The Fibonacci Quarterly $2002(40,4):$ 362-364

CLOSED FORMULA FOR POLY-BERNOULLI NUMBERS

Roberto Sánchez-Peregrino
Dipartimento di Matematica Pura ed Applicata, Via Belzoni 7, I-35131 Padova, Italy
e-mail: sanchez@math.unipd.it
(Submitted August 2000-Final Revision April 2001)

1. INTRODUCTION AND BACKGROUND

In the present note we shall give two proofs of a property of the poly-Bernoulli numbers, the closed formula for negative index poly-Bernoulli numbers given by Arakawa and Kaneko [1]. The first proof uses weighted Stirling numbers of the second kind (see [2], [3]). The second, much simpler, proof is due to Zeilberger.

In Kaneko's paper, "On Poly-Bernoulli Numbers" [5], the poly-Bernoulli numbers, which generalize the classical Bernoulli numbers, are defined and studied. For every integer k, called the index, we define a sequence of rational numbers $\mathrm{B}_{n}^{k}(n=0,1,2, \ldots)$, which we refer to as polyBernoulli numbers, by

$$
\begin{equation*}
\left.\frac{1}{z} \mathrm{Li}_{k}(z)\right|_{z=1-e^{-x}}=\sum_{n=0}^{\infty} \mathrm{B}_{n}^{k} \frac{x^{n}}{n!} \tag{1}
\end{equation*}
$$

Here, for any integer $k, \mathrm{Li}_{k}(z)$ denotes the formal power series $\sum_{m=1}^{\infty} z^{m} / m^{k}$, which is the $k^{\text {th }}$ polylogarithm if $k \geq 1$ and a rational function if $k \leq 0$. When $k=1, \mathrm{~B}_{n}^{1}$ is the usual Bernoulli number (with $\mathrm{B}_{1}^{1}=1 / 2$). In [4] Kaneko obtained an explicit formula for B_{n}^{k} :

$$
\mathrm{B}_{n}^{k}=(-1)^{n} \sum_{m=0}^{n} \frac{(-1)^{m} m!}{(m+1)^{k}}\left\{\begin{array}{l}
n \tag{2}\\
m
\end{array}\right\},
$$

where $\left\{\begin{array}{l}n \\ m\end{array}\right\}$ is an integer referred to as a Stirling number of the second kind [6].

2. CLOSED FORMULA

Theorem 2.1 (Closed Formula): For any $n, k \geq 0$, we have

$$
\mathrm{B}_{n}^{-k}=\sum_{j=0}(j!)^{2}\left\{\begin{array}{l}
n+1 \tag{3}\\
j+1
\end{array}\right\}\left\{\begin{array}{l}
k+1 \\
j+1
\end{array}\right\}
$$

We need two lemmas. We use the notation and numeration of the equations in Carlitz's paper [3].

Lemma 2.1:

$$
\sum_{m=0}^{n}(-1)^{m} m!\binom{m}{\ell}\left\{\begin{array}{c}
n \tag{4}\\
m
\end{array}\right\}=(-1)^{n} \ell!\left\{\begin{array}{c}
n+1 \\
\ell+1
\end{array}\right\}=(-1)^{n} \ell!\mathrm{R}(n, \ell, 1)
$$

where

$$
\mathrm{R}(n, k, \lambda)=\sum_{m=0}^{n-k}\binom{n}{m}\left\{\begin{array}{c}
n-m \\
k
\end{array}\right\} \lambda^{m}
$$

Proof: In order to prove this lemma, we calculate the generating function:

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{n}(-1)^{m} m!\binom{m}{\ell}\left\{\begin{array}{l}
n \\
m
\end{array}\right\} \frac{z^{n}}{n!}=\sum_{m=0}^{\infty}(-1)^{m}\binom{m}{\ell} m!\sum_{n=0}^{\infty}\left\{\begin{array}{l}
n \\
m
\end{array}\right\} \frac{z^{n}}{n!}
$$

$$
\begin{aligned}
& =\sum_{m=0}^{\infty}(-1)^{m}\binom{m}{\ell}_{m!} \frac{\left(e^{z}-1\right)^{m}}{m!}=\frac{\left(1-e^{z}\right)^{\ell}}{\left(1-\left(1-e^{z}\right)\right)^{\ell+1}}, \text { by the generalized binomial theorem, } \\
& =e^{-z}\left(e^{-z}-1\right)^{\ell}=\sum_{n=0}^{\infty} \ell!\mathrm{R}(n, \ell, 1)(-1)^{n} \frac{z^{n}}{n!}, \text { by [3], (3.9). }
\end{aligned}
$$

Lemma 2.2:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \mathbb{B}_{n}^{-k} x^{n} y^{k}=\sum_{j=0}^{\infty} p_{j}(x) p_{j}(y) \tag{5}
\end{equation*}
$$

where $p_{j}(x)=j!\sum_{n=0}^{\infty} \mathbb{R}(n, j, 1) x^{n}$.
Proof: By (2), we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \mathcal{B}_{n}^{-k} x^{n} y^{k}=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{m=0}^{\infty}\left((-1)^{n}(-1)^{m} m!\left\{\begin{array}{l}
n \\
m
\end{array}\right\}(m+1)^{k}\right) x^{n} y^{k}, \text { by [3], (3.4), } \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \sum_{\ell=0}^{\infty} \ell\binom{m}{\ell} \mathbf{R}(k, \ell, 1)\left((-1)^{n}(-1)^{m} m!\left\{\begin{array}{l}
n \\
m
\end{array}\right\}\right) x^{n} y^{k} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{\ell=0}^{\infty} \ell!\binom{m}{\ell}\left((-1)^{n}(-1)^{m} m!\left\{\begin{array}{l}
n \\
m
\end{array}\right)\right)_{\ell}(y) \\
& \ell! \\
& x^{n}
\end{aligned}, \begin{aligned}
& =\sum_{\ell=0}^{\infty} \sum_{n=0}^{\infty} p_{\ell}(y)(-1)^{n} \sum_{m=0}^{\infty}\binom{m}{\ell}(-1)^{m} m!\left\{\begin{array}{l}
n \\
m
\end{array}\right\} x^{n}, \text { by Lemma 2.1, } \\
& =\sum_{\ell=0}^{\infty} \sum_{n=0}^{\infty} p_{\ell}(y)(-1)^{n}(-1)^{n} \ell!\mathbb{R}(n, \ell, 1) x^{n}=\sum_{\ell=0}^{\infty} p_{\ell}(y) \ell!\sum_{n=0}^{\infty} \mathbb{R}(n, \ell, 1) x^{n}=\sum_{\ell=0}^{\infty} p_{\ell}(x) p_{\ell}(y) .
\end{aligned}
$$

Proof of (3): To prove (3), we compare the coefficients on both sides of (5). In the course of Arakawa and Kaneko's proof they prove the following proposition.
Proposition 2.1: For $n>0$,

$$
\sum_{\ell=0}^{n}(-1)^{\ell} \mathrm{B}_{n-\ell}^{-\ell}=0 .
$$

Proof: We offer a more direct proof:

$$
\begin{aligned}
& \sum_{\ell=0}^{n}(-1)^{\ell} \mathbb{B}_{n-\ell}^{\ell}=\sum_{\ell=0}^{n}(-1)^{\ell}(-1)^{n-\ell} \sum_{m=0}^{n-\ell}(-1)^{m} m!(m+1)^{\ell}\left\{\begin{array}{c}
n-\ell \\
m
\end{array}\right\} \\
& =(-1)^{n} \sum_{m=0}^{n} \sum_{\ell=0}^{n}(-1)^{m} m!(m+1)^{\ell}\left\{\begin{array}{c}
n-\ell \\
m
\end{array}\right\}, \text { by }[4],(6.20), \\
& =(-1)^{n} \sum_{m=0}^{n}(-1)^{m} m!\left\{\begin{array}{c}
n+1 \\
m+1
\end{array}\right\}=(-1)^{n} \delta_{1 n+1}=0 .
\end{aligned}
$$

3. ANOTHER PROOF

In Kaneko's paper [4], he obtained the symmetric formula:

$$
\begin{equation*}
\sum_{k \geq 0} \sum_{n \geq 0} \mathbb{B}_{n}^{-k} \frac{x^{n}}{n!} \frac{y^{k}}{k!}=\frac{e^{x+y}}{e^{x}+e^{y}-e^{x+y}} . \tag{6}
\end{equation*}
$$

By using (6), D. Zeilberger gives a much simpler proof of (3) as follows:

$$
\begin{aligned}
\sum_{k \geq 0} \sum_{n \geq 0} \mathrm{~B}_{n}^{-k} \frac{x^{n}}{n!} \frac{y^{k}}{k!} & =\frac{e^{x+y}}{e^{x}+e^{y}-e^{x+y}}=e^{x+y} \sum_{j \geq 0}\left(1-e^{x}\right)^{j}\left(1-e^{y}\right)^{j} \\
& =\sum_{j \geq 0} \frac{1}{(1+j)^{2}}(j+1)\left(1-e^{x}\right)^{j}\left(-e^{x}\right)(j+1)\left(1-e^{y}\right)^{j}\left(-e^{y}\right) \\
& =\sum_{j \geq 0} \frac{1}{(j+1)^{2}} \mathrm{D}_{x}\left[\left(1-e^{x}\right)^{j+1}\right] \mathrm{D}_{y}\left[\left(1-e^{y}\right)^{j+1}\right] .
\end{aligned}
$$

Now using the usual generating function for the Stirling numbers of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, i.e.,

$$
\sum_{n \geq k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \frac{u^{n}}{n!}=\frac{\left(e^{u}-1\right)^{k}}{k!}
$$

he obtains:

$$
\begin{aligned}
& \sum_{n \geq 0} \sum_{k \geq 0} \mathrm{~B}_{n}^{-k} \frac{x^{n}}{n!} \frac{y^{k}}{k!}= \sum_{j \geq 0} \frac{1}{(j+1)^{2}} \mathrm{D}_{x}\left[(-1)^{j+1}(j+1)!\sum_{n \geq j+1}\left\{\begin{array}{c}
n \\
j+1
\end{array}\right\} \frac{x^{n}}{n!}\right] \\
& \times \mathrm{D}_{y}\left[(-1)^{j+1}(j+1)!\sum_{k \geq j+1}\left\{\begin{array}{c}
k \\
j+1
\end{array}\right\} \frac{y^{k}}{k!}\right] \\
&= \sum_{j \geq 0} j!^{2} \sum_{n \geq j}\left\{\begin{array}{l}
n+1 \\
j+1
\end{array}\right\} \frac{x^{n}}{n!} \sum_{k \geq j}\left\{\begin{array}{l}
k+1 \\
j+1
\end{array}\right\} \frac{y^{k}}{k!} \\
&= \sum_{n \geq 0} \sum_{k \geq 0} \frac{x^{n}}{n!} \frac{y^{k}}{k!} \sum_{j \geq 0} j!^{2}\left\{\begin{array}{l}
n+1 \\
j+1
\end{array}\right\}\left\{\begin{array}{l}
k+1 \\
j+1
\end{array}\right\}
\end{aligned}
$$

ACKNOWLEDGMENT

The author expresses his gratitude to D . Zeilberger for advising and permitting him to include the proof in this paper and he is very grateful to the anonymous referee for useful comments.

REFERENCES

1. T. Arakawa \& M. Kaneko. "On Poly-Bernoulli Numbers." Comment Math. Univ. St. Paul 48.2 (1999):159-67.
2. A. Z. Broder. "The r-Stirling Numbers." Discrete Math. 49 (1984):241-59.
3. L. Carlitz. "Weighted Stirling Numbers of the First and Second Kind-I." The Fibonacci Quarterly 18.2 (1980):147-62.
4. R. L. Graham, D. E. Knuth, \& O. Patashnik. Concrete Mathematics. 2nd ed. Reading, MA: Addison Wesley, 1989.
5. M. Kaneko. "Poly-Bernoulli Numbers." Journal de Théorie des Nombres de Bordeaux 9 (1997):221-28.
6. D. Knuth. "Two Notes on Notation." Amer. Math. Monthly 99 (1992):403-22.

AMS Classification Numbers: 11A07, 11B73

