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INTRODUCTION

Let f(x,a)=a/{1—(1—x)*} (a#0). We evaluate the coefficients of
f(x,a) in two ways; that is, in Section 1 we calculate f(x, @) by using a
result of Carlitz and in Section 2 expand it into a Laurent series directly.
Then comparing these results, we get some identities involving Bernoulli
and Stirling numbers (Main Theorem 3). As an application, we obtain
relation for two or three consecutive Bernoulli numbers (Theorem 4).
In Section 3 we analyze in detail the main theorem and derive various
representations of Bernoulli numbers (Theorem 6 and Corollary 7).

130

0022-314X/01 $35.00
Copyright © 2001 by Academic Press

All rights of reproduction in any form reserved.



BERNOULLI AND STIRLING NUMBERS 131

1. PRELIMINARIES

Carlitz [2] studied the expansion

m

X & . .
m=mz:‘,0ﬁm(ﬂ)mfl (Au=1), (L.1)

where f3,,(1) is a polynomial in 4 with rational coefficients. Since
(I+Ax)“=(1+ ix)"* - e~ (A—0),

(1.1) may be considered a degenerate type of the generating function

21%
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of Bernoulli numbers B,,, and f,(/4) is called the degenerate Bernoulli
number (see [3, p. 56]). We have £,,(0)=B,,, and in general, we expect
that f,,(/) has arithmetic properties analogous to those of B,,. Indeed,
Carlitz [2] proved an analog of the Staudt-Clausen theorem for f,,(4). In
particular, he gave the following explicit formula for f,,(1) (see [2, p. 31,

(43)1)
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r
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s=0
in which S’ denotes the Stirling number of the first kind defined by

x(x—1)(x=2)---(x—m+1)=S,x+S2x*+ --- +857x",

. (13)
S;=0 if r#0 and Sg{=1.

We now define a function f(x, a) by

a

R ey g

(a#0).

Since f(x,a) has a pole of order 1 at x=0 with residue 1, it can be
expanded into a Laurent series

= OZO: Am(a) x", Afl(a): 1, (14)

where A,,(a) stands for a polynomial in a with rational coefficients.
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To determine the coefficients 4,,(a) explicitly, we replace x by —ax in
(1.1) and set 4 =a. Then we get

ax i 1\ x™
— _1 m . m I A
I—(1—x)* ,,Eo( )ma ﬂm<a>m!’
and therefore the coefficient of x™ in (1.4) is given by
(_1)m+1am+l 1
A = - > —1).
)= B () =D

By virtue of (1.2), we have

e R It B R N
Afa)=—"r Y Ba' Y — Sy

(m+1)! =, oo r+L\ s

(_1)m+l m+1 S 1 m+lB m+1< r
_ m st b
SRR NS S Y PP L

It follows from Jordan [ 10, p. 261, (29)] or [11, p. 185, (1)] that if s>2,
then

m+1
(1)) Sor=si e 53
r=s—1 -

Subtracting S¢~', =552 —mS:~! from both sides, we get

m

s—1

m+1 r
) < >an+1=(m+1)5fn_l,

and the last equality is valid also for s=1 and m>0 (for m >0, see
[ 10, p. 256, (4)] or [ 11, p. 145, (6)]). Thus we have proved the following

THEOREM 1. Let

S )= T e Ty
Then for m>= — 1, we have
(_1)m+1 m+1 S . m+1 B .
A — m+ 1 Jssf s .
)= ) @, pi1 TmED 2 8S “}

s=1

Here we give two applications of this theorem.
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(I) Since f(x,1)=1/x, we have A4,,(1)=0 for m>0. Then by

Theorem 1, we get

m+1 m+1 gr
B, 1 S
Sk—l__ m+1 20
,El k m+1 EO r+1 (m=>0)

This relation involving Bernoulli and Stirling numbers is known (see
[11, p. 147, (7) and p. 249, (5)]); it implies

( 1)m+1 m+1

Bi

A = Skl a* -1 =0). 1.5
=" XS o 1)
(2) Since f(x,2)=1/(x(1—x/2)), we have A,(2)=2"""" for
m> — 1, and from Theorem 1, we obtain
COROLLARY 2. For m >0, we have
m+1 B 1 m+1 1 m+1 Sr
2k7k k—1_ 1 —= _ m+1
,El g Smo=m < 2> m+1 EO rt
and
m+1 B 1 m+1
2K 1) =Esk-l_m! [ —= .
T ot om (=)

2. MAIN THEOREM

In this section, we expand f(x, a) into a Laurent series directly, and by
comparing it with f(x, a) in Theorem 1, we obtain some identities involving
Bernoulli and Stirling numbers.

We have

1

f(x,a)=

=

1 1
7_'_7
X X

Therefore when m > 0, the coefficient 4,,(a) of x™

1)m+1+s

DI

{1_

Pt py+ -

1
(l—x)"—l—i-ax}_x =
ax

Sinerali)

in f(x, a) is given by

+p.=m+ a<!l 1> <I2 1> a<!§‘ 1>
py=m
5121
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Moreover by (1.3), we get

1< a >=(a—1)(a—2)...(a—p)= 1 isqi}aq-
p+1 (p+1)! (P+D!,Z 7
Hence we obtain by (1.5),
1 m+1B
— Y ESETNaE-1)
m! =k
m+1 1
=Y (-1
Sgl pﬁmﬁﬂ;;m:m+l(p1+1ﬂ(pz+1)b-ips+1ﬂ
pi=1
m+1
" < Lo Spspii SZvii)a" (m=0).
k=0 \q +q,+ +q,=k

Notice that if ¢ > p, then S7 7+1=0. Since both sides are polynomials of
degree m + 1 in a the followmg maln theorem is now obtained by equating
coefficients of a*, k > 0. For the case k =0, we note that S[‘, a=(=1D7%p,!
(see, e.g., [1, p. 824], [6, p. 260, (6.5)], [ 10, p. 256, 1] or [11, p. 147, 1]).

THEOREM 3. (1) For m=0, we have

m+1 k m+1
24; —hmml Y (=1
— s=1
X Y ! .
immt Do w1 A NP2t D (p, 1)
Pi>1

(2) For 1<k<m+1, we have

m+1

%Skl—m'Z(—l

q1+1 Qg+ 1 g+1
S - S

% Z Z p+15"p,+1 py+1
ot emmt girat gk 1 D2 DL (p 1)1
pi=1 q;=0
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Let k=m+1 in (2) of Theorem 3. Then the conditions

{p1+p2+ s+ pe=mA1,
dGi1+q+ - +qg=m+1, 0<q;<ps»

imply that ¢;,= p, for 1 <i<s. Hence for m >0, we have

m+1
Berl_Wl'i'1 Z

1
P+ Pyt o+ p=m+1 (p1+1)'(p2+1)'(ps+1)"

pi=1

(2.1)

X

g

because of S7=1. This is the well-known formula for Bernoulli numbers
(see [11, p. 247, (5), p. 251 or p. 599, (19)]). If we vary the value of k, we
can produce analogous formulas. We treat here only the cases of k =m and
of k=m—1.

Let k=m>1 in (2) of Theorem 3. Then the conditions

{p1+pz+ ek py=mA
Gitqat g =k=m, 0<¢;<p;

imply that for one and only one ¢,,q,=p,—1 and for the other gs,
q;=p;. We have (see, e.g., [1, p. 824], [6, p. 264] or [11, p. 149])

Sn—1= —<’;>= —"("2_1). (2.2)

Since S =1, we have, under the condition of p; + p,+ - + p,=m+1,

o ) S (pit D) ps
Y syrisgrioesgti= Y sp= -y Ll
q+art o g=m i=1 i=1
inO
Therefore letting k=m in (2) of Theorem 3, we get
&m(m—l)
m 2
m+1 2 2 2
5 pitpy+ - +pitm+1
=m! Y (—1) Y 3 ! 12' o o
o1 pit o tpmmet 21D P+ D (p+1)!

pi=1
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Using (2.1), we obtain the first part of the following

THEOREM 4. (1) Let m>=1. Then

(m_l)Bm_Bm+l

B 'm+l e p%+p§+...+p§
=m! 2 (=1 2 (pr+ DV (pat Dl (p+ 11
s=1 pitpy+ - +p=m+1 1 2 s
Pzl (2.3)

(2) Let m=2. Then

m(m—2)3m—1)B,,_;—6m(m—1)B,,+(3m—1)B,, .,

m+1
=m!' Y (=1)
s=1
y 5 3(pi+pi+ - +pDP—Api+pi+ - +p))
ot e (it DU pat Do (p+ 1)) '

pi=1

To prove the second part of this theorem, we deal with the case k =
m—1 (m=>=2). We have (see, e.g., [11, p. 149] or [12, p. 144])

L2 o[ m_ 1o _
s —3<4>+2<3>—24n(n 1)(n—2)3n—1). (2.4)

Let k=m—12>1in (2) of Theorem 3. Then the conditions

{p1+pz+ et pe=mal,
d1+q+ - +q,=k=m—1, 0<gq;<p,,

yield the following two cases:

(A) For one and only one ¢;, ¢,= p,—2 and for all other ¢s, ¢,= p;.
In this case, we have, by (2.4),
Suti=Shi=5(pi+ 1) pi(pi—1)(3p;+2),
1.

g+1_ ¢op;+1
Sp§+l_Sp]J~+1

(B) There are only two ¢, g, such that ¢;= p,—1, ¢;= p,— 1, and for
all other ¢,’s, ¢, = pi. Then by (2.2), we have
SpSy =SSy =api+p)pi+p)  for i#),

q+1 _ Qp+1 _
Spk+l _Spk+l =1L
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From (A) and (B), we obtain, under the condition of p; + p,+ --- + p,=
m+1,

X:= y Satlgntl... g9

g+ 1
p+1"py+1 py+1

Qta+ - +gqg=m—1
q;=

=5 2, (pi+ 1) pi(pi—DBp;+2)+ 5 Y, (p7+p)(p; + Py

i=1 i#j
Since the last summation can be evaluated as
K} 2 s
(S 02) < e ) T o+ 17 =1 3 17

i=1 i=1 i—=

we have
X=g(pi+p3+ - +p2 2 +im(pi+p3+ - +p2) +§(m+1)°

—s(pi+pi+ - +pd)—H(m+1).

Putting this X in (2) of Theorem 3 with k=m — 1, we obtain by (2.4),

B, , 1
"= m(m—1)(m—2)(3m—1
1 5g M= 1)(m =2)(3m —1)
LSy 5 (Pi+pi+ - +p)
8 piimt apemer (P1EDH (A D (p+ D!
pi=1
1 m+1
+Zm~m!sgl(—
y 5 pitpit - +p;
mimtapemer (P DI+ D (p+ 1)
pri=1
LS 5 pitpit 4 p;
6 ot ot wpemrr (P1EDH A D (p+ 1!
pi=1
+ l( +1)? i( +1)
g " 2"
m+1 1

xm! (—1)° .
sgl pi+Dpy+ “Z+P5=m+l (pl + l)' (p2+ 1)' (ps+ l)'
D= 1
Summing the first part and the third part on the right side of this equality,
and moreover putting (2.3) in the second part and (2.1) in the fourth part,
we obtain the second part of Theorem 4.
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3. VARIOUS REPRESENTATIONS OF BERNOULLI NUMBERS

In the preceding section, we have calculated the right side of (2) in
Theorem 3 for a few values of k. In this section, we evaluate, in general, the
term

q+1Qap+1  Qg,+1
Sp1+ISp2+l Sp§+1

Y=
P1+P2+"Z+ps:m+l ql+q2+z.+qs:k (pl+1)' (p2+1)'(ps+1)'

pi=1 q;=0
(I<ksm+1,1<s<m+1)
appearing on the right side of (2) in Theorem 3.
By the well-known expansion of [log(1+1¢)]™ (see, e.g., [1, p. 824],
[ 10, p. 272, (76)] or [ 11, p. 202, (7)]), we have

[log(l+n]%*' & Syt

= ) "
(¢q;+ 1)! neg 1 n!
Hence
i LostLe ! & ( 5 531“532““'532“>ﬂ
i=1 (q1+1)' c=k+s \nj+ny+ - +n,=c nl!nz!'”nsl '

n;=>q;+1

because of ¢; +1+¢,+ 1+ --- +¢g,+ 1=k +s. The left side becomes

[log(l +1)]*+*
(g1 + D! g+ 1) (g, +1)!
(k+s5)! © gk

= 2

(g1 + D g2+ Dl (g, + D!, e

t()

Since S;;;¢}=0 for ¢;,> p,, we may limit the ranges of ¢/s to 0<¢,;< p;.
Then k=qg,+ - +q,<p;+ - +p,=m+1 and k+s<m+1+s.
Comparing coefficients of ! ** and setting n,= p,+ 1, we have

(k +5)! Sk+s

(g1 + D! (g +D! (g + 1) (m+145)!

q+1Qg+1  Qg,+1
z Sp1+lSp2+l Spi+1

pimt - Sepomer (1A Dot DL (py+ DT

p;=0




BERNOULLI AND STIRLING NUMBERS 139

In order to determine the value of Y, we have to sum over all ¢; >0 with
q1+9,+ -+ +q,=k. We make use of the identity (see [ 11, p. 176, (5)])

1 s!
2 (g1 + 1) ( Y D! (kxs)! —k+s
G +a+ - +q=k q: . q2+ ) (qs+ ) ( +S)

q;=0

where S7 denotes the Stirling number of the second kind generated by

X(x—=1)(x=2)---(x—m+1) S

1

=
S
I
3
I D=

Thus from the above, we get

s!
S Sk+s
(m+1+S)' k+s~m+1+s

q1+lsq2+1 L Q4s+1

_ Z Z p+1°p+17° pet+1
pme B it s S va e PUADL (A D) (py+ 1!

p;=0 q;=0

Y is equal to the sum of the terms with all p,>1 on the right side. If some

pis are 0, say, p,.1=prr2= - = p,=0, then the second summation on
the right side of the above equality reduces to

g +1Qep+1  Qg.+1
z p1+1Sp2+1 Sp:+1

G +a+ - +q,=k (p1+1)!(p2+1)!"'(pr+1)"

q;=0

because, since S}=1 and S7=0 if m+#1, only the terms with ¢,,,=
qy42= -+ =¢,=0 remain.
Now fix m, k, s, and for 1 <r <s, define

atlgni... gat!
Fir) = ARAS/SS R/ AS —
p1+p2+<--z+pr=m+l q1+q2+z.+qr=k (p1+1)!(p2+1)!'(pr+1)!

pi=1 q;=0

and F(0):=0. Then Y= F(s), and by the argument mentioned above, we
have

s! /s
e SheShie= £ () An

r=0 r
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In view of the well-known binomial coefficient inversion theorem (see, e.g.,
[6, p. 192, (548)] or [9, p. 22])

Gy =3, <”>F(k>©F(n)= » (—1)"—k<z> G(k),

k=0

we find an expression for Y= F(s), and with =0 (k> 1) we obtain

THEOREM 5. Let 1<k<m+1 and 1 <s<m+ 1. Then we have

Sq1+1Sq2+1 qu—»—l

Z Z pi+1%py+1 py+1
pL+ Pyt Ap=m+1 g +a+ - +q=k (p1+1)'(p2+1) (ps+1)'
pi=1 q;=0

s j' . L .
=Y (=1yp~ (") —L s skt
; ) <]>(m+1+1) fesmma e

With Theorem 3, (2) this gives for 1 <k <m+1,

Bk m+1 m+1 /s ]'
—Kgk—1_ —1)/ . J Sk+ij
k m m Z Z ( ) <>(Wl+l+]) k+j m+1+j>

s=1 j=1 J

and using the binomial identity 374 (%)= ("), we obtain

THEOREM 6. Let 1 <k<m+1. Then

<m+2>
jL S/ Sk+i

+
7sk71 ) ) .
kKom m+1 § <m+j+1> ktj=m+j+1
m+1

Letting k=m+ 1 in this theorem, we get

<m+2>
JEAVAS WA

m+
B, . = _ .
+1 j;l( ) <m+]+1> m+j+1

m+1

(m=0),

which is a known representation of Bernoulli numbers (see [4, p. 48, (11)]
or [11, p. 219]). We can proceed further.
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COROLLARY 7. For m>=2, we have

<m+2>
_mm+1 ; ]+1 ;
M BT X (D <m+j_1>6m+,-,

m—1

m m+2 ;

R TR VETES I

. m+3

(3m+3]+5)<j+1>,,.

m+j—1 Smeye
m—1
Proof. (1) follows immediately from Theorem 6 with k=m>1, if we

use (2.2). Similarly, for (2) we set k=m—1>1; then we use (2.4) and
simplify. |1
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