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Abstract In this paper we define the analogue of Bernoulli polynomials. We inves-
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1. Introduction

Throughout this paper we use the following notations. By Z, we denote
the ring of p-adic rational integers, QQ, denotes the field of rational numbers,
C denotes the complex number field, and C, denotes the completion of al-
gebraic closure of Q,. Let v, be the normalized exponential valuation of C,
with [p|, = p~»®) = p=1. When one talks of g-extension, ¢ is considered in
many ways such as an indeterminate, a complex number ¢ € C, or p-adic
number ¢ € C,. If ¢ € C one normally assume that |¢| < 1. If ¢ € C,, we
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normally assume that |¢ — 1|, < p_zﬁ so that ¢* = exp(zlogq) for |z|, < 1.
Throughout this paper we use the below notation:

Hence, lim,_1[z] = x for any x with |z|, <1 in the present p-adic case. Let
d be a fixed integer and let p be a fixed prime number. For any positive
integer N, we set

X = lim(Z/dp~7Z),

a+dp"Z,={r e X |z=a (moddp"™)}, cf. [1-4]

where a € Z lies in 0 < a < dp", set

a

q
[dp™]

and this is known to be a distribution on X due to Kim [4, 5].

Let UD(Z,) be the set of uniformly differentiable functions on Z,. Let
T, = Un>1Cpn = limy_.c Cpv, where Cynv = {w|pr = 1 for some N > 0}
is the cyclic group of order p”. For w € T, we denote by ¢,, : Z, — C, the
locally constant function z —— w” ( see [3, 6, 14]). Then ¢,, has continuation
to a continuous group homomorphism. For f € UD(Z,), the Kim’s p-adic
g-integral is defined by

pq(a +dpN7Z,) =

N1
1 p

/ F@)dg(w) = lim —= 3 ()7, see 2,3, 4,5]

q

N—oo [p] —0

Now we consider I;(f) = lim,_, I,(f). From this, we can derive the below

~ [ f@dm(@) = fin —pi f(@), see [4, 6, 14]

From the above definition, we can also derive I1(f1) = I;(f) + f'(0), where
fi(x) = f(x + 1) (see [2, 4, 6, 14]. By using I;(f)-integral, many authors
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are studied the analogs of Bernoulli numbers and polynomials, cf.[1, 6, 7, 8,
10, 11, 14]. The remainder of the paper is organized as follows: In Section
2, we define the analogue of Bernoulli polynomials. We investigate some
properties of the analogue of Bernoulli polynomials. In Section 3, we consider
the reflection symmetries of the analogue of Bernoulli polynomials.

2. The analogue of Bernoulli numbers and polynomials

The purpose of this section is to introduce the analogue of Bernoulli
numbers and polynomials. By using these numbers, we will give relations
between Bernoulli numbers and Euler numbers. First, we start from the
definition of the analogue of Bernoulli numbers as follows:

! —ZBn(w)t—n!, w e T, (1)

wet —1 £~ n
where B, (w) are called analogue of nth Bernoulli numbers. Since [1(f;) =
Li(f)+ f'(0), if we take f(x) = e w”, we easily see that

t
wet — 1

Li(w®e™) =

Hence we have

/Z (@) = Bw).

Now we define the analogue of Bernoulli polynomials B, (w, x) as

By (2), we also have

/Z W (z + £y (£) = Bo(w, z). 3)
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Let u be algebraic in complex number field. Then Frobenius-Euler numbers
are defined by

1-— > n
N = o= = 3 Hy(u)— ()
This relation can be written as
Ho(u) =1, (H(u)+1)* —uHp(u) =0 (1<k).

Therefore we have

wHy (1) = z:: (f) Hi(u), Hy(u) ui : ki; (f) Hi(w), foru # 1.

By (3) and (4), we give a interesting formula on relationship between the
B, (w) and H,(w). Since

t ot 1t 1 1—-w!' t l-—w
wet =1 wet—w ! wl—wle—w?!l w—1le —w?t
we have
— "l "l t"
— N Hu w5 =23 Baw)— =2 Y Ba(w)
w—l% (w )n! t;; (w)n! t; (w)n!
1 — gl > B (w) t™
t;; H(w)(n—i—l)! nz: n+1 n!
Hence we have the following theorem.
Theorem 1. For n > 1, we have
(1) Bu(w) = ——H,_y(w ™), w # 1
w 1 ) )
(2) Bu(w) = Li(dpw(z)z"),
cpN -1

1 1
lim —— wa"
n+4 1 N—o CpN ;

(3) Bn(w) =
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In [6, 14], the [;-integral transform of f is the function ]?: T, — C,
defined by R
fw) = L(f¢y) for all w € T,,, f € UD(Z,).

Now, we consider the I;-integral transform by using p-adic g-integral on Z,
for a variable ¢ € C, (see [7]) . For f € UD(Z,) the p-adic g-integral was
defined as

N—oo

—/Zf(x)d,uq( —hm—if x)q®, cf. [6] .

By simple calculation, we have

p—l

lim Z / f@)w’ g dpn ()
pN—l 1 pN—1
S 2 Z; f(y)wry” (5)
pN—1 pN—1
]&Lf%op—Zf @ 3w = f@ = )] (o). see 8]

Since 11 (fpwq) = fz x)w q*du, (), we also have

p—1
dim 3w [ f@et () = im0 Y o Ly(Fén) = ) bumrDa(fo).
=0 P weC N weT)y

(6)

Cfo_qlh(f%w) = éofql Z w11, (fPw) = ¢g(x) f(2).

weT) weT)

Therefore, we obtain the following I,-integral transform.

Theorem 2. For f € UD(Z,),w € T, we have [7]

1

Z[ f¢w ¢w—1:@

weT)

¢q(2) f ().
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Now we introduce the convolution for any f,¢g € UD(Z,,C,) due to Wood-
cock as follows [14] :

(f@g)n Zf ),n > 0.

f * g Z fwgw¢w—1

where the Fourier transform fw = I;(f¢q). From Kim and Woodcock [4, 6,
7, 14], we have

AT © g)() = (F & A™1g) ) = Z AT fa + 1)A™Ig(0)
If g(0) = 0, then we obtain
A(f®g)(x) = (f ® Ag)(z).
Since I(f1) = L(f) + f(0), we have
L(Af) = £/(0).
Hence we obtain
LA ® 9)(@) = L(f © Ag)(x) = (f © ) (0).
On the other hand, Woodcock [8] introduced the following results.
(fog) =(fed)+(f®©g)+fx*g,

(f *9)(z) = Li(f(2)g(z —x)) = (f© ¢).

(f ®9)'(0) = (f ® ¢')(0) + f'(0) ® g(0) + (f * 9)(0)
= f(0)g'(0) + f'(0) + (f * 9)(0)
= f(0)g'(0) + (f x 9)(0
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Therefore, we obtain

L(feAg)=(f@

_l’_
+L(fyg ) (f *4")(0)
— f(0)g'(0) + Lr(fg-)

where g_(z) = g(—x). For w € T}, let f = 2™¢,(2), g = 2". Then we have

L(f ® Ag)(z) = Li(2"dw(2)(=2)")
= (=1)"L (2" du(2))
= (_1)an+m(w)'

Since I1(¢,(x)) = 0 and

= m 3 E =D S A )

weCpN weC N

we obtain

=B+ Y ﬁﬂn_l(w—%w@).

weTp,w#1

Therefore we have the following theorem.

Theorem 3. For m,n > 1, we have

1) Baal) = 3 (1) B0 0 5,

k=0

@ =80+ Y ﬁHn_l(w_l)qﬁw(x)

weTp,w#l

—pm+ Y 2w

weTy,w#l
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3. The reflection symmetries of the analogue of Bernoulli polynomials

In this section we consider the reflection symmetries of the analogue of
Bernoulli polynomials. Let R be the field of real numbers and let w be the
pN-th root of unity. For z € R, we consider the Bernoulli polynomials B, (z)
as follows:

t = tn
Ft,x) = —— 1ewt = ZBH(@«)F see [9-13] .
n=0 ’

Since

iBn(l — ) (=" _ F(—t,1—2)

n!

et —1
o0 tn
=F(t,z) =) Bu(w)—,
n=0 ’

we obtain that

Bu(1 =) = (=1)"By(x). (7)
Hence B,(z),z € C, has Re(x) = 1/2 reflection symmetry in addition to
the usual Im(z) = 0 reflection symmetry analytic complex functions. What
happens with the reflection symmetry (7), when one considers the analogue

of Bernoulli polynomials 7 We are going now to reflection at 1/2 of = on the
analogue of Bernoulli polynomials. Since

t = tn
F,(t,z) = e =Y B,(w,z)—,
(t,z) wet — 1 RX; ( )n!
by simple calculation, we have
—t
bl —p) = (A-a)(=t)
Fo-i(—t,1—2) = e
—t
- (=)t
Twlet—10 €
l xt
N wwet — 16

=wkF,(t,x).
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Hence we obtain the following theorem.

Theorem 4. For n > 0, we have

Bu(w,z) = (=1)"w ' B, (w1 —2). (8)

We have the following corollary.
Corollary 5. If B,(w,z) =0, then B,(w™!,1—z) =0.

Finally, we shall consider the more general problems. Prove or dis-
prove: Since n is the degree of the polynomial B,(w,z), the number of
real zeros rep,(wz) lying on the real plane Im(z) = 0 is then rep, () =
N — CB,(wx), Where cp, (v denotes complex zeros. In general, how many
roots does B, (w, x) have ? Find the numbers of complex zeros cp,, () 0of the
B, (w,z),Im(z) # 0. Using numerical experiments, we hope to investigate
the structure of the complex roots of the analogue of Bernoulli polynomials
B, (w,z). For related topics the interested reader is referred to [9]. The
authors have no doubt that investigation along this line will lead to a new
approach employing numerical method in the field of research of the analogue
of Bernoulli polynomials B,,(w, z) to appear in mathematics and physics.
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