1

j

)(
kj

n

)
,

(
2n − kz − 1

n − 1

)
z =

n∑
j=0

(−1) j−1
(

n + z

n − j

)(
z + j − 1

j

)(
2n + kj − 1

n − 1

)
j,

where n � 1 and k � 0.
Because b̂(−1)

n /n! are just the Catalan numbers Cn = 1
n+1

(2n
n

)
, by setting z = −1/k in Theorem 6.3, we can establish an

identity involving the Catalan numbers:

Cn = 1

n + 1

(
2n

n

)
= (n + 1)

(
n − 1

k

n + 1

)
k

n

n∑
j=0

(−1) j
(

n

j

)(
2n + kj − 1

n − 1

)
kj

kj − 1
,

where n � 1 and k � 2.

8. Relations between any two Bernoulli numbers

In this section, we study the relations between any two generalized higher order Bernoulli numbers. Given three delta
series f (t), h(t) and l(t) with h(l(t)) = l(h(t)) = t , define B̂(z)

n and β̂
(z)
n by(

f1t

f (t)

)z

=
∞∑

n=0

B̂(z)
n

tn

n! and

(
h1t

h(t)

)z

=
∞∑

n=0

β̂
(z)
n

tn

n! .

Define further γ̂
(z)

n and T̂ (n,k) by(
l1 f1t

l( f (t))

)z

=
∞∑

n=0

γ̂
(z)

n
tn

n! and
1

k!
(
l
(

f (t)
))k =

∞∑
n=k

T̂ (n,k)
tn

n! .

Then the next theorem holds.

Theorem 8.1. For nonnegative integers n and k, if 0 � k � n, then

B̂(k)
n =

k−1∑(
n

j

)(
f1

h1

) j

γ̂
(k− j)

n− j β̂
(k)
j +

(
n

k

)(
f1

h1

)k n∑(
j

k

)−1

T̂ (n − k, j − k)β̂
(k)
j ; (8.1)
j=0 j=k
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if 0 � n < k, then

B̂(k)
n =

n∑
j=0

(
n

j

)(
f1

h1

) j

γ̂
(k− j)

n− j β̂
(k)
j . (8.2)

Proof. Let l( f (t)) = x, then f (t) = h(x). From the generating function of B̂(z)
n , we have

∞∑
n=0

B̂(k)
n

tn

n! =
(

f1t

h1x

)k( h1x

h(x)

)k

=
(

f1t

h1x

)k ∞∑
j=0

β̂
(k)
j

x j

j! =
(

f1t

h1

)k ∞∑
j=0

β̂
(k)
j

x j−k

j!

=
(

f1t

h1

)k k−1∑
j=0

β̂
(k)
j

x j−k

j! +
(

f1t

h1

)k ∞∑
j=k

β̂
(k)
j

x j−k

j!

=
k−1∑
j=0

(
f1

h1

) j

β̂
(k)
j

t j

j!
(

l1 f1t

x

)k− j

+
(

f1

h1

)k

tk
∞∑
j=0

β̂
(k)

j+k

( j + k)k

x j

j!

=
k−1∑
j=0

(
f1

h1

) j

β̂
(k)
j

t j

j!
∞∑

n=0

γ̂
(k− j)

n
tn

n! +
(

f1

h1

)k

tk
∞∑
j=0

β̂
(k)

j+k

( j + k)k

∞∑
n= j

T̂ (n, j)
tn

n!

=
k−1∑
j=0

∞∑
n=0

(
f1

h1

) j β̂
(k)
j γ̂

(k− j)
n

j!n! tn+ j +
(

f1

h1

)k ∞∑
n=0

n∑
j=0

β̂
(k)

j+kT̂ (n, j)

( j + k)kn! tn+k.

Equating the coefficients of tn in the first and last members gives us the desired result. �
Remark 8.2. Using the conventions γ̂

(z)
n = 0 for n < 0 and

∑n
j=k a( j) = 0 for 0 � n < k, we can see that relation (8.1) holds

for all nonnegative integers n and k.

When l(t) = log(1 + t), Theorem 8.1 reduces to a result due to Cenkci and Howard [13, Theorem 3.1]. Moreover, setting
k = 1 in (8.1) yields a corollary between any two generalized Bernoulli numbers.

Corollary 8.3. For positive integer n, we have

B̂n = γ̂n + f1

h1

n∑
j=1

n

j
T̂ (n − 1, j − 1)β̂ j. (8.3)

Example 8.1. We now expand the classical higher order Bernoulli numbers B(k)
n in terms of the higher order degenerate

Bernoulli numbers β
(k)
n (λ).

Take f (t) → et − 1 and h(t) → (1 + λt)1/λ − 1, then B̂(z)
n → B(z)

n are the classical higher order Bernoulli numbers
and β̂

(z)
n → β

(z)
n (λ) are the higher order degenerate Bernoulli numbers. Additionally, we have l(t) → ((1 + t)λ − 1)/λ and

l( f (t)) → (eλt − 1)/λ. Then(
t

l( f (t))

)z

=
(

λt

eλt − 1

)z

=
∞∑

n=0

λn B(z)
n

tn

n! ,

1

k!
(
l
(

f (t)
))k = 1

k!
(

eλt − 1

λ

)k

=
∞∑

n=k

λn−k S(n,k)
tn

n! .

These indicate that γ̂
(z)

n → λn B(z)
n and T̂ (n,k) → λn−k S(n,k), where S(n,k) are the classical Stirling numbers of the second

kind. Hence, for 0 � k � n, Eq. (8.1) gives

B(k)
n =

k−1∑
j=0

(
n

j

)
λn− j B(k− j)

n− j β
(k)
j (λ) +

(
n

k

) n∑
j=k

(
j

k

)−1

λn− j S(n − k, j − k)β
(k)
j (λ), (8.4)

and for 0 � n < k, Eq. (8.2) gives
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B(k)
n =

n∑
j=0

(
n

j

)
λn− j B(k− j)

n− j β
(k)
j (λ). (8.5)

Moreover, Corollary 8.3 yields an expression for the classical Bernoulli numbers:

(
1 − λn)Bn =

n∑
j=1

n

j
λn− j S(n − 1, j − 1)β j(λ), (8.6)

where n is a positive integer and β j(λ) are the degenerate Bernoulli numbers.

Cenkci and Howard showed in [13, Corollary 3.2] how to expand β
(k)
n (λ) in terms of B(k)

n . In fact, take f (t) →
(1 + λt)1/λ − 1 and h(t) → et − 1, then l(t) → log(1 + t) and l( f (t)) → log(1 + λt)/λ. Thus, we have B̂(z)

n → β
(z)
n (λ),

β̂
(z)
n → B(z)

n , γ̂
(z)

n → λnb(z)
n and T̂ (n,k) → λn−ks(n,k), where b(z)

n are the higher order Bernoulli numbers of the second
kind and s(n,k) are the classical Stirling numbers of the first kind. According to Theorem 8.1, for 0 � k � n we have

β
(k)
n (λ) =

k−1∑
j=0

(
n

j

)
λn− jb(k− j)

n− j B(k)
j +

(
n

k

) n∑
j=k

(
j

k

)−1

λn− j s(n − k, j − k)B(k)
j , (8.7)

and for 0 � n < k we have

β
(k)
n (λ) =

n∑
j=0

(
n

j

)
λn− jb(k− j)

n− j B(k)
j . (8.8)

Moreover, Corollary 8.3 gives us an expression for the degenerate Bernoulli numbers:

βn(λ) = λnbn +
n∑

j=1

n

j
λn− j s(n − 1, j − 1)B j,

which coincides with the one given by Howard [20, Section 7]. �
Corollary 8.4. For integers n � 1 and k � 1, the following relation holds between the generalized higher order Bernoulli numbers of
both kinds:

k−1∑
j=0

(
n

j

)
f k− j

1 b̂(k− j)
n− j B̂(k)

j +
(

n

k

) n∑
j=k

(
j

k

)−1

ŝ(n − k, j − k)B̂(k)
j = 0. (8.9)

For integer n � 1, the following relation holds between the generalized Bernoulli numbers of both kinds:

B̂n = − n

g1

n∑
j=1

1

j
Ŝ(n − 1, j − 1)b̂ j. (8.10)

Proof. In Theorem 8.1, take f (t) → t and h(t) → f (t), then l(t) → g(t) and l( f (t)) → g(t). Now, we have B̂(z)
n → δn,0,

β̂
(z)
n → B̂(z)

n , γ̂
(z)

n → b̂(z)
n , T̂ (n,k) → ŝ(n,k) and f1 → 1, h1 → f1. Thus, Theorem 8.1 gives⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k−1∑
j=0

(
n

j

)
f k− j

1 b̂(k− j)
n− j B̂(k)

j +
(

n

k

) n∑
j=k

(
j

k

)−1

ŝ(n − k, j − k)B̂(k)
j = 0 (1 � k � n);

n∑
j=0

(
n

j

)
f k− j

1 b̂(k− j)
n− j B̂(k)

j = 0 (1 � n < k).

According to Remark 8.2, we can obtain (8.9). Next, setting k = 1 in (8.9), we have

f1b̂n + n
n∑

j=1

1

j
ŝ(n − 1, j − 1)B̂ j = 0,

which is the dual case of (8.10). �
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Example 8.2. For the classical higher order Bernoulli numbers of both kinds, we can derive from Eqs. (8.9) and (8.10) the
following results:

k−1∑
j=0

(
n

j

)
b(k− j)

n− j B(k)
j +

(
n

k

) n∑
j=k

(
j

k

)−1

s(n − k, j − k)B(k)
j = 0,

k−1∑
j=0

(
n

j

)
B(k− j)

n− j b(k)
j +

(
n

k

) n∑
j=k

(
j

k

)−1

S(n − k, j − k)b(k)
j = 0,

and

n∑
j=1

1

j
S(n − 1, j − 1)b j = −1

n
Bn,

n∑
j=1

1

j
s(n − 1, j − 1)B j = −1

n
bn,

where n and k are positive integers.

Example 8.3. For entries (C1) and (C2), from Eq. (8.9), we have

n∑
j=0

(
n

j

)
( j − k)(n − k)n− j−1k j =

{
0 if k �= n,

−nn if k = n,

n∑
j=0

(−1)n− j
(

n

j

)
(k − j)n−1 = 0,

where n and k are positive integers. The first equation can be verified by the binomial identity. The second equation can be
verified by expanding (k − j)n−1 by the binomial identity and then using the explicit expression of the Stirling numbers of
the second kind.

Example 8.4. Let us consider entries (F1) and (F2) (or (G1) and (G2)). For positive integers n and k, Eq. (8.9) gives

n∑
j=0

(
k + j − 1

j

)(
2n − k − j − 1

n − j

)
j − k

n − k
= 0 (n �= k),

n∑
j=1

(
k + n − 2 j − 1

n − j

)(
2 j − k − 1

j − 1

)
k

j
=

(
k + n − 1

n

)
.

Setting k = 1, the above identities will reduce to the following ones involving the Catalan numbers:

Cn =
n+1∑
j=2

(
2n − j

n − 1

)
j − 1

n
, 1 =

n∑
j=1

(
n − 2 j

n − j

)
C j−1,

where n � 1. Combining these two identities will further give us a double summation:

1 =
n∑

j=1

j∑
i=1

(
n − 2 j − 1

n − j

)(
2 j − i − 1

j − 1

)
i

j
.

Acknowledgments

The author thanks the anonymous referee for his (her) valuable comments and suggestions and Dr. Qin Fang for her kind help. This work is supported
by the Postdoctoral Science Foundation of China (Grant No. 20080441037).

References

[1] A. Adelberg, Arithmetic properties of the Nörlund polynomial B(x)
n , Discrete Math. 204 (1–3) (1999) 5–13.

[2] A. Adelberg, Universal higher order Bernoulli numbers and Kummer and related congruences, J. Number Theory 84 (1) (2000) 119–135.
[3] A. Adelberg, Universal Kummer congruences mod prime powers, J. Number Theory 109 (2) (2004) 362–378.
[4] A. Adelberg, S. Hong, W. Ren, Bounds of divided universal Bernoulli numbers and universal Kummer congruences, Proc. Amer. Math. Soc. 136 (1) (2008)

61–71.
[5] T. Agoh, K. Dilcher, Shortened recurrence relations for Bernoulli numbers, Discrete Math. 309 (4) (2009) 887–898.



274 W. Wang / J. Math. Anal. Appl. 364 (2010) 255–274
[6] P.L. Butzer, M. Schmidt, E.L. Stark, L. Vogt, Central factorial numbers; their main properties and some applications, Numer. Funct. Anal. Optim. 10 (5–6)
(1989) 419–488.

[7] P.L. Butzer, C. Markett, M. Schmidt, Stirling numbers, central factorial numbers, and representations of the Riemann zeta function, Results Math. 19 (3–
4) (1991) 257–274.

[8] L. Carlitz, The coefficients of the reciprocal of a series, Duke Math. J. 8 (1941) 689–700.
[9] L. Carlitz, Some properties of Hurwitz series, Duke Math. J. 16 (1949) 285–295.

[10] L. Carlitz, A note on Bernoulli and Euler polynomials of the second kind, Scripta Math. 25 (1961) 323–330.
[11] L. Carlitz, Some properties of the Nörlund polynomial B(x)

n , Math. Nachr. 33 (1967) 297–311.
[12] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math. 15 (1979) 51–88.
[13] M. Cenkci, F.T. Howard, Notes on degenerate numbers, Discrete Math. 307 (19–20) (2007) 2359–2375.
[14] F. Clarke, The universal von Staudt theorems, Trans. Amer. Math. Soc. 315 (2) (1989) 591–603.
[15] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.
[16] I. Gessel, R.P. Stanley, Stirling polynomials, J. Combin. Theory Ser. A 24 (1) (1978) 24–33.
[17] H.W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly 79 (1972) 44–51.
[18] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison–Wesley Publishing Co., Reading, MA, 1994.
[19] T.-X. He, L.C. Hsu, P.J.-S. Shiue, The Sheffer group and the Riordan group, Discrete Appl. Math. 155 (15) (2007) 1895–1909.
[20] F.T. Howard, Explicit formulas for degenerate Bernoulli numbers, Discrete Math. 162 (1–3) (1996) 175–185.
[21] L.C. Hsu, Generalized Stirling number pairs associated with inverse relations, Fibonacci Quart. 25 (4) (1987) 346–351.
[22] L.C. Hsu, Some theorems on Stirling-type pairs, Proc. Edinb. Math. Soc. (2) 36 (3) (1993) 525–535.
[23] S. Jeong, M.-S. Kim, J.-W. Son, On explicit formulae for Bernoulli numbers and their counterparts in positive characteristic, J. Number Theory 113 (1)

(2005) 53–68.
[24] C. Jordan, Calculus of Finite Differences, third ed., Chelsea Publishing Co., New York, 1965.
[25] G.-D. Liu, H.M. Srivastava, Explicit formulas for the Nörlund polynomials B(x)

n and b(x)
n , Comput. Math. Appl. 51 (9–10) (2006) 1377–1384.

[26] Y.L. Luke, The Special Functions and Their Approximations, vol. I, Academic Press, New York/London, 1969.
[27] N.E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
[28] J. Riordan, Combinatorial Identities, Robert E. Krieger Publishing Co., Huntington, NY, 1979.
[29] S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
[30] L.W. Shapiro, S. Getu, W.J. Woan, L.C. Woodson, The Riordan group, Discrete Appl. Math. 34 (1–3) (1991) 229–239.
[31] R. Sprugnoli, Riordan arrays and combinatorial sums, Discrete Math. 132 (1–3) (1994) 267–290.
[32] H.M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, 2001.
[33] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999.
[34] P. Tempesta, Formal groups, Bernoulli-type polynomials and L-series, C. R. Math. Acad. Sci. Paris 345 (6) (2007) 303–306.
[35] P. Tempesta, On Appell sequences of polynomials of Bernoulli and Euler type, J. Math. Anal. Appl. 341 (2) (2008) 1295–1310.
[36] P.G. Todorov, A simple explicit formula for the generalized Bernoulli numbers, C. R. Acad. Sci. Paris Ser. I Math. 301 (13) (1985) 665–666 (in French).
[37] W. Wang, T. Wang, Generalized Riordan arrays, Discrete Math. 308 (24) (2008) 6466–6500.
[38] E.W. Weisstein, Hyperbolic Cotangent, from MathWorld — A Wolfram Web Resource, http://mathworld.wolfram.com/HyperbolicCotangent.html.
[39] H. Yu, T. Wang, Two weighted Stirling type pairs and their properties, J. Dalian Univ. Technol. 36 (4) (1996) 386–390 (in Chinese).
[40] X. Zhao, T. Wang, Some identities related to reciprocal functions, Discrete Math. 265 (1–3) (2003) 323–335.

http://mathworld.wolfram.com/HyperbolicCotangent.html

	Generalized higher order Bernoulli number pairs and generalized Stirling number pairs
	Introduction
	Bell polynomials and potential polynomials
	Some special number pairs
	Expressions and recurrences
	Applications of the results in Section 4
	Relations between Bernoulli numbers and corresponding Stirling numbers
	Applications of the results in Section 6
	Relations between any two Bernoulli numbers
	Acknowledgments
	References


