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Abstract

In this paper we establish some explicit congruences for Bernoulli polynomials modulo a
general positive integer. In particular Voronoi’s and Kummer’s congruences are vastly extended.
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1. Introduction

The Bernoulli numbers By, B}, B, ... are defined by the power series

T =3B (0<[z/<2n),
they can also be defined recursively:

n 1
By=1 and Z(n—]: >Bk:O for neZ*={1,2,3,...}.
k=0
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Here are some interesting analytic results:

= 22k(2% — 1)B T T
_ 1yl 2k 2k—1 . r
tan x= kE:l( 1) 20! x for xe ( 2,2>,
(b= — B g can= 1 E e for kezt
k41 2(2k)! ’

where {(s) denotes the Riemann zeta function.
Let N be the set of non-negative integers. For k€N the kth Bernoulli polynomial
Bi(x) is given by

Kk -
Bi(x)= Z <j)Bjx /,
Jj=0

therefore By =By (0). It is well known that
Bi(x + 1) — Bi(x)=hkx" 1, (1.1)
where we regard 0x~! as 0 even if x=0; moreover
k
Bi(x+y)=) (ﬁ)Bj(X)y"‘j-
j=0

A useful theorem of Raabe (see Section 1.13 of [3]) asserts that

n—1
S B (x”) "B (x) for n=1,2.3,... . (12)
n

r=0

For a Dirichlet character y modulo a positive integer m, the generalized Bernoulli
polynomial By ,(x) is defined by
) ; (1.3)

by Raabe’s theorem By ,(x)=B(x) if y is the principal character yo with yo(a)=1 for
all aeZ; we also have

k
k .
0= ()
j=0

where the generalized Bernoulli number B; , refers to B; ,(0).
Bernoulli polynomials are of particular importance in number theory; they have
close connections with p-adic analysis, Dirichlet L-functions and ideal class groups of

m—1
_ X+r
Bi, (x)=m""" " 1(r)Bs ( -
r=0
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cyclotomic fields (cf. [8, pp. 100-109]; [10, pp. 9-19]; [11, pp. 29-35, 54-63 and
77-86]). A great deal of research on them has been done by many mathematicians.
It is recommended that the interested reader consult [2], which contains a complete
bibliography of related papers published during the period 1713-1990.

Number-theoretic properties of Bernoulli polynomials are fascinating and quite use-
ful. The classical von Staudt—Clausen theorem (see [5, pp. 233-236]) asserts that

1
Bi+ Y —€Z forall k€27 ={2,4,6,...}, (1.4)
p
p—1lk

where the sum is over all primes p such that p — 1|k. In 1889 Voronoi
(cf. [5, p. 237]) discovered that if k€27 and B, =U;/V) (where Uy, €Z and V;€Z")
then

q—1 .
(m* = DU =k 1y, Y~ ! H"J (mod q) (1.5)
Jj=1

for all relatively prime positive integers m and ¢. (As usual, for each ¢ in the field
R of real numbers, |c| denotes the greatest integer not exceeding ¢, and we also
set {c}=c — |c¢].) Kummer’s approach to Fermat’s last theorem made him essentially
obtain the following result in 1851: when p is a prime and £ is a positive integer with
p— 11k, p does not divide the denominator of By/k, and

B,
(1- p"_l)?k (mod p*) only depends on k (mod ¢(p*)), (1.6)

where o€ Z" and ¢ denotes Euler’s totient function. (This is [5, Theorem 5 in Chapter
15]; actually Kummer only handled the case a=1.)

Bernoulli polynomials have many applications, they are of independent interest as
well. In this paper we aim to give explicit congruences for Bernoulli polynomials
modulo a general positive integer.

From now on we always let ¢ be a fixed integer greater than one, (), the
ring of g-adic numbers and Z, the ring of g-adic integers. A rational number in Z,
is usually called a g-integer, and by the von Staudt—Clausen theorem ¢Bj; is a g-
integer for any k€ N. It is well known that @, forms a field if p is a prime. A good
introduction to g-adic numbers can be found in [7].

Set R(q)={0,1,...,¢q—1} and R,(q)={reR(q):r is coprime to ¢}. For xeZ,, we
let (x), denote the unique » € R(g) such that x —r€gZ,, and [x], represent the unique
y€Z, with gy —x€R(q); clearly [x],=(x + (—x)4)/q.

Let neN. If n>0 then Q, and Z, can be identified with Q, and Z,, respectively
(cf. [7, pp. 40-41]); if w,wr€2Z, and w; —w,€q"Z, then we say that w; is congru-
ent to w, modulo ¢” and denote this relation by w; =w, (mod ¢"); for polynomials
P(x),0(x)c Z,[x] we write P(x)=Q(x) (modgq") if all corresponding coeflicients of
P(x) and Q(x) are congruent modulo ¢”.

For integers ay, ..., ax, let (ay,...,a;) represent, as usual, the greatest common divisor
of ay,...,ar. For x&€Z,, (x,q) refers to (<x>q,q). For a positive integer n and a prime
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p, by ord ,(n) we mean the largest « €N such that p*|n; if a=ord,(n) then we also
write p*||n. For m,n€Z*, m ~;, n stands for ord,(m)=ord,(n). For convenience we
also use the logical notations A (and), V (or), < (if and only if). For an assertion 4,
we set

(4] = { 1 if A4 holds, (1.7)

0 otherwise.
Due to their generality, the results in this paper are somewhat complicated. Below
we state the main theorems and derive some consequences.

Our generalization of Voronoi’s congruences is as follows.

Theorem 1.1. Let c€R, d,k,meZ" and d|m. Then the polynomial

1 X x m k d x c
i (8 () - (@) s (G- [ ) (9

is in Z4[x] and is congruent to

q—1 .
vid| 1-d
S @+ jm)! (rqu + 2) + % 2llgA2|mAd ~s ml(k — 12
Jj=0

modulo q.

Corollary 1.1. Let k,m be positive integers and x a g-integer. Then

IENEREA(ES))

is a g-integer congruent to

! X+ jm 1—m
N -
et ([ +55)

+%[2||q/\2|k/\2\m/\(k:Z\/xgé2Zq)]

modulo q.
Proof. Apply Theorem 1.1 with c=x and d=m. O

Corollary 1.2. Let k,meZ* and ye QNZ,. Then

1 & xX+y 2\ K X y
k. q) <’” B"( n >(’"’Q) B"((m,qZ)*{(m,qZ)})) (1.10)
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is in Z4[x] and is congruent to

g—1 y 1
Z(x+y+jm)“qy JmJ-l-z(l— ” ))

= (m,q)q (m,q)

modulo q.
Proof. Put c=y/(m,q), d=m/(m,q) and substitute x + y for x in Theorem 1.1. [

Corollary 1.3. Let acZ, kkmeZ" and (m,q)=1. Then

(o (152) )

q—
= Z QaﬂmJ 1—2m>(x+a+jm)k—l (mod ¢). (L11)
Jj=0

| =

Proof. This follows from Corollary 1.2 in the case y=a. [

Remark 1.1. Under the condition of Corollary 1.3, Sun [9] announced that

e m+1 ,_
J(aﬂm)k 1+(1—mk ‘)qul

kBk(a/m) —Br _ -
m B(afm) — Bi :; { :

+1 k—1
+k> 1] (1 — mzmk2> quBk_z (mod ¢).

The right-hand side of this congruence contains two unpleasant terms involving
Bernoulli numbers; our (1.11) seems better.

We call a function f:7Z" — Z, g-normal if there are constants c¢,€Z, (r€R.(q))
such that

flk)= Z cr* (mod ¢) for all keZ™. (1.12)
rER.(q)

Clearly the set of g-normal functions forms a commutative ring with respect to the
functional addition and multiplication.

Our next theorem is a completely new result.

Theorem 1.2. Let x,yc€Z,, meZ* and (m,q)=1. Set

F) =iy 3 w@d ot Bl ~ B(DA) for keZP,  (L13)
dlg
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where u denotes the Mobius function. Then F is g-normal, and furthermore

q—1 .
rio= 3 (| M) ot (mod o (114)

=0 1 2

(x+/,9)=1
Corollary 1.4. Let k,meZ" and (m,q)=1. Then

q—1

B 1
oulg)(1 —m")=F = Z] o <Ar(m,q)’”;) (modg) (1.15)
(rg)=1

where @r(q)= leq(l — p*=1y and A4,(m,q) denotes the least positive integer x such
that gx —remZ.

Proof. Let j€R(q). Denote by r the least positive residue of —jm modulo ¢g. Obviously
1<r<q. Since | jm/q| € R(m) and jm=gq|jm/q|+q—r, we must have 4,(m,q)=|jm/q]
+ 1. Note that (j,¢)=1 if and only if (r,g)=1.

In view of the above,

Z (fjm)k*1 (VmJ + 71 2m> = Z k=l (A,.(m,q) — L;r 1> (mod q).
JER () 9 réR(9)

Clearly (—1)*@i(q)Bir = @i(q)Bx, for, ¢1(¢)=0, and B, =0 if k€{3,5,...}. So (1.15)
follows from Theorem 1.2 in the case x=y=0. [l

Remark 1.2. Let ¢>2, meZ" and (m,q)=1. It is apparent that

1 1 1
—= > <r+> =0 (mod q).

q—r

As we will see later

pPo — 1
Booy | (1 - ) =! (mod q). (1.16)
plg

So (1.15) in the case k=¢(g) implies the following celebrated congruence discovered
by Baker [14] and Lerch [15] in 1906:

m?9 — 1 — A:(m.q)
——=- 3 Tq (mod q). (1.17)
e

Now we turn to congruences of Kummer’s type modulo a general positive
integer.
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Theorem 1.3. Let x€Z, and

S;={k€Z":k#£0 (mod p— 1) for any prime divisor p of q}. (1.18)
(i) We can find c,€Z, (r€R.(q)) such that

dkfl

> d) = — Bu([x]a) = > et (modq)  for all k€S, (1.19)

dlq reR.(q)
(ii) If €Sy, then

n 71 2
Z (Z) m Z '“(d)dk(p(qHFlBkw(q)H([x]d) =0 (modg") (1.20)
k=0 dlg

for every n=0,1,2,... .

Remark 1.3. Let g be a prime power p*. Then the Kummer result follows from
Theorem 1.3(i) in the case x=0, and Theorem 1.3(ii) was recently showed by Young
in [12,13] where p-adic integrals and measures are employed. When ¢ is a prime,
Theorem 1.3(ii) in the case x=0 gives the strong version of Kummer’s congruences
(see [1]), and in the case x # 0 it was first obtained by Sun [9].

For generalized Bernoulli polynomials, we have

Theorem 1.4. Let meZ" and (m,q)=1. Let Q; denote the algebraic closure of Q,,
and 24, stand for the ring

{ Z a,y:a,ezq}.

"/E@;‘, yom=1

Let y:Z— Z,n be a Dirichlet character modulo m and r(q) be the product of distinct
prime divisors of q. Let x€Z, and

dkfl 2 q) N
G(k)= Z M(d)x(d)T (Bk,x (dx) - [X:XO]Bk> Jor keZ™. (1.21)

dlq
Then we can find ¢, €2, (r €R.(q)) such that
Glly— > et €qlyy forall k=1,2,3,... . (1.22)
re€R.(q)

If 1eZ7 then

n

3 (Z)(—l)k(;(k<p(q)+1)Eq"zq,m for n=0,1,2,... . (1.23)

k=0
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Remark 1.4. For generalized Bernoulli numbers, the analogue of Kummer’s result ob-
tained by Ernvall [4] follows from the first part of Theorem 1.4. When ¢ is a power
of a prime p and y is non-principal, the second part of Theorem 1.4 was recently
obtained by Young [12,13], and independently given by Sun [9] in the case x=0 and
p—111. Theorem 1.4 in the case y =y, together with Theorem 1.3 in the case x=0,
shows that we can substitute (7(¢g)/d)x for [x]; in Theorem 1.3.

Let us give one more theorem.

Theorem 1.5. Let n be a positive integer with r(n)=r(q). Let x€Z, and (x,q)=1.
For keZ" let S(n)=73_,cr. ) rt and

[ X By
H(k)=Si(n) (w(n) — 5 () - wk(n)k) . (1.24)
Then the function H is q-normal, and there are c.€Z, (r €R.(q)) such that
k=1 X\ .
Si(n) " By (;) = re;@ er* (modgq) for all kES,. (1.25)

Theorem 1.5 yields the following analogue of Kummer’s congruences.

Corollary 1.5. Let p be a fixed prime and x a fixed p-adic integer with (x, p)=1.
For o,keZ* with p— 1|k,

k—1 K—1
)4 x p -1 B
P = B | — — —Z 1.2
and
Pr(x) (mod p*) only depends on k (mod ¢(p*)). (1.27)

Proof. Applying Theorem 1.5 with ¢= p* and n= p, we find that Si(p)Py(x)=H(k)/
(p—1ez, for keZ", and that S( p)P;(x) (mod p*) only depends on & ( mod ¢( p*)).
If p— 1|k then Sy(p)= Zf:ll "=p—1+#0 (mod p); if I€Z* and =k (mod ¢
(p*)) then S;(p)=Si(p) (mod p*). So the desired result follows. [

We shall provide auxiliary results in the next section and prove a key theorem in
Section 3. In Section 4 we will be able to extend Voronoi’s congruences greatly. In
the last section we will prove Theorems 1.2—1.5.

2. Preliminaries
Lemma 2.1. Let n be a positive integer. Then

(1) q"‘l/n!GZq, q”_z/nGZq if n>2, and q"3/(n(n — 1)ez, if n>4.
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(ii) g/n€Zy if n is squarefree, and ()€ Z, if x€Z,.
(iii) ¢?/20=¢*/12=¢*/4=2||qlg/2 (mod q), and

n

gx:
V=

NSRS

x= %[x ¢€27,] (mod q) forxelZ,.

Proof. (i) Let p be any prime divisor of g. Then

ordp(n!):i UJ <§: -7

i=1 = 7 r-l

and hence (p — 1ord ,(n!)<n — 1<ord ,(¢"~'). If p>2 and n>1, then

—1 —1
ord ,(n)<ord ,(n(n — 1)) <ord ,(n!)< Z — <" .

Clearly (n—1)/2 is not more than n—2 or n—3 according as n>2 or n>4. If n>2 then
ordy(n) <ordy(n!/2)<n—1—1; if n>5 then ordy(n(n—1))<ordy(n!/(2-4))<n—1-3;
we also have ord,(5-(5—1))=5—3. So part (i) follows, moreover ¢"~*/(n(n— 1)ez,
if n>5.
(i) If n is squarefree, then (¢q,n/(g,n))=1 and hence g/n=(q/(q,n))/(n/(g,n))<€Z,.
Suppose that the g-adic expansion of x€Z, is x=ag + a1q + aq* + - - - where the
digits a; lie in R(q). Let a=ap+ajq+---+a,_1¢""'. Then x=a (mod ¢") and hence

n—1 n—1
C) _ <Z):rj, (H(x_i)_ﬂ(a—n) =0 (mod g)
" \i=0 i=0

since ¢"~'/n!'€Z, by part (i). Therefore (7)€ Z,.
(iii) By part (ii), ¢*>/m=(q/m)q=0 (mod q) for m=5,6. If 2t q or 4|q then ¢*>/4 =
(¢/4)g=0 (mod q); if 2||g then ¢*>/4 — q/2=q(q/2 — 1)/2=0 (mod q). So

2 2 2 2 2 2 2
¢ T T_9_ 9 9_9 _49
W0 4 5-12 4 6= 4= moda)

Let x€Z,. Then (x" —x)/2=_;., X '(3)€Z,. If x/2¢ Z,, then g is even and
the initial digit ap=(x), of x€Z, is odd, therefore (x —1)/2€Z,. Thus

h_d 4,9 4
X=X 2—|—2(x l)_2[x¢ZZq](modq).

N

The proof of Lemma 2.1 is now complete. [J

Notation 2.1. For k€N and meZ\{0} we define 6% (x)€ Q[x] and 8%, (x) € Z,[x] as
follows:

S )=m*"" <B" (%) B (;z)k> - Z (ﬁ)Blmllx}(l @1
0<iI<k
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and
k k T
S () =g (x) + [k > 0]71«35,; )(x). (2.2)
Lemma 2.2. Let k=0 and m#0 be integers.
(i) For each weZ, we have
3+ (m,q)w) — () €Z[x]. (23)

(ii) If k>0 and y€Z, then

1 ;
£ 000+ gy) = 8)(0)) = y9, 5 V(x) (modg). (2:4)

Proof. The case k=0 is trivial, so we assume k >0. Clearly

S0+ m) — 3 () = mh ! (Bk Er)-s()-(S+ 1)k + (;)k)

o (135 () () ) eam

J=0

For weZ, we can choose a€Z and ne€Z™" so that w=a (mod ¢) and (m/(m,q))n=
a (mod q/(m,q)). Then (m,q)w=(m,q)a=mn (mod q). As gB,€Z, for all [eN, we
have 5,(,f)(x + (m,q)w) — 55,’1‘)(x + mn)€ Z4[x]. On the other hand,
n—1
8B+ mn) — 5 (x) =" (SWx + im + m) — 5% (x + im)) € Z[x].

i=0

So (2.3) holds.
Let yeZ, and D=8 (x + qy) — 6% (x))/k. Then

0= 5 (5) (e () () ()

k—1 (k—1) g (k—1)
=D | e ) =y =0 )y (mod g),

where in the last step we note that (¢/2)y*=(g/2)y (modgq) and ¢'~'/I=qq'~2/I=0
(mod g) for /=3,4,... . This proves (2.4). [
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Lemma 2.3. Let mne€Z", keN, wy,...,w,_1,y€Z, and w=qny/meZ,. Then

(x + lqy)k+1 k+1 n—1
Z p 5~ WR)(.y)=0 (mod g), (2.5)
where x;=x + (m,qn)w; and
_ K\ 4_
R ) =2+ L @n— Dt~y + [2|q]q<3)x" b (2:6)

Proof. For t=0,1,2,... we set

g AL .
S(’)(r+1)(z+2)z< e

By simple calculations

-1 2
S(O):”2 , S(l):%(n—l)(Zn—l), S(2):q6(n—1)(3)50(modq)

and

q 5o N a5, 2@ g9 &
20 2" T3 T 2

3 5
S(3) = <n4—n3+n - =

I 2llg)= [ZHLI](n —1) (mod g).

q 4
*5 5[ llq] —

102

For any integer t>3, ¢'~2/((t + 1)(t+2))€Z, by the proof of Lemma 2.1(i), and so

B = Gl o
S(f)*qW ; (s+ 1>(th+1s)n =0 (mod g).

Notice that

1 k k q n—1
L k=t a1 1 (k)
S (D) ey - ke

~
i
o

k
2: kY i oy g Buo(n)—Buo n—1
_ R

() t+1 t+2 2 015 )

(k xTYIS(1) — 1R(k)(x, y)=0 (mod q).
t=
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Let u and v be integers such that mu + gnv=(m,qn). Then (qy/m)(m,qn)=q(uy +
vw)=0 (mod g). Thus, for the left-hand side L of (2.5) we have

1 k+1
1 k+1 k+1—j, . P n—1 (k)
1 ; ( F )xi (igyy — 5 WR, (%, ¥)

n

~
I
3|
™

»
=

F @' e, n—1
i Iy Y i - e R y)
m “\J — 1 Jj Py 2

k c]' . n—1 1 n—1 "
—t .t 1+ —
(t) P Xty ;:0 - WwRy ,(x,¥) =0 (mod q).

Il
M- 1

w
n

Il
S

t
This concludes the proof. [J
Proof of (1.16). Let p be any prime divisor of ¢>2. Set k=¢(q) and a=ord,(q).
Then

p—1

k
1 k41
k I+1
- Bi_
" Tkl Z;(k—l) k1P

r=1 1

k
k—1 P
PBk+Pk;<l_l>(173k—1)1(1+1)~

-1

As p*| pk and k>0, we have p— 1= pB; (mod p*) and (1 — p*~")pBi/(p—1)=1
(mod p*). If p,# p is another prime divisor of ¢ and f=ord,(p. — 1), then

o(p**) | p(¢q) and so p* divides (p?? — 1)/(p. — 1). Clearly (1.16) follows from
the above. [

3. A crucial theorem
Lemma 3.1. Let keN, meZ" and r€Z. Then

k,::kl Z (x + ) =B <x:’:q+{rmq}>—3k+l (%4-{%}) (3.1)

0<j<gq
m|j—r

Proof. Let f(y)=(k + 1)"'B((x + r)/m + y) for y€Z. Then Af(y)=f(y +1) —
F)=((x+r)/m+ y). Note that 1+ [(—1 —r)/m]=|(m — 1)/m — {r/m} — |r/m]] =
— |#/m]. Therefore

1 . j—r .
D DICE T Af( — )z > Af()
0<|j<q 0<|j<q (=1=r)m<i<(g—1—r)/m
mij—r mij—r

UESERE




Z.-W. Sunl Discrete Mathematics 262 (2003) 253-276 265

(- |52) - C LD
e (e (S50 {52 o G 3D

This ends the proof. [

Remark 3.1. Since (3.1) is our starting point, we would better give some historical
remarks. It was first observed by Lehmer [6] in the case x=0 and r=g. In 1991 the
author obtained a congruence version of (3.1), then his brother Sun derived (3.1) in
the case x=0 by a complicated method.

Lemma 3.2. Let k=0, m > 0, n>0 and r be integers, and 1:N — Z, be a function
with A(0)=0. Then

n

D) Y @+

s=1 0<j<q
m|j—r—gs

r n—1
m ) x—qt r+qt
AA(t)B
k+lt§:0 A1) k+1( m +{ . })

m* X —qn r+qn
— m )\.(”l)Bk+1 < m + { m }) (mOd q)

Proof. By Lemma 3.1 we have
k41, y?
D DEONDDENCEYTES)
s=1 0<j<q
m|j—r—gs

" — s — 1
= ; AM$)Bii1 (x q’(; D + {r-i-qf; )}>
o (2 1),

so the desired result follows by Abel’s partial summation identity. [J

Lemma 3.3. Let keN, mneZ* and y€R. Then

= X mr+y X y
nk rzzo: B (I’l + { " }) :(m,n)k+13k+] <(m’n) + {(m,n)}) .
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Proof. Set w=w/(m,n) for we {m,n,x, y}. Then

n—I1 i—1 (mpn)—1 _ _ _
Z X mr + Z X m(u +nv) +
s n n e n n

v=0

=S e (£ [Pl
u=0

il - -
B x t+{y}
= (ma”)z Byt <fl+ﬁ ) .
=0
Applying Raabe’s theorem we then obtain the desired identity. [J

Now we are ready to give

Theorem 3.1. Let d,m and n be positive integers for which d|n and m|qn. Let
d=(d,qn/m), m=(m,qn/d), k€N and rcZ. Suppose that 2td or 2tq or 2m|qn.
Then

1

pr (e G ) =8 (5 {5))
(4] 5) 5 e

s=1 0<j<gq

m|j—r—gs

+ (% [4]d] —§[3|d]) "’17” - gk(x—i—r)k_l (mod g). (3.2)

Proof. Clearly we may assume r€R(m). Let y=n/d and A4(s)=|—s/y] for seN.
Then 4,(0)=0, 1;(n)= —d, Ady(s)=0 if yts, and Al;(ty) = — 1 for teN. Set

r+qty
m

x,—x—qty—l—m{ } for teR(d).

Obviously xo=x + r and x, — xo emZ.
Let S(a,x)= Y o0<j<q (x + )} for a€Z. By Lemma 3.2, >"_| A4(s)S(r + gs,x) is

mlj—a
congruent to

k n—1
m X —qs r—+gqgs
Alq(s)B
k—l—l; d(s)k+1< - +{ - })
m* X —qn r+gqn
/ B
k+lﬂd(”)k+1< . +{ . })
- X X0 — qn
E Bk+1<i) _dBk+1< 0 >
=0 m "

p
k+1
modulo gq.
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In view of the above and Lemmas 2.2 and 2.3

— Z S(r+gs,x)= Z A(s)S(r + gs,x)

s=1 s=1

mk X0 — qn X0
k+1(Bk+1< p” ) Bk+1<m>>

O g —gn) = 0 D) | (o — gt — o

X0
k+ 1 (k + Dm
_ 2—-1 q2(—n) «
= —nd(n) + T T R (o, )
= — 1) (x0) — (x0+f(2 2 — Dk~ (— n)) (mod ¢).

If 2|(d,q), then m|g(n/2) and hence

n/2

fZS(r—&—qsx) ZS(r—i—qsx)

n n _
= 2o+ T2 (2 ad ) (modyg)

in a similar way. If 2+d or 2+tg, then (d + 1)/2€ Z,. Therefore the right-hand side of
the congruence (3.2) belongs to Z,[x], and

_d+1 - dm* Xo — pn X0
S-—2;S(7+q&x)+k+l(3k+1( m Bk+1(m>

d+1 d+1 gn( , ¢ n i1
= _— = - = kx
> M0y (x0) + — m (xo 2 (2.d,q)

k an (k49 ; k-1
—dnégn’)q(xo) —d; (xo — E”kxo )

1—-d —d qn n _
= — né(k)(x)+ 3 LA (xo g-(qu)kxlg 1) (mod gq).

We also have

Z <{_a}’1sJ +d—2’— 1)S(r—kqs X)
s=1

= ; 24(8)S(r + gs,x) + % Z S(r + gs,x)

s=1

<dBk+1(x0) dz‘lg ( )>+S W+ R+S (modq)

=
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L (xo>_‘§3 X+ 1gy
_k+1 k+1 m k+1 m

t=0

and

In light of Lemma 3.3 and the equality dm=dm,

qn t

—(k+1)W+dm"Bk+1( { }) d;Bk“( {m +EZ})
b )
— di By (:; + {;})

Let D=((k + 1)m)~! Zf;ol((x, + tgy)Ft! — x¥1). By Lemma 2.2

R-D= Zzyaw([)_(—) 5, x0) (modg).

Since ((d — 1)/2)qdy/m=((d — 1)/2)gn/me Z,, applying Lemma 2.3 we get

_d—1 qd (k) d—1 qn/, ¢q k—1
p=" R0, )= 55 m(x0+6(2d 1)kt y) (mod ).

noo 9 9\ 4 d
R=D)+D+S 2 'Z'kao <(2d1)(23)2 (2dq)>
E( 3]d] -4 \d]) gkxg_l (mod ¢).

Combining the above we obtain (3.2). [
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269
4. General version of Voronoi’s congruences

Lemma 4.1. Let keN, d,m,n€Z", d|n, m|gn and r €R(m). Let f be any function
from Z to Z,. Then

So(|-2]) 3 e

0<j<gq
m|j—r—gqs

gnjm—1 .
= > et (|SAE] <) oo
=0

Proof. Let R denote the right-hand side of the congruence (4.1). Then

S ()

(4.1)

0<a<gqgn
a=r (modm)

—bd
1<bZ<qn qn
mlgn—b—r
1@2% AN
m|b+r

- n/d
s=1  0<j<gq
mlqs—j+r

=3 Y et (|45 0))

;; 0§'<q (x+j)"fqn/‘;J> (mod q).

m|j—r—gs
This completes the proof. [J

Lemma 4.2. Let k€N, m,n€Z*, 2|n and 2m | qn. Then

gqn/(2m)—1 1 gn/m—1
D =g Y (et jm)
J=0 j=0
= g
T2

k12||n)(lg ~2 mP" =" + 2]lg A2t m]AGR*)) mod ¢) (4.2)
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Proof. Since (gn/2)*/2=q(g/2)(n/2)* =0 mod q), if j€Z then

1 ) . n\k
dj = 2<(x+1m)" ~ (x+jm+q3) )

z—g(erjm)"*lqg: ZkZ(" ) ( )(]m)lk 1= ’)

0<i<k

= ThR2)me* "+ jm(@+ DT = 2471) (modg).

\S)

As the left-hand side d of the congruence (4.2) equals > o, .(am dj» We have

o S (220 (22 1))

= 6]k[2||n]<[2’r;] } k=14 [2Tm/\2Hq }A(xk l)) (mod gq)

and this concludes the proof. [
Now we are able to give

Theorem 4.1. Let k€N, d,mneZ*, d|n, m|qn, and 2+d or 2tq or 2m|gn.
Put d=(d,qn/m) and m=(m,qn/d). Then for any yeR the polynomial

L(x, )= l (am* Bt (2) = din B (= = | 2])) (4.3)

m

is in Z4[x] and is congruent to

R qn/zm:l( L )k<{y—|—jmJ+l—d) 3|dn anxk |
X,)V)= X jm =
= qn/d 2

+%k[d ~ 1] ([2 InA2 H%"} 1y [2rmA2HnA2||q]A(xk*1))
modulo q.

Proof. Clearly

Lx+m,y+m)—L(x,y)= kd:r_lkl (BH] (% + 1) — Byt (%)) =dx*.

Since (g/2)[2 |n A2||(gn/m)Im=0 (modq) and gn(d — 1)/2:q(n/d)(‘2’)50 (mod q),
we also have

R(x+m,y+m)—R(x,y)

qn/m
+ 1-d
Z(x—i—zm) ({y n/;mJ o )
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gn/m—1 .
.ol y+jm 1—d
-3 com (|55

Jj=0
— i(|ytan| 1=d\ _ 4| » | 1=4d
- (ekam Qqn/a’JJr 2 ) xqqn/dJJr 2 )
=dx* (mod q).

So we can assume y€[0,m) without any loss of generality.
Let »=|y|. Then L(x, y)=L(x,r) and R(x, y)=R(x,r). By Theorem 3.1, L(x,7) is
in Z,[x] and is congruent to

- ds d+1 N
(55) 2 e
s=1 0<j<gq
m|j—r—gs

o n

q q k—1
+(Gula-spia) i G

modulo ¢g. Set

gn/m—1 .
P(x)= Z (x +jm)k(vq+n/jde + 12d> .

J=0

If 21(d,q), then (d + 1)/2€Z, and hence

L) =PE) — 213112 - Z k! = R(x,7) (mod q)
3 m d
with the help of Lemma 4.1. In the case 2|(d,q), by Lemmas 4.1 and 4.2 we have

n qn

UL PN P R L
L(x,r)+3[3\d]d mkx 2[4|d]d 2mkx

n/2

EZQ_?J*Z) Yoo @orp Y Y @)
s=1

0<j<gq s=1 0<j<gq
m|j—r—gqs mlj—r—gqs

qn/m—1 r+]m d qn/(2m)—1
= Z (x+jm)k<{ o J —2> + Z (x + jm)*

Jj=0 Jj=0

= P(x) + 2 k(2] (Ig ~2 mp ™" + 2]l A2tm]AG*)  (mod g),
therefore L(x,7)=R(x,r) (modq). We are done. [J

Proof of Theorem 1.1. Simply apply Theorem 4.1 with n=m and y=cm/d. O
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5. Proofs of Theorems 1.2-1.5
Lemma 5.1. Let d,k,m,n be positive integers with (m,q)=1 and d|(n,q), and

x,y be g-adic numbers with nx€Z, and mx — y€a + (¢*/d)Z, where a€cZ.
Then

mB(x) ~ Bi(y) = (|atjm| 1-m 1 4
_— T e —42,. 1

Proof. Write mx — y=a + (¢>/d)z where z€Z,. For 1<I<k, (¢*/d)!~!/I=(q/d)!"!
ql_l/IEZq by Lemma 2.1, and

q —1_4 - k—1 i n"
S B T I= 5 ) Y ( h )(thxny)" e,
O<h<k—I

since ny=m(nx) — n(mx — y)€Z,. Thus

k—1 k—1 N
T (Bumr —a) ~ Bu(») =" > (’j) (‘;) Bi-i()

I=1

k
-~ k— 1\ (¢*/d)~! 14 k=1 _
=gq IE:I (l— 1>l z dBk_l(y)n =0 (modg).

Let d'=m, n'=mn/d, m'=mn, X' =m'x€Z, and y'=anecZ. Clearly d' |n’, m'" | qn’,
d',q)=1, (d'.qn’'/m")=(m,q/d)=1 and (m',qn’'/d")=(mn,qn/d)=(m,q/d)n=n. By
Theorem 4.1,

(oot ()= (- [7]))

gn’ /m’' —1 , . /
+ jm 1—-d N -
= > (an,/d,J+ _ )(x’ﬂm’)" ' (mod q).

J=0

tadl

As n* = (m*Bi(x) — Bi(y)) =k~ (d'(m" ) 7' Bi(x) — n* ' Bi(mx — a)) (mod g), the
desired result follows. [

Proof of Theorem 1.2. For dcZ" with d|q, let a;=(m[x]y — [y]a); and Y(d)=
((mx — y)p2 + m{—x)q)/d. Then |Y(d)] €aq + (¢*/d)Z, because

dy(d)] =mx — y + m(—x)q — (~y)a=d(mlx]a — [y]a) =dag (mod ¢®).
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Since [(x + j,q)=1]= Zd|(x+j,q) u(d), the right-hand side of the congruence (1.14)
equals Zd|q w(d)¥(d) where

gqg—1 .
_ (mx —y)g +jm| 1—m h
d)= Y Q : J+ 5 )(xﬂ)

j=0 1
dlj—(—x)a
g/d—1 - e — j —
_ Z Q mx +;n(< x>d+’d)J 41 2'") (c+ (—x)g +id)<!

gq/d—1 .
(e D

i=0

By Lemma 5.1, ¥(d)=d*'/(km*~")"'(m*B([x]s) — Bi([¥]a)) (modgq). We are
done. [J

Lemma 5.2. For some meZ" with (m,q)=1, we can find c;€Z, (j€R.(q)) such
that

1
= > ¢t (modq) for all keS,. (5.2)
T e

Proof. Write g=p{' --- p% where p,..., p, are distinct primes and o;,...,0.€Z%.

For each i=1,...,r let g; be a primitive root modulo p;. By the Chinese remainder
theorem, there exists an integer 6; =1 (mod p;") divisible by ¢/p;, also there is a

positive integer m such that m=m; (mod p}) for all i=1,...,r where m;=g/"
Clearly (m,q)=1 since p;tm;. ‘

Let k€S,. Then mf 1 (mod py), Y2 0> m =(m{" " —1)/(mf —1)=0 (mod p*)
and so

pi—2
(mf = 1) gl = (pi=2)mP ™ N (=1 jymft

0<j<pi—2
pi—2
= pi—2+ 1= m'=p;—1 (modp})
Jj=0

Therefore

which concludes the proof. [J
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Proof of Theorem 1.3. Choose an meZ" with (m,q)=1 as in Lemma 5.2. By
Theorem 1.2 the function

dk—l
FUO=(n* = )Y w(d) == B(lxla) (keZ*)

dlq

is g-normal. So the first part of Theorem 1.3 follows.
Let /€S,. By part (i), (1.20) holds if n=0. Let neZ". Then there are ¢, €7,
(r€R.(q")) such that

dk—l dk—l
> ud) ——B([xl) =D w(d) —— Bu(xl)= ), e’ (modg")

dlq dlg" rER.(q")

for all keZ* with k=1 (mod ¢(g)). This implies (1.20) because

> (Z)(—l)krk("(q)” =r' (1 —=7r79)" =0 (modq") for all rER.(¢").
k=0

We are done. [J

Proof of Theorem 1.4. Let ¢’ be any positive integer dividing ¢ and divisible by

r(q). Let deZ*, d|q and w(d)#0. Obviously d|q’. If ac€R(m), then m[q'x/m +
{da/m}]a=(q'/d)x + a because

@l ta <q'x N {“’“}) _ {‘Z‘J ER(d).

m m m

Thus, for any k€Z* we have

m—1

! /d
ml_kX(d)Bk’Z ((Zix) =yx(d) az:; 1(a)By (((]/’ZH-Q)

m—1 / m—1 /
X da x+r
- maon ([5+ {50}],) -2 rom ([55])
a=0 m m d r=0 m d
It is well known that Z';:OI %(r)=0 if y # yo. By the above

k—1 / m—1
> u(d)x(d)dT (Bk,x <f1x) - [X:XO]Bk) 2% > a4,

d|gq r=0
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where
dk-1 gx+r
e St (on([7]) )
dzlq k m d
(|

0<j<gq
((q'x+r)/m+j,q)=1

X +J
m

> (===

0<j<gq
(r+jm,q)=1

x(q'x +r+ jm)*" (mod q).
by Theorem 1.2. Taking ¢’ =r(g) we then obtain the first part of Theorem 1.4.
The second part follows from the first part as in the proof of Theorem 1.3. [J

Remark 5.1. By the proofs of Theorems 1.3 and 1.4, we can replace ¢(gq) in (1.20)
and (1.23) by any (positive) multiple of ¢(g).

Proof of Theorem 1.5. Let m be any positive integer with (m,q)=1. Since n|g" for
sufficiently large %, mx € Z+nZ, and hence we can let (mx), denote the unique a € R(n)
such that mx€a +nZ,. Let

k—1

Hm(k)znT (kak (%) _ B <<m:l‘>>) for keZ*.

As ((x/m)n + jn,r(q))=(x,r(q))=1 for j€R(q), the function H,, is g-normal by
Lemma 5.1.
Observe that

> =" (saom (2) - % ()

meR.(n) FER.(n)

By (1.2), Yoy 2 eer. () Br(c/d)=1'"""By for all /€ Z*; applying the Mdbius inversion
formula we get that

> m(D) = w@ (B) 7 =B
rER. (1) dn

So the function H*(k)=Sy(n)(n*~'/k)Bi(x/n) — @i(q)Bi/k is g-normal. By Corol-
lary 1.4, for any m€ Z* with (m,q)=1, the function f,,(k)=(m*—1)i(q)Bi/k is also
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g-normal. Let Ho(k)=3_,cp () Jm(k)=(Sk(n) — ¢(n))@i(q)Bi/k. Then H(k)=q(n)
H*(k) — H.(k) is g-normal. In light of Lemma 5.2 and the above, we also have the
second part of Theorem 1.5. [
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