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AN ARITHMETICAL THEORY OF THE
BERNOULLI NUMBERS

BY
H. S. VANDIVER

In the present paper we shall describe a method which enables us to find
many new types of relations concerning the Bernoulli and allied numbers. The
scheme might be described as ultra-arithmetical in character. It depends
mainly on the following idea. Let ¢ and & be rational with a =5, modulo p,
where p is any prime integer. If @ and b do not depend on p, it then follows,
since there is an infinity of primes, that a =5.

A similar method has been employed in other parts of mathematics; for
example, Hasse () in a paper on algebraic geometry uses the method and com-
ments upon the success it has had in various lines.

Perhaps the simplest looking formula in which a Bernoulli number ap-
pears alone on one side of the relation is as follows, if S,(p) =17+ - - . +(p—1)7,

Sn(p)

= b, (mod p),

where n+1<p, in which case, of course, the left-hand member of the con-
gruence is an integer. In order to take advantage of this simplicity we employ
extensively the function which we have called in a previous-paper the
Mirimanoff polynomial(?), namely, the relation (1) which follows. This is
connected with the previous congruence, if we note that

(p)
fo (1) = Su(p).

In general we employ more or less obvious identities involving one or more
indeterminates, then operate thereon, using the method of formal exponential
differentiation explained in another paper(®). The elementary function from
which the Mirimanoff polynomials are generated by this process is

xm—1
x—1

Presented to the Society, September 5, 1941; received by the editors April 5, 1941.

(*) Abhandlungen Géttingen, vol. 18 (1937), pp. 51-55; cf. also Vandiver, Bulletin of the
American Mathematical Society, vol. 31 (1925), p. 348; in particular, the proof of I1. There is a
misprint in the first congruence involving H. The right-hand member should read a, in lieu of ac.

(®) Vandiver, Duke Mathematical Journal, vol. 3 (1937), p. 570; so-called because
Mirimanoff, it appears, first investigated its properties extensively in an article in Crelle’s
Journal, vol. 128 (1905), pp. 45-68.

(*) Vandiver, On formal exponential differentiation in rings, Proceedings of the National
Academy of Sciences, vol. 28 (1942), pp. 24-27.
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THE BERNOULLI NUMBERS 503

In view of the congruence (68) below it seems to me that the theory of
Mirimanoff polynomials has often been obscured by the theory of the Euler
polynomials defined in (12) and (13). I think that this is unfortunate, as the
Mirimanoff polynomial has a much simpler algebraic form. Each type is gen-
eralized in §2 of this paper. In (19) instead of a congruence we derive an equa-
tion involving the two types of polynomials.

If in place of the simple congruence involving S,(p) given above we em-
ploy a known congruence such as the following:

o= Db ; ) = Y0 (mod 2),
where y,= —a/p (mod #), we are forced to use an extension of the Mirimanoff
polynomials and relations involving the number
(m» — 1)b,

n

in lieu of b, itself. The former number has appeared in a great number of in-
vestigations concerning Bernoulli numbers, but its properties seem to be
quite different in many connections; for example, I quote Frobenius as fol-
lows: “ .. . die Tangentenkoefficienten deren Theorie man in den bisherigen
Darstellungen nicht scharf genug von der eigentlichen Bernoullischen
Zahlen geschieden hat.”

In a previous paper (%) the writer introduced the idea of Bernoulli numbers
of various orders such that we call b,(m, k) = (mb+k)", m=0, a generalized
Bernoulli number of the first order; and a number of the form, for »>1,

(mrb(r) + m_ oD + -+ mlb’ + mo)” = bn(mrv Mr_yy =+ * mo)v

where this expression is expanded in full by the multinomial theorem and &,
substituted for b,(,'), i1=1,2,--., r, and where the m’s are integers, m;0,
a Bernoulli number of the rth order. This is an extension of the definition of
Lucas of the ultra-Bernoulli numbers (5).

Bernoulli numbers of the first order are considered in §§3 to 11 of this
paper. In §5 a generalization of the von Staudt-Clausen theorem is derived
which applies to Bernoulli numbers of the first order (Theorem I). In another

(*) Vandiver, Proceedings of the National Academy of Sciences, vol. 23 (1937), p. 555.
(5) Frobenius, Berlin Sitzungsberichte, 1910, p. 810. “Die Bezeichnung der Werte

B4, B+ bD 45D oo F P

als Bernoullische Zahlen hsherer Ordnung oder gar als ultra-bernoullische Zahlen scheint mir
wenig gliicklich gewéhlt und mehr von abschreckender Wirkung zu sein.”

The writer differs from Frobenius regarding this. These numbers, as well as the generaliza-
tions of them considered in this paper are shown to be natural analogues of the ordinary
Bernoulli numbers.
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paper (°) a generalization of certain congruence properties of the numerators
of Bernoulli numbers is obtained which applies to the numerators of any
Bernoulli number of the first order. It is noteworthy that these generalizations
are very little more complicated in statement than those theorems which
apply to the ordinary Bernoulli numbers.

In order to illustrate the varied applications of our method and to de-
velop a connected theory, we give new proofs of several known theorems.
In particular, although Theorem I was proved in previous papers(®), we give
two new proofs of the same, as the result and the material in the proofs are
both important in our theory.

The properties of the Bernoulli numbers of the second order are considered
in §11 to §15. It seems to me that from many standpoints this type of
Bernoulli number is the most remarkable. For example, we note from Theo-
rem III that the only prime factors occurring in the denominator of such a
number, say (kb+4jb’+h)", n even, are divisors of jk and are also found among
the von Staudt-Clausen primes of order #. As noted in §16, this property does
not carry over to Bernoulli numbers of higher order. Also (Theorem IV,
Corollary I), any Bernoulli number of the above type can be expressed as a
linear combination of Bernoulli numbers of the first order with coefficients
whose denominators divide the integers k and j. In particular cases the equiv-
alent of this result may be expressed in terms of the roots of unity (Theorem
V). Results of an entirely new type are given in Corollary I and Corollary I1I
to Theorem V.

Since congruence methods are employed throughout this paper, one might
imagine that many new congruences concerning the Bernoulli numbers could
be obtained aside from those given here. Such is indeed the case, but their
statement will be reserved for other papers.

1. Euler and Mirimanoff polynomials. We write the Mirimanoff polyno-
mials in the form

(1) ) = 0" 1 2% e = D
where 0°=1.

We shall first show that, for >0,
(2) z[(f(x) + 1" = fa(x) (mod p),

where f;(x) =f®(x), p is prime, and the left bracket symbol in the left-hand
member signifies that the nth power of (f(x)+1) is to be taken symbolically,
that is, after development by the binomial theorem the exponents are de-

(8) Vandiver, On simple explicit expressions for generalized Bernoulli numbers of the first
order, Duke Mathematical Journal, vol. 8 (1941), pp. 575-584; Carlitz, Generalized Bernoulli
and Euler numbers, ibid., pp. 586-587.



1942] THE BERNOULLI NUMBERS 505

graded to subscripts and, in particular, the last term is expressed as fo(x). Also
for =0 any such expression is taken as unity.
Consider

3) 1 +x+224 - Far ) =o+ 224 --- + 27,

Now employ formal exponential differentiation (Vandiver (?)).Differentiating
this expression # times with respect to x, we obtain

(4) x[(f(x)+1 "= x+2”x2+-~ +(P—- 1)”xﬂ—l+?nxp
= fa(2) + pra?,

from which (2) follows.
Now consider
(5) x+ 224 Faxr=1— x7)x/(1 — x).

Differentiate this # times, where d denotes exponential differentiation; we find

e prav = U= e\l = 1=

fa(x) + prar = (1 — x7) [E( x >:| n pF ()

dx"\1 — «x (l—x)",
or
R ar x _ﬂ_ .
© Jlw) = (1 —x )[dx"<1 — x)] t? 1— x)n
We then have, for >0,
dr
™ @ == o) () | mo p),

where we write M(x)/N(x) =0 (mod p), if M(x) and N(x) are polynomials in
which each coefficient of M(x) is divisible by p, while not all the coefficients
of N(x) are so divisible.

We write
1—x[d* x
Hu(2) = x I:dx” (1 - x)]’
so that
(1 — xP)x
(®) fa(x) = (= 1)‘”—E—Hn(x) (mod p).

Now consider

14z 224 - Far)=14+x+ 224 - F xP 1 — gp—1 f gp. gr-1,
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Differentiating » times, we obtain

1
* [(f(®) — )™ = fu(x) + (p — Drar—la=? — (p — 1)"x>~! (mod p),
whence

(9) [(f(x) = D" = &fu(x) + (= D*(1 — 27) (mod p).

We now express each f,(x) in this relation in terms of H,(x) by using (8), and
this gives(?), modulo b,

1 — xP

1 —xr
: [(— H = 1) — (= D)r + (= 1)
11—z 1—x
(10)
1 — xr
= (— 1)"x? H, + (— 1)"(1 — x7),
1—x
or
1 — «x? 1 — xP
» (— 1)”[x @+ -1} + l—x:l

= (- 1)"[x2 1 _’: Ho+ (1 - xp)].

Divide (11) by (—1)"and (1 —x?) and multiply by 1 —x to get
«[(H+ D) — 2+ 1= x2H, + 1 — x (mod p),

or |

x[(H + 1)» = x2H, (mod p),
whence
[(H + 1)» = xH, (mod p).

But this relation is independent of p, an arbitrary prime, hence is an equation,
and we have(?)

(12) [(H + 1) = 2H,, n>0.
Taking Hy=1, we obtain,
H1 = 1/(x bl 1),
Hy = (14 x)/(x — 1)
(") In (10) we substitute the Ho terms (—1)" of the (—H—1)" expansion and add

fo=(1—x7)/(1 —x)(—1)" of the (f4+1)" expansion, because (8) does not hold for »=0.
(8) Frobenius, Berlin Sitzungsberichte, 1910, p. 828.
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Hy=(1+4x+ 23)/(x — 13,

He= (14 1z + 1122 + 23 /(x — 1)4,
Hs = (1 4+ 26x + 66x% 4+ 26x% 4+ x%)/(x — 1)5.

Now write

(13) H, = Ru(x)/(x — D™

The R,(x) are the Euler polynomials,
Ry =1,
R =1+ z,

Putting (8) in (2) we obtain
2 T e B ) = 1) + e = (= e L g, (mod 9),
1—x 1—x 1—x

«{[(— H+ 1)» — 1} + x = (— 1)"zH, (mod p),
(14)  22{[H — D — (= D} + (= Yz = zH,,
2[(H — 1)» — x(— 1)»+ (— 1) = H, (mod p),
#[(H = D" — a(— D"+ (= ) = Ha,

which is another recursion formula for the H’s.
We also have

[(B+ (H+ D) = b+ Conk~Y(H + 1)
(15) + Copk™*(H+ 1)+ -+ (H+ D"
= k" + Cpakm'aHy + Cppk™2xHy + - - - + xH,,

and
(16) [( 4+ H)» = b + Cppk™*Hy + Cuok™?Hs + - - - + H,.
Multiply (16) by x and subtract from (15). We then obtain(?)
eY)) [(k+ H 4+ 1) — x[(k + H)" = k*(1 — 2).
Setting k=0,1,2, - - -, 7in (9), we obtain
[(H+ D" — «H, =0,
[(# + 2" = =[(H + )" = 11 — a),
[(# + 3~ — =[(# + 2" = 27(1 — ),

......................

[(H+nNr—x[(H+7r—Dr=(— D1 — 2.
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Now multiply the first of these by ™!, the second by x"~2, and so on, and add.
We then obtain
[(H+nm— aH, = (1 — x) [17ar=2 4 2ngm=3 4 Zngr—4 4 . . .

+ (r = 2"+ (r — 1)7]

R (%)

Using a similar scheme, we obtain(®) from (14)

(18)

(19) FNH =" = 2H, = (— )"z — )7 ().

This is a rather curious relation; the expression on the left involves quotients of
polynomsials, while f.(x) is a polynomial for each r.

2. Generalization of the Mirimanoff and Euler polynomials and a related
formula. Set
Ja(x, m, k) = ko + (k + m)*x + (k + 2m)ox? 4 - - -

(20)
+ (B + (p — Dm)ear,

We now consider

y*(1 — ymra?)
(21) et T = gk ey L gD m) g1,
1— ymx

Differentiate this expression a times exponentially with respect to y and set
y=1. We then obtain (20) on the right; on the left we differentiate in the form

YA = y7oa?)

yk
22) - 1= yman (),
1— ymx 1 — ymx

and we then obtain

O Y E | d‘i (1—_y;;)]= (mod ).

We now set

an yk _ H,.(x, m, k) .
(24) [dy"(l — xy’”):l,,=1_ 1— x— (=n

We now seek a recursion formula for this function. We have

y_ (yk + xyk+m + .-+ (xp—lyk+(p—l)7n))
(25)

= _x_ yk—m + (yk + xyk+m + -+ xp—lyk+(p—l)m) — xp—lyk+(p—l)m.

(°) This result was obtained by Dr. A. M. Mood, following a suggestion by the writer.
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Differentiate this relation # times exponentially and put y=1. We obtain
(26)  [(f(x, m, k) — m)™ = xfu(x, m, k) + (k. — m)~(1 — x?) (mod p).
Now (24) with (23) gives

— V4

1—x

27 fulx, m, k) = (— 1) H,(x, m, k) (mod p),

which, applied to (26), gives
(28) [+ m)» = «H, + (m — B)*(1 — x).
The first three H's given by this recursion formula are

(m—k)(x—1)+m_ k(1 — x) + mx

F]_ = =
x—1 x—1
- |m = B(x = 1)+ m]* + m
Hy, = ,
(x — 1)?
7 _ [m — B)(x — 1) + m]® + m2a2(4m — 3k) + m2x(m + 3k)
T (x — 1 '

Now (28) is not a direct extension of (12). To obtain such an extension of
the latter formula we use
yHrma(l — yrma?)

yk + xyk+m + “ e -l— xp—lyk+(17—1)m —_ yk + xpykypm = 1 y
—_ xym

which, differentiated # times with y=1, gives

(29)  fule, m, B) — (1 — 27) = a(1 — 27) [Z;(%)L (mod ).

Putting

(30) H.(x,m, k) = (— 1)1 — x) [jj" <%)]u=1,

we then obtain

— xP

(Bl) — falz, m, k) — k*(1 — x?) = (— )"z n H,(x, m, k) (mod p).
—x

Using this in connection with (26), we find
(32) [(H+m)» = zH, + (— k)1 — x).

For k=0, m=1, this reduces to (12).
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3. Bernoulli numbers. Set
Sa(p) = 0"+ 174274 - + (p — D™ 00 =1,

where p is a prime. If # <p—1, it is known that S,(p) =0 (mod p). We then
write under this restriction

(33) Sa(p) = pan (mod p?),
where a, is some integer.
Consider
(34) A+x+224+---FarHNe=a+ 224+ - + x2,

We now differentiate exponentially with respect to x, using Leibnitz’s theo-
rem. We obtain

(35) D Coisfi(x) = x + 2ma2 + 3nad 4 - - - 4 prar,
=0
Restrict # to be greater than 1. Now (35) can be written

(36) 3 Cocifi(x) = 17 () + 974

i=0
Setting x =1, we have

(3) 3 CusSp) = S:(8) + 7
which, in view of (33) and of the fact that »>1, is then
(38) iOC,.,ipa,' = pa, (mod p?).

Dividing through by p, we may write in symbolic form

(39) [(a + )" = au (mod p).
Now consider the recursion formula A
(40) (@ + 1) = b,
for n <p—1. If we determine by, bg, + + -, b,—1 in turn with the use of this, each

denominator of the fractions so obtained will be prime to p. In view of (39)
we may also obtain @, in the same manner. Consequently, we may write

(41) Su(p) = pb. (mod p?).

It is known that S,(p)=0 (mod p2?) if # is odd, greater than 1, and less than
p—1. Consequently,
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b, = 0 (mod p?), b, = 0 (mod p)
for any p >n+1; hence.

b, = 0, for #n odd and greater than 1.
4. We have, obviously,
x? — 1 prth — 1 gk —1
(42) x’° = —_ b}
x—1 x—1 x—1

which may be written
A+xs+a>+---Farab=1+x+ -+ a7}
+axrl+x+ - F ) - A+ x4 4 aF0),

Differentiating this relation exponentially # times with respect to x and col-
lecting the terms whose coefficients are divisible by p?% we obtain

(43)

@) (@) + B = fu(®) + 6" (2) + npa"fars(x) + p"P(x) — f2 (),

where P(x) is a polynomial in x with integral coefficients. Put x =1; we then
obtain

(45) [(S(p) + B)" = Su(p) + npSas(k) + p*W,

where W is an integer. We employ (41) in connection with (45) for each S
occurring in the expansion of the left-hand member and for each S occurring
in the right-hand member; after dividing the resulting expression through
by p, we obtain the relation

(46) [ + B)" = b, + #S.1(k) (mod p).

As none of the terms in this congruence depends on p, we obtain the Bernoulli
summation formula

(47) [0+ k)" — b, = nSa_s(k).

With (46) as a base we shall now prove the formula (¢ 1)

s—1
(48) [(mb + sm + B)» — [(mb + k)" = nm D, (k + im)»1.
=0
Consider
(1 + xm _l_ e _|_ xm(p—l))xsm+k — (1 _l_ x™ _l_ e _|_ xm(p—l))xk
(49) — xpm(xk + xk+m + e _|_ xk+(3—1)m)

— (xk _|_ g ot+m _|_ e + xk+(a—l)m),

(1) Due to Glaisher, Quarterly Journal of Mathematics, vol. 31 (1900), pp. 193-199. For
another proof by the writer see American Mathematical Monthly, vol. 36 (1929), pp. 36-37.
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where the & and m can be in any ring including the rational field. Employing
the concept of generalized exponents used by the writer (Vandiver(®)) the
exponential differentiation with respect to x gives
[(F(z™) + (sm + B)" — [(f(em) + B)"
(50) = npmarm(krlgk 4 (B 4 m)r—igktm 4 .
+ (E+ (s — Dm»YHa™) + p2P(x),

from which we easily obtain (48), after using (41).

Various arithmetical results not involving explicitly the Bernoulli num-

bers may be derived by the exponential methods we have been employing.
For example, if a is an integer such that

a® = 1 (mod p9),

then
(51) (za® — D) = icn',-x"(— 1)igid.
=0
Differentiating exponentially, with respect to x, & times for k <m, we find
(52) P(x)(xa® — 1) F = iC,,,ixii"(— 1)ig,
=0

where P is a polynomial in x. Put x =1. Then we obtain

(53) P(a‘i — l)n—k = Z Cn,iik(— l)iaid,
=0
whence
(54) Z Cn.it*(— 1)iaid = 0 (mod pa(n—k))
=0

for k <n. Putting
d=p—1, a=1  n=1,

we have Fermat’s theorem.

5. Generalized Bernoulli numbers of the first order. In (48) set s=p, a
prime. Then expand the left-hand member according to powers of p. The re-
sult can be expressed in the form

Ny _, bp'm
Sn—-l(my kr I’) = Cn,l (Mb + k)" 1; -I— Cn,2 (mb + k)n 2 + .
(55)
?rmp—l P"
+ Cn«l,rp-[(mb + k)""l_r + . e + - .
r+1 n
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From this we may show that for $>2 and (mb+£k)°=1

(56) Sa(m, &, p) = [(mb + k)"p (mod p).

To obtain a proof by induction assume that in (55) for s <n—1,[(mb-+k) may
be expressed as a fraction with the denominator prime to p. Also for >0
and p odd we have

pr
r+1
since p">r-+1 for p odd, as is seen from
pr2(1+2)r21+42r

Hence (55) gives (56). For p even and n=2, (56) also holds, since we may
verify that

(58) 2(mb + k)2 = Sa(m, k, 2) (mod 2).

(57)

= 0 (mod p),

For brevity set
o = [(mb + k).

Now for 7 odd, p odd, and m prime to p, the expression on the left of (56)
is divisible by p, for n is not a multiple of p—1 since p—1 is even, and for
m=0 (mod p), S.(m, k, p) is obviously =0 (mod p). Hence %, does not have p
as a factor of its denominator, except possibly when p=2.

Now for p=2 (57) holds for r >1, so that

r=(1+1)">1+7
for r>1. Hence (55) gives for p=2, n>1 and odd,

, ! m
(59) > (sm+ k)= 2h, + i1 n 1C,,+1,2h,.-122 (mod 2),
=0

Er 4+ (m + B)» = 2h, + mn(2h,—1) (mod 2).

Since k*=k (mod 2), for m odd we have

(60) 1 =2k, + 2hs_1) (mod 2),
and for m odd, # even, we have
(60a) 1 = 2k, (mod 2).

Now from this we cannot have both %, and k,_; with 2 in the denominator
for # odd. Also for m even 2 will not appear in the denominator for # either
odd or even. Now since 2 is in the denominator of ks for m odd by (58), ks is
integral from (60). Hence (60) and (60a) give £, integral for » odd and greater
than 1.
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Consequently,
[(bm + k)
is integral except when n=1 with m odd, and also
(61) Su(m, k, 2) = hy-2 (mod 2)
for n even.
Consider
Sp(m, k,
(62) B — 2 ¥,

where the p’s range over all the distinct primes less than or equal ton+1. For
a particular p, say p’, of this type the fraction

Sa(m, &, p')
P,
may be expressed with a denominator prime to p’ by (56) and (61), and the

remainder of the expression in (62) obviously has the same property. Hence
(62) must have no primes in its denominator and is therefore an integer. Also,

n

Sn(mr kr P) = 0 (mOd P)

for m prime to p and ##0 (mod p—1), and obviously also holds for m=0
(mod p). For n=0 (mod p—1) and m prime to p

S"(m! k, P) =p— 1=-1 (mOd P)r
whence the theorem follows(!1).

THEOREM 1. If m and k are integers, then if n is even and greater than 0,

s 1
[(mb +hr=4,— > —
=1 [
where p1, P, * + + , D, are the distinct primes which are prime to m and such that

n=0 (mod p;—1), 4, being some integer. If n is odd, then [(mb+k)"is an in-
teger except when n=1 with m odd.

6. In another paper('?) the writer obtained the formulas

(1) This theorem was first stated by the writer without proof in Proceedings of the National
Academy of Sciences, vol. 23 (1937), p. 556, and the present proof was there briefly indicated.
Another proof was given in Duke Mathematical Journal, loc. cit., Theorem III. A third proof
is given in §7 of the present paper, but the ordinary von Staudt-Clausen theorem is assumed
therein.

(?) Vandiver, Annals of Mathematics, (2), vol. 27 (1926), p. 174 (10); p. 175 (13).
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a—1

(2™ — 1) D Conk®"m™ bpfon()
x(p* — 1)(x? — 1)(x™ — 1)Fa(p)
63 =
(63) ‘T‘ p(x — p¥)(x — 1)
-1 ! (kf)(x)
T D) DA Y
and P
(64) Fulp) = (n — 1)p f - 1(”) + $°C(p).

Applying the second formula to the ﬁrst, dividing the first through by x and
setting x =0, we find

— n+1,k
Z'( Do oale) | ZZZ"—I =k (mod p),

3 1 —p? =0 p

(65) ta(m, k) =

where Z,, indicates summation over all the mth roots of unity except unity,
and D_, indicates summation over all the distinct roots of unity; and where
[((mb + B)» — ba

(66) = to(m, k).
n

When k=m, (m, p) =1, m>1, the relation (65) may also be given in the form

61 taim B = = l)ln“pkf"_l(p) Fm 5 (k= sm)™ (mod ).
— p? =1 '

This is a companion formula to (47), but the latter is not obtainable(*®) from
(67), as (67) does not hold for »=1. Using (8) and (13), we find

(68) fa(x) = x2(1 — x)P7""1R,.(x) (mod p).
Applying this to (67), we find the equality
— 1)wHlph+lR [himl .
(69) to(m, k) = Z'( )(1 P ) 1) +m Y, (k— sm)mL
I3 —p)" =1

In the relation (65) suppose that m >k. Then the last term on the right
becomes zero, so that we obtain (')

(_ 1)n+1pk+1Rn_l(p) Pk+1Rn—1(P)
70 n y k = ’ = — T .
(70) tam, R) };: 1= o) Zp: (- 1"

(1) Relations (65) and (67) were given without proof in another paper by the writer,
Proceedings of the National Academy of Sciences, vol 25 (1939), p. 200.
(1) Frobenius, loc. cit., p. 827.
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7. Application of some relations due to Frobenius('*). We have

() .
and from (69)
m n
wtan, B = = () o Ree) + 1

p—1

(72)

m—1 n
= — Z’( > Sp“) p** ' Rai(p) + 1,

s=1

where I is an integer. The expression on the right is a polynomial in p with

integral coefficients and when summed over all roots of unity except 1 will

be an integer, as p+p*+ - - - +p™1= —1. Hence m",(m, k) is an integer.
To show that m((mb-+k)*—b,) is an integer we note that

mn
— [[mb + &)~ — &7]
n
is an integer; expanding this, we obtain

n

K.
n

mn
[(m» — Db, + k» + m(R)] =

n

(73)

Since (73) is an integer, the fractions with denominators prime to m will can-
cel out and we shall be concerned only with primes in the denominators which
divide m. By the von Staudt-Clausen theorem these appear only to the first
power, hence in (73) m(R) is an integer.

Let d denote the denominator of b,; then

’

m
(74) . (K)

is an integer in which m’= (m", nd). But mn is divisible by m’, since prime
factors of d occur only to the first power; hence we can replace m’ by m# in
(74) and obtain the desired result.

We shall now show that [(mb-k)"is an integer for #» odd and greater than
1 as in Theorem I. First note that m[(mb-+k)" is an integer, since b, is zero
for n odd and greater than 1. Now if [(mb+k)" were a fraction, it would
have a denominator which divided m. Hence, since every term of [(mb-+Ek)"
contains m except the final term k", we see that [(mb-+k)" is an integer,
except in the case when n=1 and m is odd. In the latter case we have
mb+k=—(1/2)m+k.

8. We shall now give another proof of our Theorem I, using the von
Staudt-Clausen theorem in the expansion of [(mb+Ek)™, that is,
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(75) [(mb + B)» = mmb, + b, _sk + - - - + E7,
and obtaining
(76) |:(mb f =T+ 'ri
where the m; are integers less than 7;. Now
) m[[(mb + k)" — b ] =1
where I; represents an integer. Hence,
(78) mI+mZtﬁ—man+qui=Il,
b t
or

(19) . m<2@+zi)=zz,
ri qt

where I, represents an integer which combines mI, mea,, and terms wherein ¢,
and 7; divide m. Now in (79) no ¢ or 7; divides m, hence

(=5+27)

must be an integer Is; therefore no 7; is different from some ¢; and vice Versa,
and hence

m,+1
2
qt

Since each term in this sum must be an integer and since | mil <q:, we obtain
m;= —1. Thus, we have proved Theorem I.

9. Illustration of our congruence methods. In order to illustrate our con-
gruence methods further we show how a known property of the generalized
b’s may be easily derived. By direct expansion we find that

= I

p—1

Z (k 4+ sm)r = Z Cr,iSi(p)mkm.

8=0 =0

Now let 41 <p; using (41) we find that

(0) p[(m B = 3 (k+ sm)® (mod p2),
whence

pZ[(m b =S S s )= 3 i = Su(mp) = mpbs (mod 7).

1=0 =0 s=0 1=0
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Consequently (%),
m—1

(81) > [(mb + ) = mb,,
1=0 :

10. We now develop some congruences of a novel character involving the
Mirimanoff polynomials, and leading to congruences of a new type relating
to the Bernoulli numbers. Obviously,

a? — 1 xkF—1

= (7 — 1
x—1 ( )x—l

)

(2 — 1)
whence, for p an odd prime,
(2% — Dfpr(x) — ka¥fp_o(x) + R2atf, 5(x) — - - - + x*k?7Yfo(x)

k—1
= («? — 1) I*1x! (mod p),
. =1

or, if [«] is the greatest integer in u,

- kfp—2(x) + k2fp—3(x) + -+ kp_lfo(x)

= (a7 — l)kill”—lx’“" + (x=F = 1) alc— v (mod p)
=1 - X

it (ot o B o N A

- 1—« 1— =z

— (xp pu— 1)(x1’—k + xZP_k + S -|— xP[k/P]-k) (mod p)’
= 1 —_ xp_k —_ (xP —_ 1)(xp_k -l— x2P—k _l_ e + xp[k/P]"k) (mod P)’
where we understand that the second member is zero if [k/p]=0. Assume

p>n—+1, replace k by kr and multiply by r»=-» letr takeon 1,2, - - - , p—1,
and add. We have, after dividing by (1 —x?)

(= D™y a(n) 72 1 — grbr

L

1 — ar — 1 — aF
+ E ppolon(gp—kr 4 L. 4 xpLkripl—kr)
(82) w7 paa(x )
B 1—xr

p—1
4 D0 prlen(grkr oo gplhrlpl=kr)

r=1

(%5) Kummer, Crelle’s Journal, vol. 40 (1850), pp. 119-121; Blissard, Quarterly Journal of
Mathematics, vol. 4 (1861), p. 288. There are also later references.
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Let x = p, an mth root of unity different from 1, (m, p) =1 and let > ’indicate
summation over all p's#1, and set 2=2. We obtain, modulo p,
Z, (_ 1)n+lfp—n—l(P)kn

1 —p?

= Z’ fp—n—l(P_k)

(83) f ( —k) p—1
— Z’_il__p__._ -+ Z’ Z sp—l—npp—sk'

1—p? s=(p+1)/2

Let m<(p—1)/2 and (m, 2) =1, p>2 and m>2, and consider the expression

p—1

Z sp—].—npp—sk’

e=(p+1)/2
and we shall determine the terms in which the exponents of p are =0 (mod m).
If I is one such, then
p — Ik = 0 (mod m),

where [ is in the set (p+1)/2, -, p—1. From the above congruence
(p+m)/2 is a solution, but (p—m)/2, although it satisfies the congruence,
is not in the set mentioned. Hence the solutions we need for [p/m] odd are:

ptm p+3m  p+ [p/mm

2 2 2

For [p/m] even, it is replaced by ([p/m]—1) in the above.

£ = h p—1—n
(84) SV 3 srimprek = — Z sr—i=n - m Z(i’ + vm) ’

s=(p4+1)/2 ©e=(p+D)/2 v=1 2

where k= [p/m] or [p/m]—1 according as [p/m] is odd or even.
Now

p+jm
2

= = (mod ),

so that the last term on the right is congruent, modulo p, to

pn p _|_ 1>p—1—n <P__i_—3>p—1—n (P + h)p—l—n>
" (( 2 AP L ’

where % is defined as above.
If in (83) we employ (67) where the % used in the latter congruence equals
zero, we obtain new relations involving Bernoulli numbers in view of (66).
11. Bernoulli numbers of the second order. We employ the identity(!®)

(%) Vandiver, Annals of Mathematics, (2), vol. 29 (1928), p. 171.
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i—1 r—1
‘ Z xnyk—on Z ylxj—bl
xi — yk =0 =0
(85) = - )
(x — Dy —1) y—1 x—1

where a, = [nk/j], b= [lj/F], [u] is the greatest integer in u, j and % are posi-
tive integers, ¥ and y arbitrary. Multiply by (x?—1)(y?—1), where p is a
prime greater than #, set x =x2*, y =y37, divide by z7*, differentiate exponen-
tially @ times with respect to zand set z=1. We then have, reducing the right-
hand member, modulo $%, and where 2™ (x) is the f,(x, m, k) of (20),

(o — y)[(kf(x) i) = 5 — 1)2 5 ()

+n k—ap . (i1¢n)
y

+E akx” phai” (9)
n=0
4 Conk's"y" “"Z P ()
(86) .

l bt (k dy)

—x(y —1)2 (%)

p+l i— bz (k ay)
—_ ap] Z a—l (x)

— Ca2] P E ha— (x) (mod P)

where ¢, denotes the least positive or zero residue of #k, modulo j, while d;
denotes the least positive or zero residue of Ij, modulo 2. Now set x =x2* and
differentiate once with respect to z; we then have, modulo 3, after setting
z=1,

kjwi[(kj(x) + jf(3))® + (x" — ¥ [D:[(kf(%) + j7()*]s=1

2 n e G =
+ pha’y" 3 4y hi ') + X ak’(p + n)y
n=0

n=>0

(87)

k—ay, (7:¢n)

Pha—l ( )

P+l i=by, (k,dp)

o T Py =,
—apiy w ha (%) —api (k=03 x5 hay (%)
=0 =0

plus terms of the form p2g(x), where each g is divisible by some 7,(x).
Setting x =y =1, dividing through by $2, and using
prb+s)m=s"+ (r+ )"+ 2r+ )" 4 - -

(88)
\ + ((p — Dr + )" (mod ),
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which follows from (55) for p >#, we find, since the result is independent of p,

—1 —1
kj [<kb +jbe =k [O‘b + e+ a, k?n[(ib + ca)ot
n=0 n=0

(89)
— Y [(kb + ) — gty [(kb + a)k — 1),
=0

=0

or since by (81)

(90) i) [(;'b + ca)® = jb; i [(kb + d)e = kb,

we may write

j—1
kj[(kb +jb)e = jk(1 — a)b, — ak??be_ + a ) kn [(jb + o)t
o o
+a), j2l|:(kb + dj)* .
=0

For h=2,j=1, we find('")

(92) 2[(26 4 ) = 2(1 — a)b, — 4ab,—y + a(2b + 1)*L.
Now since (—b)"*=>5b" except for =1, we have

(93) [(kb — jo')e = [(kb + j8') + ajko1bo_y,

whence from (91)

kj[(kb — 70 = jR(1 — a)bo — ak?2bo_y + ajk*'ba_y

(94) j—1 k—1
+a), k%l:(jb + co)et 4 aZﬁl[(kb + dy)oL

=0

n=0

Setting j=k=1in (91) and (94), we obtain the well known relations

(95) [+ 802 = (1 — @)ba = abos,
and

(96) [(6 — 0 = (1 — a)b.

Now for @ odd we have

97) [(k + jb')e = akbi(jb)* + a(kb)*~'jby,

so that from (91) we have the formula

(1) Bell, these Transactions, vol. 24 (1922), p. 106.
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ak?1ba1j® + aj21berk® = abiba (k% + j2k°)

i—1
— k2 'Qba_ kZ 'b - a—1
(98) ak?j 1+anz=% n[(j + ¢n)

k—1
+a> j2l|: (kb + d;)* .
=0

There is an analogous relation from (94).
12. If kis any integer, we have from (91)

[(kb 404+ B)r= D Cua [(kb + jb)enna

a=0

= kD Cuaboah™ — jk Y Cp aabhm

a=0 a=0

n  j—1

— k2j2z aCr,ah ™oy + Z Z k2aC o [(]b + ¢;)o e
a=1

a=1 =0
n k—1
+ > > j2laCn,a|:(kb + d))+t
a=1 i=0

(99) .
= jk[(b 4+ )" — jEn Y. Coot,a1h™ b,

a=1

- k2j2nz Cu—1,a—1h" %041
a=1

n j—1

+ 2> k2%nCut,am [(jb + c)ethme

a=1 =1
n k—1

+ Z ZlenCn—l,a—l[(kb + dl)a-lhn—a,,

a=1 1=0

where we have changed the notation employed in (91). # now takes the place
of a and ¢; denotes the least positive or zero residue of 7k, modulo j. Now

(100) i Crt1,0-10h" ™ = [b(h + &)1,
and
(101) [6(h + )" = [(h 4+ B)» — K[ (h + ),

and we have this theorem:

TureoreM 11. If k, j and k are integers, k>0, >0; ¢; represents the least
positive or zero residue of ik (mod j); d, represents the least positive or zero residue
of lj, (mod k); n>0; then
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JRI(RE + 0" + B)* = jR[(6 + W) — jkn[(d + B)"
+ jknh[(b + Byt — BPa[( + B

—1
(102) + kB i[(jb + ¢i + B!

o
+ j%% l[(kb + di + k)™
Now since (—b)?=5* except for e =1, we have
(103) [(kb — jb" + W)™ = [(kb + jb' + W)™ + nj[(kb + B)™L.
This formula with (102) gives the following theorem:
TueEOREM I11. If h, j and k are integers, n even and greater than 0, then

i=1 [

where the p's are the distinct primes such that n=0 (mod p;—1), I being some
integer.

This is an analogue of the generalized von Staudt-Clausen theorem (I).
Now for z odd, (102) and (103) give

THEOREM IV. If (n+1) s odd, then for n greater than zero
) . Lk = 1
(105)  jk| (B + ¥ + W)t = Lt (o Djk(S+ = h) 2 —
=1 7
where I, is some integer, k, j and h are integers, kj is odd and the p's are defined

as in Theorem 111.

It is not clear that this result is an analogue of any theorem involving the
Bernoulli numbers of the first order.
We also have from (102) and (103) the

CoROLLARY 1. Any Bernoulli number of the second order can be expressed
as a linear combination of Bernoulli numbers of the first order with coefficients
whose denominators divide the integers occurring in the original number.

CoROLLARY I1. The expression
(106) Jk[(kd 4 30" + W)™ + jR(n — D[(G + )"
1S an integer if n is even, j, k and h integers.

The relation (102) gives, employing Theorem II of another paper(*?) the
congruence

(18) Vandiver, Duke Mathematical Journal, loc. cit.
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(107) JR[(kb + jb" + B)™ = 0 (mod p9),

where 7 is odd, p prime, n—1=2p2, (r, p) =1, (p, p:) =1, p; being any von

Staudt-Clausen prime of order n—1. If # is even, this relation also holds if

n=0 (mod p%), (p, ¢) =1, where ¢ is any von Staudt-Clausen prime of order 7.
13. We shall now prove that

(108) baa(j2 — j°) = 22 i [(ib + )+,

with a odd and ¢; denoting the least positive or zero residue of i& (mod j).
Assuming (108) true for all values of k such that k<j, (, j)=1, we have
from (91)

—_— ba_l(k2ja +]‘2ka) _I_ 2k2j2ba—1

(109) =07, =.
=2> k% [(]b + )t 42> 52 [(kb + d)t,
1=0 =0
and also
-1
(110)  — bo_y(k%* + j2k* — 2k%2) = 2 4, k%‘[(jb + c)ot 4 (k2 — )by,
=0 .

using ¢;=c¢, where d;=d, with r=] (mod k), (r, k) =1, r <k; whence, the result.
14. Let p7=1; then

Z Pfa-—lsp)( d{)) o> 1;

(111) [Ub + ) = bo + (— 1)t

where Y’ indicates summation over all distinct jth roots of unity different
from 1; then

1 =1
S0:0° = o) = [ G +

(112) ),
= an T (= periay 3 2D f""(” mod ),
Or n=
. © et i—1 1
(113) T b = (= D 2PN P 2o e) “pff’)
(114) =79 _ > Jone) » aeven and greater than 1.

2a. T (1= pH(1—p)

The latter relation may be proved directly by noting that if (&, /) =1,
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fa1(p) p*(— 1) o a(p™)

(118) = .

(I=p"1=p7) (=Dl —1
Hence

f a1(p) — p*fa-1(p)
116 — R oY ’
(1o > (1 —=pH1A —p7) (1 — p¥)(1 — p?)
and
: Ja1(p) — p*faa(p)

(117) = ((1 RO S pp)>

a—1 —-j° ba
Jole) o A=
1 — p? a

=2

15. Take the obvious identity

x—y y o«

x—Dr—1 y—1 x—1
((85) reduces to this for k=1, j=1). We may then write

(kp) (ip) (ip) (kp)

118)  (x — NAP @R () = 3" — D7) — 2" = Dfe  (a).

Set x =«x3, y=1yz, divide by z, then differentiate each member exponentially
a times with respect to 2, and reduce the terms, modulo p?; after setting z=1,
we find

(@ — D@ + 160" = &7 = Dy () + akpa"yfa% (9)
(119) F k' Ty R () — (7 = Daf”
— ajpy " xfe (2)

2 2 jp  (kp) 3
—Cupf p Y #fa2 (%) mod p).
Set x=¢, a kth root of unity, and y=p, a jth root of unity, let p be a prime
greater than a, and then sum each member over all values of { and p except
when ¢ and p are simultaneously 1. We obtain

(x)

(kp)

5 {akpf:i’i’@) ajef iy ()

P& —0)  2E —p)
We note that this is symmetric in j and &, hence we need consider only the
first term on the right (call it T1) and obtain T, the second term, by inter-

changing j and k. First, in T} we sum 1/({ —p) with respect to { for p5#1. To
effect this we employ the identity

1
(1200 3 [P— (FE () + () = } (mod 7).

29 9
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gF—1=(x~D(x—17¢) - (x — ¢FD),

where { now represents a primitive kth root of unity. Ordinary differentiation
of this with respect to x gives
zF—1 k-1 xk—1
kxtl = + + -+

x—1 x— ¢ x—g"‘—l'

Dividing by x*—1; putting x =p; and changing signs, we have
kpkt 1 + 1 + " 1
= o e —_—
Fl—p -0 =

which is the desired sum. Hence

1—0p

ko 128 (o) akf()
121 T, = f— !
(120 R R My

Now, using (71), we have
5 M) k) ek — 1) £50)
. p(E— 1) 2 p

(122) 3 % ah(k— 1) Sa1(jp)

1
= — Eak(k — 1)jbe—1 (mod p)
for a <p. To transform the other term in T; we employ the relation, with » >0,

(= 1) = 1) (mod ),

together with (19)

520 nod 4.
— p?

OR

In this way we obtain for ¢>2, modulo p,

P fa—l(p) , (a - l)fpkfa—2(P)
; (1 — Z 1 —=pM0pr—1)
o (@ = D= D72 o)
- Z (1 — p¥)(p? — 1)
, (@ = 1)j(— 1) 2fas(p")
2 iy
(**) Vandiver, Annals of Mathematics, (2), vol. 27 (1926), p. 175.
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that is,

, PHfamalp) _ , (@ = 1)5(= 1) fas(p)

; p(1—p¥) Z (o* — DA — p7)

Using (122) and (123) in connection with (121), we obtain

=Y ak*(a — Dj(= D*as(p)  ak(k — 1)
’ (¥ — (1 — p?) 2

and T, is obtained from this by interchanging j and % together with p and ¢.
Add the quantity

(123) (mod p).

Jba—1 (mod 2),

1
e = (G2 4 707 (D) = (6 + )% (mod 1)

to both members of (120); after employing

35" 0) = B bup (mod p)
P
and the corresponding relation involving j, we then obtain (using (95))
[(kb + jb')e ba1
a(a — 1) 2(e — 1)
(_ l)afa-—2(§‘)

(= 1)%fuslp)
=kr)>"’ D d p),
Yo va—m T G P

where j>1, k>1, 2<a<p, with j, k and p prime each to each. Employing
(68) for x=p, n=a—2, we obtain the following theorem:

ba
(+j) +—
(125) ¢

THEOREM V. Ifi>1,k>1,a>2, with (, k) =1, p a jth root of unity differ-
ent from 1, { a kth root of unity different from 1, then

kb b')e ba—a ba
L(kb + 72 (k+5) + -
(126) a(a — 1) 2(e — 1) a
pRa_z(p) g‘Ra—2(§‘)
= k 4 ] 4 )
Zp: (1 =05 — Dt +]z;: (1—=)@E — D+

where the summations extend over each distinct value of p and ¢, respectively, and
the R's are defined as in (13).

We shall now show how to obtain (91) from (125), but subject to the re-
strictions on the latter relation. Using (71) we have

ioe
= 2 ip'h,
pF—1 i=1
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and letting ¢; as before be the least positive or zero residue of ¢& (mod j), and
employing (65), we have

Ja = Dj(= 1D as(e) _ T, et dG—D
(127) 2 T a— 4:'\:1 z[(]b+c,) bos ; (mod p),

with a similar expression for the other term in the right-hand member of
(125); if we substitute in (125) we have (91), after noting that the resulting
terms are independent of p.

Using Theorem V, we obtain the corollary:

CoROLLARY I. The expression

” .a<[(kb + jb')e ba
ala — 1) ‘2(a - 1)

b,
(& + ) +—)
a

is an integer with the restrictions on j, k and a given in Theorem V.
We also have this corollary:

CoroLLARY I1. If j, k and a are resiricted as in Theorem V, we have,

if Gk, aa—1))=1,
2[(kb + jb") 4 abo_s(k + 7) + 2(a — 1)bs = 0 (mod a(a — 1)).

These results indicate certain analogies between the properties of T, in
(69) and the number expressed by the left-hand member of (125).

16. Bernoulli numbers of higher order. Bernoulli numbers of higher order
than the second, namely, numbers of the form

[(mrb(” + m,_lb("l) + L + mlb’ + mo)” = bn(mry Mr—1y * * mO)y

(128) '
forr=23;m #0;1=1,2,---,7,

do not have properties as simple as those of the first and second order, since
other primes than the von Staudt-Clausen primes appear as factors in the de-

nominators of such numbers. This may be illustrated in the case of the num-
ber '

[(BD + 5@ 4+« o 4 5@,
This may be reduced as follows. Consider first
(64 8 + 8") = by + nbua (b’ + 8") + -+ + Cazbas(® +8")2 4 - - - .
Then '
(@ + 8"k = (1 — k)bx — kbry,
so that
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[(b 4+ b 4 ) = Z Crpbn((1 — 1), — 7b,_))

=0
(129) = Z Corbasby — Z Coibasby — Z Co,i?brrbr_1.
=0 =0 =0
Now
(130) ) Crybr_sby = [(b + o)
=0
Also,

(131) 3 Cupbrsbr =1 Coirrbrsbyd = 03 [b(b + b1,

r=0 r=1
Now

(66 + &)1 = (1/2)[(6 + &) (b + &)1 = (1/2)[(6 + )7,
so that
(132) S 1Carbl by = %[(b + 5,

r=0
Also,
(133) 2 Cuitbasbry =0, Coioibr_rbry = 1 [(b + &)L,
r=0 r=1

Hence, using (130), (131), (132), and (133) with (129), we have

n
(134) [(b +o+ )= (1 - 7) [(b + &) — n[(b + o)t

We shall now prove, by induction on s, the formula (# > 0)

I:(b(l)_|_b<2)+ ce +b<8))"=(1—L>[(b(1>+b(2)+ R

(135) s—1

—n[(0D4pD4 ... 4-pG—D)n—1,
Assume for s >2

7

s—2

—n[(BDOFbD 4 . .o fpl—D)n—L

I:(b(1>_|_b<2)_|_ .. +[,(s—1))n=<1_ )I:(b<1>+b<2)+ oo bGD)n

(136)

then
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(137) [(b“)—{—b(”—{— R O Xn:cn,r [bn—r(b(l)+ N

r=0

and by (144)
= Ecn,r [bn_,(b“)-{- A SO
r=0

7

_gs—Z

Cor I:[,n_r(ba)_{_ R O

n

— > #Cor [b,,_,(b“)—{— N A2 Lo

r=0

or by previous methods this reduces to

l:(b/ R IO

= l:(b' e )L

n

(138) s —2

I:(b(n 4o BEDYBW 4 o 4 pe=D)L

- Z nCn—l,r—l l:bn—r(b, + R + b(s—Z))n—l
r=1
s—2
s—2s—1
—_ n[(b(l) + PR + b(s—l))n’

which is the result.
Employing (136), we find

(139) [+ 4+ ") = 3(n — 1)(n — 2)b, + $n(n — 2)b_y + n(n — 1)b_s.

= [(b/ + [N + b(s—l))n — (b(l) + PN + b(s—l))n

Repeated application of (135) gives easily .
bn—i
M

n—1

1 r
(140) [(b+b’+ . +b<r>)n=(—1)r7 n(n—1)(n=2) - - - (n—r) _Za,,.

where the ¢,; are the elementary symmetric functions of the numbers
1,2,3,--.,7, taken < at a time(2°).

(20) This result is due to Lucas, Bulletin de la Société Mathématique de France, vol. 6
(1877), pp. 57-68. The proof given here is due to Dr. A. M. Mood. The proof of relation (144)
was found independently by the writer.
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Suppose # =7 in (140); then all the terms will be zero except the one for
1=mn, hence

| <
I:(b +o + o) = (- 1)'1,' (= Dr=(r — n)! o,
7!
hence
(141) O = (— D)"Crn(b+ b + « -+ + b)n,

This gives another form for (148) as follows:

@b+ - - o)
(142)

n—i

1 r b
=(=D = a(r=1) -+ (=N % <—1>"Cr-f[<b+b'+ )
r! =0 n

—1
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