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Abstract

The main purpose of this paper is to introduce and investigate a class of q-Bernoulli, q-Euler and

q-Genocchi polynomials. The q-analogues of well-known formulas are derived. The q-analogue of the

Srivastava–Pintér addition theorem is obtained. Some new identities involving q-polynomials are proved.

1 Introduction

Throughout this paper, we always make use of the classical definition of quantum concepts as follows:

The q-shifted factorial is defined by

(a; q)0 = 1, (a; q)n =
n−1∏

j=0

(
1− qja

)
, n ∈ N,

(a; q)∞ =

∞∏

j=0

(
1− qja

)
, |q| < 1, a ∈ C.

It is known that

(a; q)n =

n∑

k=0

[
n

k

]

q

q
1

2
k(k−1) (−1)

k
ak.

The q-numbers and q-numbers factorial and their improved forms are defined by

[a]q =
1− qa

1− q
, (q 6= 1, a ∈ C) ;

[0]q! = 1, [n]q! = [n]q [n− 1]q! , .

The q-polynomail coefficient and improved type of them are defined by

[
n

k

]

q

=
(q; q)n

(q; q)n−k (q; q)k
, (k 6 n, k, n ∈ N)

In the standard approach to the q-calculus two exponential function are used, these q-exponential and
improved type (see [2]) of it are defined as follows:
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eq (z) =

∞∑

n=0

zn

[n]q!
=

∞∏

k=0

1

(1− (1− q) qkz)
, 0 < |q| < 1, |z| <

1

|1− q|
,

Eq(z) = e1/q (z) =

∞∑

n=0

q
1

2
n(n−1)zn

[n]q!
=

∞∏

k=0

(
1 + (1− q) qkz

)
, 0 < |q| < 1, z ∈ C,

Eq (z) = eq

(z
2

)
Eq

(z
2

)
=

∞∑

n=0

(−1, q)n
2n

zn

[n]q!
=

∞∑

n=0

zn

{n}q!

=

∞∏

k=0

(
1 + (1− q) qk z

2

)
(
1− (1− q) qk z

2

) , 0 < q < 1, |z| <
2

1− q
.

The form of improved type of q-exponential function Eq (z), motivate us to define a new q-addition and
q-substraction as follows:

(x⊕q y)
n :=

n∑

k=0

[
n

k

]

q

(−1, q)k(−1, q)n−k

2n
xkyn−k, n = 0, 1, 2, ...,

(x⊖q y)
n
:=

n∑

k=0

[
n

k

]

q

(−1, q)k(−1, q)n−k

2n
xk (−y)

n−k
, n = 0, 1, 2, ...

It follows that

Eq (tx) Eq (ty) =

∞∑

n=0

(x⊕q y)
n tn

[n]q!
.

The Bernoulli numbers {Bm}m≥0 are rational numbers in a sequence defined by the binomial recursion
formula

m∑

k=0

(
m

k

)
Bk −Bm =

{
1, m = 1,
0, m > 1,

(1)

or equivalently, the generating function

∞∑

k=0

Bk
tk

k!
=

t

et − 1
.

q-analogues of the Bernoulli numbers were first studied by Carlitz [?] in the middle of the last century when
he introduced a new sequence {βm}m>0:

m∑

k=0

(
m

k

)
βkq

k+1 − βm =

{
1, m = 1,
0, m > 1.

(2)

Here, and in the remainder of the paper, the parameter we make the assumption that |q| < 1.Clearly we
recover (1) if we let q → 1 in (2).The q-binomial formula is known as

(1⊖q x)
n
=

n∑

k=0

[
n

k

]

q

(−1, q)k
2k

(−x)k =

n∑

k=0

[
n

k

]

q

(1 + 1)(1 + q)...(1 + qk−1)xk

2k
(−1)k

(1− a)nq = (a; q)n =
n−1∏

j=0

(
1− qja

)
=

n∑

k=0

[
n

k

]

q

q
1

2
k(k−1) (−1)k ak.
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The above q-standard notation can be found in [1].
Carlitz has introduced the q-Bernoulli numbers and polynomials in [?]. Srivastava and Pintér proved

some relations and theorems between the Bernoulli polynomials and Euler polynomials in [18]. They also
gave some generalizations of these polynomials. In [9]-[20], Kim et al. investigated some properties of the
q-Euler polynomials and Genocchi polynomials. They gave some recurrence relations. In [3], Cenkci et al.
gave the q-extension of Genocchi numbers in a different manner. In [21], Kim gave a new concept for the
q-Genocchi numbers and polynomials. In [25], Simsek et al. investigated the q-Genocchi zeta function and
l-function by using generating functions and Mellin transformation. There are numerous recent studies on
this subject by among many other authors: Cenkci et al. [3], [4], Choi et al [6], Cheon [5], Luo and Srivastava
[12], [13], [14], Srivastava et al.[18], [26], Nalci and Pashaev [24] Gabouary and Kurt B., [7], Kim et al. [23],
Kurt V. [22].

We first give here the definitions of the q-numbers and q-polynomials as follows. It should be mentioned
that the definition of q-Bernoulli numbers in Definition 1 can br found in [24].

Definition 1 Let q ∈ C, 0 < |q| < 1. The q-Bernoulli numbers bn,q and polynomials Bn,q (x, y) are defined

by the means of the generating functions:

B̂ (t) :=
teq
(
− t

2

)

eq
(
t
2

)
− eq

(
− t

2

) =
t

Eq (t)− 1
=

∞∑

n=0

bn,q
tn

[n]q!
, |t| < 2π,

t

Eq (t)− 1
Eq (tx) Eq (ty) =

∞∑

n=0

Bn,q (x, y)
tn

[n]q!
, |t| < 2π.

Definition 2 Let q ∈ C, 0 < |q| < 1. The q-Euler numbers en,q and polynomials En,q (x, y) are defined by

the means of the generating functions:

Ê (t) :=
2eq
(
− t

2

)

eq
(
t
2

)
+ eq

(
− t

2

) =
2

Eq (t) + 1
=

∞∑

n=0

en,q
tn

[n]q!
, |t| < π,

2

Eq (t) + 1
Eq (tx) Eq (ty) =

∞∑

n=0

En,q (x, y)
tn

[n]q!
, |t| < π.

Definition 3 Let q ∈ C, 0 < |q| < 1. The q-Genocchi numbers gn,q and polynomials Gn,q (x, y) are defined

by the means of the generating functions:

Ĝ (t) :=
2teq

(
− t

2

)

eq
(
t
2

)
+ eq

(
− t

2

) =
2t

Eq (t) + 1
=

∞∑

n=0

gn,q
tn

[n]q!
, |t| < π,

2t

Eq (t) + 1
Eq (tx) Eq (ty) =

∞∑

n=0

Gn,q (x, y)
tn

[n]q!
, |t| < π.

Definition 4 Let q ∈ C, 0 < |q| < 1. The q-tangent numbers Tn,q are defined by the means of the generating

functions:

tanhq t = −i tanq (it) =
eq (t)− eq (−t)

eq (t) + eq (−t)
=

Eq (2t)− 1

Eq (2t) + 1

=

∞∑

n=1

T2n+1,q
(−1)

k
t2n+1

[2n+ 1]q!
.

It is obvious that by tending q to 1 from the left side, we lead to the classic definition of these polynomials:

bn,q := Bn,q (0) , lim
q→1−

Bn,q (x) = Bn (x) , lim
q→1−

Bn,q (x, y) = Bn (x+ y) , lim
q→1−

bn,q = Bn,

en,q := En,q (0) , lim
q→1−

En,q (x) = En (x) , lim
q→1−

En,q (x, y) = En (x+ y) , lim
q→1−

en,q = En,

gn,q := Gn,q (0) , lim
q→1−

Gn,q (x) = Gn (x) , lim
q→1−

Gn,q (x, y) = Gn (x+ y) lim
q→1−

gn,q = Gn.
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Here Bn (x) , En (x) and Gn (x) denote the classical Bernoulli, Euler and Genocchi polynomials which are
defined by

t

et − 1
etx =

∞∑

n=0

Bn (x)
tn

n!
,

2

et + 1
etx =

∞∑

n=0

En (x)
tn

n!
and

2t

et + 1
etx =

∞∑

n=0

Gn (x)
tn

n!
.

The aim of the present paper is to obtain some results for the above newly defined q-polynomials. It
should be mentioned that q-Bernoulli and q-Euler polynomials in our definitions are polynomials of x and
y and when y = 0 they are polynomials of x, but in other definitions they respect to qx. First advantage
of this approach is that for q → 1− ,Bn,q (x, y) (En,q (x, y) , Gn,q (x, y)) becomes the classical Bernoulli
Bn (x+ y) (Euler En (x+ y) , Genocchi Gn,q (x, y)) polynomial and we may obtain the q-analogues of well-
known results, for example Srivastava and Pintér [?], Cheon [5], etc. Second advantage is that similar to the
classical case odd numbered terms of the Bernoulli numbers bk,q and the Genocchi numbres gk,qare zero,
and even numbered terms of the Euler numbers en,q are zero.

2 Preliminary results

In this section we shall provide some basic formulas for the q-Bernoulli, q-Euler and q-Genocchi numbers
and polynomials in order to obtain the main results of this paper in the next section.

Lemma 5 The q-Bernoulli numbers bn,q satisfy the following q-binomial recurrence:

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
bk,q − bn,q =

{
1, n = 1,
0, n > 1.

(3)

Proof. By simple multiplication on (1) we see that

B̂ (t) Eq (t) = t+ B̂ (t) .

So

∞∑

n=0

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
bk,q

tn

[n]q!
= t+

∞∑

n=0

bn,q
tn

[n]q!
.

The statement follows by comparing tm-coefficients.
We use this formula to calculate the first few bk,q.

b0,q = 1,
b1,q = − 1

2 = − 1
{2}

q

,

b2,q = 1
4

q(q + 1)

q2 + q + 1
=

q[2]q
4[3]q

,

b3,q = 0.

The similar property can be proved for q-Euler numbers

m∑

k=0

{
m

k

}

q

ek,q + em,q =

{
2, m = 0,
0, m > 0.

(4)

and q-Genocchi numbers

m∑

k=0

{
m

k

}

q

gk,q + gm,q =

{
2, m = 1,
0, m > 1.

(5)
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Using the above recurrence formulae we calculate the first few en,q and gn,qas well.

e0,q = 1,

e1,q = −
1

2
,

e2,q = 0,

e3,q =
[3]q [2]q−[4]q

8 =
q (1 + q)

8
,

g0,q = 0,
g1,q = 1,

g2,q = −
[2]q
2 = −

q + 1

2
,

g3,q = 0.

Remark 6 The first advantage of the new q-numbers bk,q, ek,q and gk,q is that similar to classical case odd

numbered terms of the Bernoulli numbers bk,q and the Genocchi numbres gk,qare zero, and even numbered

terms of the Euler numbers en,q are zero.

Next lemma gives the relationsheep between q-Genocchi numbers and q-Tangent numbers.

Lemma 7 Fro any n ∈ N we have

T2n+1,q = g2n+2,q
(−1)

k−1
22n+1

[2n+ 2]q
.

Proof. First we recall the definition of q-trigonometric functions.

cosq t =
eq (it) + eq (−it)

2
, sinq t =

eq (it)− eq (−it)

2i
,

i tanq t =
eq (it)− eq (−it)

eq (it) + eq (−it)
, cotq t = i

eq (it) + eq (−it)

eq (it)− eq (−it)
.

Now by choosing z = 2it in B̂ (z), we get

B̂ (2it) =
2it

Eq (2it)− 1
=

teq (−it)

sinq t
=

∞∑

n=0

bn,q
(2it)

n

[n]q!
.

It follows that

B̂ (2it) =
teq (−it)

sinq t
=

t

sinq t
(cosq t− i sinq t) = t cotq t− it

= b0,q + 2itb1,q +

∞∑

n=2

bn,q
(2it)n

[n]q!

= 1− it+

∞∑

n=2

bn,q
(2it)

n

[n]q!
.

Since t cotq t is even in the above sum odd coefficients b2k+1,q , k = 1, 2, ...are zero we get

t cotq t = 1 +

∞∑

n=2

bn,q
(2it)

n

[n]q!
= 1 +

∞∑

n=1

bn,q
(2it)

2n

[2n]q!
.

By choosing z = 2it in Ĝ (z), we get

Ĝ (2it) =
4it

Eq (2it) + 1
=

2iteq (−it)

cosq t
=

∞∑

n=0

gn,q
(2it)

n

[n]q!
.
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Ĝ (2it) =
4it

Eq (2it) + 1
=

2iteq (−it)

cosq t
=

2it

cosq t
(cosq t− i sinq t) = 2it+ 2t tanq t

= g0,q + 2itg1,q +

∞∑

n=2

gn,q
(2it)n

[n]q!

= 2it+

∞∑

n=2

gn,q
(2it)

n

[n]q!
.

It follows that

2t tanq t =
∞∑

n=1

g2n,q
(2it)

2n

[2n]q!
, tanq t =

∞∑

n=1

g2n,q
(−1)

n
(2t)

2n−1

[2n]q!

tanhq t = −i tanq (it) = −i

∞∑

n=1

g2n,q
(−1)

n
(2it)

2n−1

[2n]q!

= −
∞∑

n=1

g2n,q
(2t)2n−1

[2n]q!
= −

∞∑

n=1

g2n+2,q
(2t)2n+1

[2n+ 2]q!
.

Thus

tanhq t = −i tanq (it) =
eq (t)− eq (−t)

eq (t) + eq (−t)
=

Eq (2t)− 1

Eq (2t) + 1

=

∞∑

n=1

T2n+1,q
(−1)

k
t2n+1

[2n+ 1]q!
,

and

T2n+1,q = g2n+2,q
(−1)

k−1
22n+1

[2n+ 2]q
.

The following result is q-analogue of the addition theorem for the classical Bernoulli, Euler and Genocchi
polynomials.

Lemma 8 (Addition Theorems) For all x, y ∈ C we have

Bn,q (x, y) =
n∑

k=0

[
n

k

]

q

bk,q (x⊕q y)
n−k

, Bn,q (x, y) =
n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
Bk,q (x) y

n−k,

En,q (x, y) =

n∑

k=0

[
n

k

]

q

ek,q (x⊕q y)
n−k

, En,q (x, y) =

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
Ek,q (x) y

n−k,

Gn,q (x, y) =

n∑

k=0

[
n

k

]

q

gk,q (x⊕q y)
n−k

, Gn,q (x, y) =

n∑

k=0

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
Gk,q (x) y

n−k.

(6)

Proof. We prove only the first formula. It is a consequence of the following identity

∞∑

n=0

Bn,q (x, y)
tn

[n]q!
=

t

Eq (t)− 1
Eq (tx) Eq (ty) =

∞∑

n=0

bn,q
tn

[n]q!

∞∑

n=0

(x⊕q y)
n tn

[n]q!

=

∞∑

n=0

n∑

k=0

[
n

k

]

q

bk,q (x⊕q y)
n−k tn

[n]q!
.

6



In particular, setting y = 0 in (6), we get the following formulas for q-Bernoulli, q-Euler and q-Genocchi
polynomials, respectively.

Bn,q (x) =

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
bk,qx

n−k, En,q (x) =

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
ek,qx

n−k, (7)

Gn,q (x) =
n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
gk,qx

n−k. (8)

Setting y = 1 in (6), we get

Bn,q (x, 1) =

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
Bk,q (x) , En,q (x, 1) =

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
Ek,q (x) , (9)

Gn,q (x, 1) =

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
Gk,q (x) . (10)

Clearly (9) and (10) are q-analogues of

Bn (x+ 1) =

n∑

k=0

(
n

k

)
Bk (x) , En (x+ 1) =

n∑

k=0

(
n

k

)
Ek (x) , Gn (x+ 1) =

n∑

k=0

(
n

k

)
Gk (x) ,

respectively.

Lemma 9 The odd coefficient of the q-Bernoulli numbers except the first one are zero, that means bn,q = 0
where n = 2r + 1, (r ∈ N).
Proof. It follows from the fact that the function

f(t) =

∞∑

n=0

bn,q
tn

[n]q!
− b1,qt =

t

Eq (t)− 1
+

t

2
=

t

2

(
Eq (t) + 1

Eq (t)− 1

)

is even, and the coefficient of tn in the Taylor expansion about zero of any even function vanish for all odd

n. note that this could not happen in the last q-analogue of these numbers, because in the case of improved

exponential function Eq (−t) = (Eq (t))
−1

.

By using (??) and q-derivative approaching to the next lemma.

Lemma 10 We have

Dq,xBn,q (x) = [n]q
Bn−1,q (x) +Bn−1,q (qx)

2
, Dq,xEn,q (x) = [n]q

En−1,q (x) + En−1,q (qx)

2
,

Dq,xGn,q (x) = [n]q
Gn−1,q (x) +Gn−1,q (qx)

2
.

Lemma 11 (Difference Equations) We have

Bn,q (x, 1)−Bn,q (x) =
(−1; q)n−1

2n−1
[n]q x

n−1, n ≥ 1, (11)

En,q (x, 1) + En,q (x) = 2
(−1; q)n

2n
xn, n ≥ 0, (12)

Gn,q (x, 1) +Gn,q (x) = 2
(−1; q)n−1

2n−1
[n]q x

n−1, n ≥ 1. (13)

7



Proof. We prove the identity for the q-Bernoulli polynomials. From the identity

tEq (t)

Eq (t)− 1
Eq (tx) = tEq (tx) +

t

Eq (t)− 1
Eq (tx) ,

it follows that

∞∑

n=0

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
Bk,q (x)

tn

[n]q!
=

∞∑

n=0

(−1, q)n
2n

xn t
n+1

[n]q!
+

∞∑

n=0

Bn,q (x)
tn

[n]q!
.

From (11) and (7), (12) and (8) we obtain the following formulas.

Lemma 12 We have

xn =
2n

(−1; q)n [n]q

n∑

k=0

[
n+ 1
k

]

q

(−1; q)n+1−k

2n+1−k
Bk,q (x) (14)

xn =
2n−1

(−1; q)n

(
n∑

k=0

[
n

k

]

q

(−1; q)n−k

2n−k
Ek,q (x) + En,q (x)

)
, (15)

xn =
2n−1

(−1; q)n [n+ 1]q

(
n+1∑

k=0

[
n+ 1
k

]

q

(−1; q)n+1−k

2n+1−k
Gk,q (x) +Gn+1,q (x)

)
. (16)

The above formulas are q-analoques of the following familiar expansions

xn =
1

n+ 1

n∑

k=0

(
n+ 1
k

)
Bk (x) , xn =

1

2

[
n∑

k=0

(
n

k

)
Ek (x) + En (x)

]
, (17)

xn =
1

2 (n+ 1)

[
n+1∑

k=0

(
n+ 1
k

)
Ek (x) + En+1 (x)

]
,

respectively.

Lemma 13 The following identities hold true.

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
Bk,q (x, y)−Bn,q (x, y) = [n]q (x⊕q y)

n−1
,

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
Ek,q (x, y) + En,q (x, y) = 2 (x⊕q y)

n
,

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
Gk,q (x, y) +Gn,q (x, y) = 2 [n]q (x⊕q y)

n−1
.

Proof. We the identity for the q-Bernoulli polynomials. From the identity

tEq (t)

Eq (t)− 1
Eq (tx) Eq (ty) = tEq (tx) Eq (ty) +

t

Eq (t)− 1
Eq (tx) Eq (ty) ,

it follows that

∞∑

n=0

n∑

k=0

[
n

k

]

q

(−1, q)n−k

2n−k
Bk,q (x, y)

tn

[n]q!
=

∞∑

n=0

n∑

k=0

[
n

k

]

q

(−1, q)k(−1, q)n−k

2n
xkyn−k t

n+1

[n]q!
+

∞∑

n=0

Bn,q (x, y)
tn

[n]q!
.
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3 Some new formulas

The classical Cayley transformation z →Cay(z, a) := 1+az
1−az motivates us to approaching to the formula for

Eq (qt), In addition by substitute it in the generating formula we have:

B̂q (qt) B̂q (t) =

(
B̂q (qt)− qB̂q (t) (1 + (1− q)

t

2
)

)
1

1− q
×

2

Eq (t) + 1

The right hand side can be presented by improved q-Euler numbers .Now the equating coefficients of tn we
get the following identity.In the case that n = 0, we find the first improved q-Euler number which is exactly
1.

Proposition 14 For all n ≥ 1,

n∑

k=0

[
n

k

]

q

Bk,qBn−k,qq
k = −q

n∑

k=0

[
n

k

]

q

Bk,qEn−k,q[k − 1]q −
q

2

n−1∑

k=0

[
n− 1
k

]

q

Bk,qEn−k−1,q[n]q

Let take a q-derivative from generating function, after simplifying the equation and by knowing the
quotient rule for quantum derivative , also using that

Eq (qt) =
1− (1− q) t

2

1 + (1− q) t
2

Eq (t) , Dq(Eq (t)) =
Eq (qt) + Eq (t)

2
,

we have:

B̂q (qt) B̂q (t) =
2 + (1− q)t

2Eq (t) (q − 1)

(
qB̂q (t)− B̂q (qt)

)

It is clear that E−1
q (t) = Eq (−t). Now the equating coefficient of tn we lead to the following identity.

Proposition 15 For all n ≥ 1,

2n∑

k=0

[
2n
k

]

q

Bk,qB2n−k,qq
k = −q

2n∑

k=0

{
2n
k

}

q

Bk,q [k−1]q(−1)k+
q(1− q)

2

2n−1∑

k=0

{
2n− 1

k

}

q

Bk,q[k−1]q(−1)k

2n+1∑

k=0

[
2n+ 1

k

]

q

Bk,qB2n−k+1,qq
k = q

2n+1∑

k=0

{
2n+ 1

k

}

q

Bk,q[k−1]q(−1)k−
q(1− q)

2

2n∑

k=0

{
2n
k

}

q

Bk,q [k−1]q(−1)k

We may also derive a differential equation for B̂q (t) .If we differentiate both sides of generating function
with respect to t, after a little calculation we find that

∂

∂t
B̂q (t) = B̂q (t)

(
1

t
−

(1 − q)Eq (t)

Eq (t)− 1

(
∞∑

k=0

4qk

4− (1− q)2q2k

))

If we differentiate with respect to q, we instead obtain

∂

∂q
B̂q (t) = −B̂2

q (t) Eq (t)

∞∑

k=0

4t(kqk−1 − (k + 1)qk)

4− (1 − q)2q2k

Again using generating function and combining this with the t derivative we get the partial differential
equation
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Proposition 16

∂

∂t
B̂q (t)−

∂

∂q
B̂q (t) =

B̂q (t)

t
+

B̂2
q (t) Eq (t)

t

∞∑

k=0

4t(kqk−1 − (k + 1)qk)− qk(1− q)

4− (1− q)2q2k

4 Explicit relationship between the q-Bernoulli and q-Euler poly-

nomials

In this section we will give some explicit relationships between the q-Bernoulli and q-Euler polynomials. Here
some q-analogues of known results will be given. We also obtain new formulas and their some special cases
below. These formulas are some extensions of the formulas of Srivastava and Pintér, Cheon and others.

We present natural q-extensions of the main results in the papers [?] and [13], see Theorems 17 and 19.

Theorem 17 For n ∈ N0, the following relationships hold true:

Bn,q (x, y) =
1

2

n∑

k=0

[
n

k

]

q

mk−n


Bk,q (x) +

k∑

j=0

{
k

j

}

q

Bj,q (x)

mk−j


En−k,q (my)

=
1

2

n∑

k=0

[
n

k

]

q

mk−n

[
Bk,q (x) +Bk,q

(
x,

1

m

)]
En−k,q (my) .

Proof. Using the following identity

t

Eq (t)− 1
Eq (tx) Eq (ty) =

t

Eq (t)− 1
Eq (tx) ·

Eq
(

t
m

)
+ 1

2
·

2

Eq
(

t
m

)
+ 1

Eq

(
t

m
my

)

we have
∞∑

n=0

Bn,q (x, y)
tn

[n]q!
=

1

2

∞∑

n=0

En,q (my)
tn

mn [n]q!

∞∑

n=0

(−1, q)n
mn2n

tn

[n]q!

∞∑

n=0

Bn,q (x)
tn

[n]q!

+
1

2

∞∑

n=0

En,q (my)
tn

mn [n]q!

∞∑

n=0

Bn,q (x)
tn

[n]q!

=: I1 + I2.

It is clear that

I2 =
1

2

∞∑

n=0

En,q (my)
tn

mn [n]q!

∞∑

n=0

Bn,q (x)
tn

[n]q!
=

1

2

∞∑

n=0

n∑

k=0

[
n

j

]

q

mk−nBk,q (x)En−k,q (my)
tn

[n]q!
.

On the other hand

I1 =
1

2

∞∑

n=0

En,q (my)
tn

mn [n]q!

∞∑

n=0

n∑

j=0

{
n

j

}

q

Bj,q (x)
tn

mn−j [n]q!

=
1

2

∞∑

n=0

n∑

k=0

[
n

k

]

q

En−k,q (my)

k∑

j=0

{
k

j

}

q

Bj,q (x)

mn−kmk−j

tn

[n]q!
.

Therefore

∞∑

n=0

Bn,q (x, y)
tn

[n]q!
=

1

2

∞∑

n=0

n∑

k=0

[
n

k

]

q

mk−n


Bk,q (x) +

k∑

j=0

{
k

j

}

q

Bj,q (x)

mk−j


En−k,q (my)

tn

[n]q!
.

It remains to equate coefficient of tn.
Next we discuss some special cases of Theorem 17.
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Corollary 18 For n ∈ N0 the following relationship holds true.

Bn,q (x, y) =

n∑

k=0

[
n

k

]

q

(
Bk,q (x) +

(−1; q)k−1

2k
[k]q x

k−1

)
En−k,q (y) . (18)

The formula (18) ia a q-extension of the Cheon’s main result [5].

Theorem 19 For n ∈ N0, the following relationships

En,q (x, y) =
1

[n+ 1]q

n+1∑

k=0

1

mn+1−k

[
n+ 1
k

]

q




k∑

j=0

{
k

j

}

q

Ej,q (x)

mk−j
− Ek,q (y)


Bn+1−k,q (mx)

hold true between the q-Bernoulli polynomials and q-Euler polynomials.

Proof. The proof is based on the following identity

2

Eq (t) + 1
Eq (tx) Eq (ty) =

2

Eq (t) + 1
Eq (ty) ·

Eq
(

t
m

)
− 1

t
·

t

Eq
(

t
m

)
− 1

Eq

(
t

m
mx

)
.

Indeed

∞∑

n=0

En,q (x, y)
tn

[n]q!
=

∞∑

n=0

En,q (y)
tn

[n]q!

∞∑

n=0

tn−1

mn {n}q!

∞∑

n=0

Bn,q (mx)
tn

mn [n]q!

−

∞∑

n=0

En,q (y)
tn−1

[n]q!

∞∑

n=0

Bn,q (mx)
tn

mn [n]q!

=: I1 − I2.

It follows that

I2 =
1

t

∞∑

n=0

En,q (y)
tn

[n]q!

∞∑

n=0

Bn,q (mx)
tn

mn [n]q!
=

1

t

∞∑

n=0

n∑

k=0

[
n

k

]

q

1

mn−k
Ek,q (y)Bn−k,q (mx)

tn

[n]q!

=

∞∑

n=0

1

[n+ 1]q

n+1∑

k=0

[
n+ 1
k

]

q

1

mn+1−k
Ek,q (y)Bn+1−k,q (mx)

tn

[n]q!
,

and

I1 =
1

t

∞∑

n=0

Bn,q (mx)
tn

mn [n]q!

∞∑

n=0

n∑

k=0

{
n

k

}

q

Ek,q (y)

mn−k

tn

[n]q!

=
1

t

∞∑

n=0

n∑

k=0

[
n

k

]

q

Bn−k,q (mx)

k∑

j=0

{
k

j

}

q

Ej,q (y)

mn−kmk−j

tn

[n]q!

=

∞∑

n=0

n∑

k=0

[
n

j

]

q

Bn−j,q (mx)

j∑

k=0

{
j

k

}

q

Ek,q (x)

mn−k

tn−1

[n]q!

=

∞∑

n=0

1

[n+ 1]q

n+1∑

j=0

[
n+ 1
j

]

q

Bn+1−j,q (mx)

j∑

k=0

{
j

k

}

q

Ek,q (x)

mn+1−k

tn

[n]q!
.

Next we give an interesting relationship between the q-Genocchi polynomials and the q-Bernoulli poly-
nomials.
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Theorem 20 For n ∈ N0, the following relationship

Gn,q (x, y) =
1

[n+ 1]q

n+1∑

k=0

1

mn−k

[
n+ 1
k

]

q




k∑

j=0

[
k

j

]

q

(−1, q)k−j

mk−j2k−j
Gj,q (x)−Gk,q (x)


Bn+1−k,q (my) ,

Bn,q (x, y) =
1

2 [n+ 1]q

n+1∑

k=0

1

mn−k

[
n+ 1
k

]

q




k∑

j=0

[
k

j

]

q

(−1, q)k−j

mk−j2k−j
Bj,q (x) +Bk,q (x)


Gn+1−k,q (my)

holds true between the q-Genocchi and the q-Bernoulli polynomials.

Proof. Using the following identity

2t

Eq (t) + 1
Eq (tx) Eq (ty)

=
2t

Eq (t) + 1
Eq (tx) ·

(
Eq

(
t

m

)
− 1

)
m

t
·

t
m

Eq
(

t
m

)
− 1

· Eq

(
t

m
my

)

we have

∞∑

n=0

Gn,q (x, y)
tn

[n]q!

=
m

t

∞∑

n=0

Gn,q (x, y)
tn

[n]q!

∞∑

n=0

(−1, q)n
mn2n

tn

[n]q!

∞∑

n=0

Bn,q (my)
tn

mn [n]q!

−
m

t

∞∑

n=0

Gn,q (x, y)
tn

[n]q!

∞∑

n=0

Bn,q (my)
tn

mn [n]q!

=
m

t

∞∑

n=0

(
n∑

k=0

[
n

k

]

q

(−1, q)n−k

mn−k2n−k
Gk,q (x)−Gn,q (x)

)
tn

[n]q!

∞∑

n=0

Bn,q (my)
tn

mn [n]q!

=
m

t

∞∑

n=0

n∑

k=0

1

mn−k

[
n

k

]

q




k∑

j=0

[
k

j

]

q

(−1, q)k−j

mk−j2k−j
Gj,q (x)−Gk,q (x)


Bn−k,q (my)

tn

[n]q!

=

∞∑

n=0

1

[n+ 1]q

n+1∑

k=0

1

mn−k

[
n+ 1
k

]

q




k∑

j=0

[
k

j

]

q

(−1, q)k−j

mk−j2k−j
Gj,q (x)−Gk,q (x)


Bn+1−k,q (my)

tn

[n]q!
.

The second identity can be proved in a like manner.
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