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Abstract

In this paper the authors establish several formulas and results for the D num-

bers D
(k)
2n and d

(k)
2n , which are analogous to the higher-order Bernoulli numbers. Some

applications of these families of D numbers are also presented.
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1 Introduction

The main purpose of this paper is to prove several formulas and results for the D numbers
D

(k)
2n and d

(k)
2n , which are (in a sense) analogous to the higher-order Bernoulli numbers. We

also discuss some applications of the various results which are presented here for these D

numbers. With a view to making our presentation as much self-contained as possible, and for
the convenience of (and ready reference by) the interested reader, we have closely followed
and chosen to freely reproduce here some basic definitions and preliminary results from such
recent publications as (for example) [7] (and indeed also from the book [9]). We thus begin

this paper by introducing the Bernoulli polynomials B
(k)
n (x) of order k and degree n, which

may be defined (for any integer k) by means of the following generating function (see, for
example, [2, 4, 8, 9, 13, 14, 15]):

(

t

et − 1

)k

ext =
∞
∑

n=0

B(k)
n (x)

tn

n!
(|t| < 2π; k ∈ Z), (1)

where Z denotes the set of integers. In partucular, the numbers B
(k)
n = B

(k)
n (0) are the

Bernoulli numbers of order k and the numbers B
(1)
n = Bn are referred to as the ordinary

Bernoulli numbers. By using the generating function (1), we can get

d

dx
B(k)

n (x) = nB
(k)
n−1(x),

B(k+1)
n (x) =

k − n

k
B(k)

n (x) + (x− k)
n

k
B

(k)
n−1(x)

and

B(k+1)
n (x+ 1) =

nx

k
B

(k)
n−1(x)−

n− k

k
B(k)

n (x),

where
n ∈ N (N := {1, 2, 3, · · · } = N0 \ {0}).

Specifically, the numbers B
(n)
n are called the Nörlund numbers (see [1, 3, 4]). A generating

function for the numbers B
(n−k)
n is given by (see [9])

1

1 + t

(

t

log(1 + t)

)k+1

=
∞
∑

n=0

B(n−k)
n

tn

n!
.

For many interesting applications of the numbers B
(n)
n and B

(n−1)
n , one may refer to [9] (see

also [7]).

The so-called D numbers D
(k)
2n of the first kind are defined by means of the following

generating function (see [5, 6, 7, 8, 9, 10]):

(t csc t)k =
∞
∑

n=0

(−1)nD
(k)
2n

t2n

(2n)!
(|t| < π). (2)
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Indeed, by using (1) and (2), and by observing that

csc t =
2i

eit − e−it
,

we easily find that

∞
∑

n=0

(−1)nD
(k)
2n

t2n

(2n)!
=

(

2it

eit − e−it

)k

=

(

2it

e2it − 1

)k

ekit =
∞
∑

n=0

B(k)
n

(

k

2

)

(2it)n

n!
.

Therefore, we have

D
(k)
2n = 4nB

(k)
2n

(

k

2

)

. (3)

Upon setting k = 1 and k = 2 in this last equation (3), if we note that

B
(1)
2n

(

1

2

)

= (21−2n − 1)B2n and B
(2)
2n (1) = (1− 2n)B2n,

we have
D

(1)
2n = (2− 22n)B2n and D

(2)
2n = 4n(1− 2n)B2n.

On the other hand, if we put k = −1 in (2) and note that

sin t =
∞
∑

n=1

(−1)n−1 t2n−1

(2n− 1)!
and cos t =

∞
∑

n=0

(−1)n
t2n

(2n)!
,

then it is easily seen that

D
(−1)
2n =

1

2n+ 1
and D

(−2)
2n =

4n

(n+ 1)(2n+ 1)
.

The D numbers D
(k)
2n satisfy the following recurrence relation (see [5]):

D
(k)
2n =

(2n− k + 2)(2n− k + 1)

(k − 2)(k − 1)
D

(k−2)
2n − 2n(2n− 1)(k − 2)

k − 1
D

(k−2)
2n−2 . (4)

In light of (4), we can immediately deduce the following known results (see [9]):

D
(2n+1)
2n =

(−1)n(2n)!

4n

(

2n

n

)

and D
(2n+2)
2n =

(−1)n4n

2n+ 1
(n!)2

and

D
(2n+3)
2n =

(−1)n(2n)!

2 · 42n
(

2n+ 2

n+ 1

)(

1 +
1

32
+

1

52
+ · · ·+ 1

(2n+ 1)2

)

.
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Recently, Liu [7] derived the following exponential generating function for D
(2n−k)
2n :

∞
∑

n=0

D
(2n−k)
2n

t2n

(2n)!
=

1√
1 + t2

(

t

log(t+
√
1 + t2)

)k+1

. (5)

Some of the important applications of the numbers D
(2n)
2n and D

(2n−1)
2n include (for example)

each of the following known results:

∫ π
2

0

sin t

t
dt =

∞
∑

n=0

(−1)nD
(2n)
2n

(2n+ 1)!
, (6)

∫ π
2

0

sin t

t
dt =

π

2

∞
∑

n=0

(−1)n+1D
(2n−1)
2n

22n(2n− 1)(n!)2
(7)

and
2

π
=

∞
∑

n=0

(−1)n+1 D
(2n−1)
2n

(2n− 1)(2n)!
. (8)

The D numbers d
(k)
2n of the second kind may be defined by means of the following gener-

ating function:
(

t

log(t+
√
1 + t2)

)k

=
∞
∑

n=0

d
(k)
2n t

2n. (9)

The numbers dn = d
(1)
n are referred to as the ordinary D numbers of the second kind. Some

consequences of the generating function (9) are given below:

d0 = 1, d2 =
1

6
, d4 = − 17

360
, d6 =

367

15120
, d8 = − 195013

27216000
and d10 =

1295803

252806400
.

Indeed, by using the generating function (9), we also find that

∞
∑

n=1

2nd
(k)
2n t

2n−1 = k

(

t

log(t+
√
1 + t2)

)k−1 log(t+
√
1 + t2)− t√

1+t2
[

log(t+
√
1 + t2)

]2 ,

that is, that
∞
∑

n=1

2nd
(k)
2n t

2n = k

∞
∑

n=0

d
(k)
2n t

2n − k

∞
∑

n=0

D
(2n−k)
2n

t2n

(2n)!
. (10)

Consequently, we have (see [7, Theorem 4])

(2n)!d
(k)
2n =

k

k − 2n
D

(2n−k)
2n . (11)
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By applying (11), we obtain

(2n)!d
(2n+1)
2n = 1 and (2n)!d

(2n+2)
2n =

4n

2n+ 1
,

and

(2n)!d
(2n−1)
2n = (2n− 1)(22n − 2)B2n and (2n)!d

(2n−2)
2n = 4n(n− 1)(2n− 1)B2n.

We turn now to the central factorial numbers t(n, k) of the first kind, which are usually
defined by (see [11])

x
(

x+
n

2
− 1
)(

x+
n

2
− 2
)

· · ·
(

x+
n

2
− n+ 1

)

=
n
∑

k=0

t(n, k)xk (12)

or, equivalently, by means of the following generating function:

[

2 log

(

x

2
+

√

1 +
x2

4

)]k

= k!
∞
∑

n=k

t(n, k)
xn

n!
. (13)

By appealing to (12) or (13), we can show that

t(n, k) = t(n− 2, k − 2)− 1

4
(n− 2)2 t(n− 2, k) (14)

and that

t(n, 0) = δn,0 (n ∈ N0 := N ∪ {0}) and t(n, n) = 1 (n ∈ N)

and
t(n, k) = 0 (n+ k odd) and t(n, k) = 0 (k > n or k < 0),

where δm,n denotes the Kronecker symbol.
Next, by making use of (12), we obtain

(x2 − 12)(x2 − 32) · · · [x2 − (2n− 1)2] =
n
∑

k=0

4n−k
t(2n+ 1, 2k + 1)x2k (15)

and

x2(x2 − 12)(x2 − 22) · · · [x2 − (n− 1)2] =
n
∑

k=0

t(2n, 2k)x2k. (16)

By applying (15) and (16), we find for n ∈ N0 that

t(2n+ 1, 1) =

(

−1

4

)n

· 12 · 32 · · · (2n− 1)2 and t(2n+ 2, 2) = (−1)n(n!)2
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and

t(2n+ 2, 4) = (−1)n+1(n!)2
(

1 +
1

22
+

1

32
+ · · ·+ 1

n2

)

(n ∈ N).

By using (4) and (14), we have

D
(2n+1)
2n−2k =

4n−k

(

2n

2k

) t(2n+ 1, 2k + 1) (n ≧ k ≧ 0) (17)

and

D
(2n)
2n−2k =

4n−k

(

2n− 1

2k − 1

) t(2n, 2k) (n ≧ k ≧ 1). (18)

In Sections 2 and 3 of this paper, we shall state and prove several formulas and results for
the D numbers D

(k)
2n and d

(k)
2n , respectively. Then, in Section 4, we discuss some applications

of these families of D numbers.

2 Formulas and Results Involving the Numbers D
(k)
2n

Theorem 1. Let n ∈ N. Then

D
(2n)
2n =

∫ 1

0

(x2 − 12)(x2 − 32) · · · [x2 − (2n− 1)2]dx. (19)

Proof. By applying (15) and (17) and noting that (see [5])

D
(−1)
2k =

1

2k + 1
and D

(k)
2n =

n
∑

j=0

(

2n

2j

)

D
(k−l)
2n−2jD

(l)
2j ,

we get

D
(2n)
2n =

n
∑

k=0

(

2n

2k

)

D
(2n+1)
2n−2k D

(−1)
2k =

n
∑

k=0

(

2n

2k

)

D
(2n+1)
2n−2k D

(−1)
2k

∫ 1

0

(2k + 1)x2k dx

=

∫ 1

0

n
∑

k=0

(

2n

2k

)

D
(2n+1)
2n−2k x

2k dx =

∫ 1

0

n
∑

k=0

4n−k
t(2n+ 1, 2k + 1)x2k dx

=

∫ 1

0

(x2 − 12)(x2 − 32) · · · [x2 − (2n− 1)2]dx,

which completes the proof of the assertion (19) of Theorem 1.
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Theorem 2. Let n ∈ N. Then

D
(2n−1)
2n = (1− 2n)

n
∑

k=0

(

2n

2k

)

D
(2n)
2n−2k. (20)

Proof. By using (5), (18) and (13), we have

∞
∑

n=0

n
∑

k=0

(

2n

2k

)

D
(2n)
2n−2k

t2n

(2n)!
=

∞
∑

n=0

D
(2n)
2n

t2n

(2n)!
+

∞
∑

n=1

n
∑

k=1

n4n−k

k
t(2n, 2k)

t2n

(2n)!

=
t√

1 + t2 log
(

t+
√
1 + t2

) +
∞
∑

k=1

t

2k

∞
∑

n=k

d

dt

{

4n−k
t(2n, 2k)

t2n

(2n)!

}

=
t√

1 + t2 log
(

t+
√
1 + t2

) +
∞
∑

k=1

t

(2k) · (2k)!
d

dt

{

[

log
(

t+
√
1 + t2

)]2k
}

=
t√

1 + t2 log
(

t+
√
1 + t2

)

∞
∑

k=0

[

log
(

t+
√
1 + t2

)]2k

(2k)!

=
t

log
(

t+
√
1 + t2

) =
∞
∑

n=0

d2nt
2n,

which, in view of (11), yields

n
∑

k=0

(

2n

2k

)

D
(2n)
2n−2k = (2n)!d2n =

1

1− 2n
D

(2n−1)
2n .

This completes the proof of the assertion (20) of Theorem 2.

Theorem 3. Let n ∈ N. Then

D
(2n−1)
2n = (1− 2n)

∫ 1

0

x2(x2 − 22) · · · [x2 − (2n− 2)2]dx. (21)
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Proof. By using (16), (18) and (20), we have
∫ 1

0

x2(x2 − 22) · · · [x2 − (2n− 2)2]dx

= 2

∫ 1

2

0

4x2(4x2 − 22) · · · [4x2 − (2n− 2)2]dx

= 22n+1

∫ 1

2

0

n
∑

k=0

t(2n, 2k)x2k dx =
n
∑

k=0

4n−k

2k + 1
t(2n, 2k)

=
n
∑

k=0

(

2n−1
2k−1

)

2k + 1
D

(2n)
2n−2k =

1

n

n
∑

k=0

k

2k + 1

(

2n

2k

)

D
(2n)
2n−2k

=
1

2n

n
∑

k=0

(

2n

2k

)

D
(2n)
2n−2k −

1

2n

n
∑

k=0

1

2k + 1

(

2n

2k

)

D
(2n)
2n−2k

=
1

2n(1− 2n)
D

(2n−1)
2n − 1

2n

n
∑

k=0

(

2n

2k

)

D
(2n)
2n−2kD

(−1)
2k

=
1

2n(1− 2n)
D

(2n−1)
2n − 1

2n
D

(2n−1)
2n =

1

1− 2n
D

(2n−1)
2n ,

which completes the proof of the assertion (21) of Theorem 3.

3 Formulas and Results Involving the Numbers d
(k)
2n

Theorem 4. Let n, k ∈ N. Then

k(k + 1)d
(k+2)
2n = (2n− k)(2n− k − 1)d

(k)
2n + (2n− k − 2)2d

(k)
2n−2. (22)

Proof. By making use of (9), we find that

∞
∑

n=0

(2n− k)(2n− k − 1)d
(k)
2n t

2n−k−2 =
d2

dt2

(

1

log
(

t+
√
1 + t2

)

)k

=
k(k + 1)

1 + t2

(

1

log
(

t+
√
1 + t2

)

)k+2

+

(

1

log
(

t+
√
1 + t2

)

)k+1
kt

(1 + t2)3/2
. (23)

On the other hand, we also have

∞
∑

n=1

(2n− k − 2)d
(k)
2n−2t

2n−k−3 =
d

dt

(

1

log
(

t+
√
1 + t2

)

)k

= − k√
1 + t2

(

1

log
(

t+
√
1 + t2

)

)k+1

.
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Therefore, we get

∞
∑

n=1

(2n− k − 2)2d
(k)
2n−2t

2n−k−3 = − d

dt

kt√
1 + t2

(

1

log
(

t+
√
1 + t2

)

)k+1

=
k(k + 1)t

1 + t2

(

1

log
(

t+
√
1 + t2

)

)k+2

−
(

1

log
(

t+
√
1 + t2

)

)k+1
k

(1 + t2)3/2
,

that is,

∞
∑

n=1

(2n− k − 2)2d
(k)
2n−2t

2n−k−2 =
k(k + 1)t2

1 + t2

(

1

log
(

t+
√
1 + t2

)

)k+2

−
(

1

log
(

t+
√
1 + t2

)

)k+1
kt

(1 + t2)3/2
. (24)

Now, by using (23) and (24), we obtain

∞
∑

n=0

(2n− k)(2n− k − 1)d
(k)
2n t

2n−k−2 +
∞
∑

n=1

(2n− k − 2)2d
(k)
2n−2t

2n−k−2

= k(k + 1)

(

1

log
(

t+
√
1 + t2

)

)k+2

= k(k + 1)
∞
∑

n=0

d
(k+2)
2n t2n−k−2. (25)

Finally, by comparing the coefficients of t2n−k−2 on both sides of (25), we are led easily to
(22). This completes the proof of Theorem 4.

Remark 5. Upon setting k = 2n− 2 in Theorem 4, if we make use of (11), we immediately
obtain the following result:

(2n)!d
(2n)
2n = 4nB2n (n ∈ N0). (26)

A generalization of the above result (26) and other analogous results can be found in the
recent work by Liu [7, Corollary 1 and Theorem 4].

Theorem 6. Let n, k ∈ N and n ≧ k + 1. Then

(2k)!(2n− 2k − 1)!d
(2k+1)
2n =

k
∑

j=0

(2n− 1− 2j)!σ(n, k, j)d2n−2j , (27)

where

σ(n, k, j) =
∑

v1,··· ,vk−j+1∈N0

(v1+···+vk−j+1=j)

(2n− 2j − 1)2v1(2n− 2j − 3)2v2 · · · (2n− 2k − 1)2vk−j+1 .

9



Proof. We prove the assertion (27) of Theorem 6 by using the principle of mathematical
induction. Indeed, when k = 1, (27) is true by virtue of (22). Suppose now that (27) is true
for some natural number k ∈ N \ {1}. Then, by the superposition of (22), we have

(2k + 1)(2k + 2)d
(2k+3)
2n

= (2n− 2k − 1)(2n− 2k − 2)d
(2k+1)
2n + (2n− 2k − 3)2d

(2k+1)
2n−2

=
(2n− 2k − 1)(2n− 2k − 2)

(2k)!(2n− 2k − 1)!

k
∑

j=0

(2n− 1− 2j)!σ(n, k, j)d2n−2j

+
(2n− 2k − 3)2

(2k)!(2n− 2k − 3)!

k
∑

j=0

(2n− 3− 2j)!σ(n− 1, k, j)d2n−2−2j

=
1

(2k)!(2n− 2k − 3)!

k
∑

j=0

(2n− 1− 2j)!σ(n, k, j)d2n−2j

+
(2n− 2k − 3)2

(2k)!(2n− 2k − 3)!

k+1
∑

j=1

(2n− 2− 2j)!σ(n− 1, k, j − 1)d2n−2j. (28)

In light of this last result (28), and by noting that

σ(n, k + 1, 0) = σ(n, k, 0),

σ(n, k + 1, k + 1) = (2n− 2k − 3)2σ(n− 1, k, k)

and
σ(n, k + 1, j) = σ(n, k, j) + (2n− 2k − 3)2σ(n− 1, k, j − 1),

10



we find that

(2k + 2)!(2n− 2k − 3)!d
(2k+3)
2n

=
k
∑

j=0

(2n− 1− 2j)!σ(n, k, j)d2n−2j

+ (2n− 2k − 3)2
k+1
∑

j=1

(2n− 1− 2j)!σ(n− 1, k, j − 1)d2n−2j

= (2n− 1)!σ(n, k, 0)d2n + (2n− 2k − 3)2(2n− 3− 2k)!σ(n− 1, k, k)d2n−2k−2

+
k
∑

j=1

(2n− 1− 2j)!
[

σ(n, k, j) + (2n− 2k − 3)2σ(n− 1, k, j − 1)
]

d2n−2j

= (2n− 1)!σ(n, k + 1, 0)d2n + (2n− 3− 2k)!σ(n, k + 1, k + 1)d2n−2k−2

+
k
∑

j=1

(2n− 1− 2j)!σ(n, k + 1, j)d2n−2j

=
k+1
∑

j=0

(2n− 1− 2j)!σ(n, k + 1, j)d2n−2j ,

which shows that (27) is also true for the natural number k + 1. Thus, by the principle of
mathematical induction, (27) holds true for all k ∈ N. This completes the proof of Theorem
6.

Remark 7. Upon setting k = 1, 2, 3 in (27), we can immediately deduce

2!d
(3)
2n = (2n− 1)(2n− 2)d2n + (2n− 3)2d2n−2,

4!d
(5)
2n = (2n− 1)(2n− 2)(2n− 3)(2n− 4)d2n

+ (2n− 3)(2n− 4)
[

(2n− 3)2 + (2n− 5)2
]

d2n−2 + (2n− 5)4d2n−4

and

6!d
(7)
2n = (2n− 1)(2n− 2)(2n− 3)(2n− 4)(2n− 5)(2n− 6)d2n

+ (2n− 3)(2n− 4)(2n− 5)(2n− 6)
[

(2n− 3)2 + (2n− 5)2

+ (2n− 7)2
]

d2n−2 + (2n− 5)(2n− 6)
[

(2n− 5)4

+ (2n− 5)2(2n− 7)2 + (2n− 7)4
]

d2n−4 + (2n− 7)6d2n−6.
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Theorem 8. Let n, k ∈ N and n ≧ k. Then

(2k − 1)!(2n− 2k)!d
(2k)
2n =

k−1
∑

j=0

(2n− 2− 2j)!τ(n, k, j)d
(2)
2n−2j , (29)

where

τ(n, k, j) =
∑

v1,··· ,vk−j∈N0

(v1+···+vk−j=j)

(2n− 2j − 2)2v1(2n− 2j − 4)2v2 · · · (2n− 2k)2vk−j .

Proof. We prove the assertion (29) of Theorem 8 by using the principle of mathematical
induction. In fact, when k = 1 and k = 2, (29) is true by (22). Suppose now that (29) is
true for some natural number k ∈ N \ {1}. Then, by the superposition of (22), we have

2k(2k + 1)d
(2k+2)
2n

= (2n− 2k)(2n− 2k − 1)d
(2k)
2n + (2n− 2k − 2)2d

(2k)
2n−2

=
(2n− 2k)(2n− 2k − 1)

(2k − 1)!(2n− 2k)!

k−1
∑

j=0

(2n− 2− 2j)!τ(n, k, j)d
(2)
2n−2j

+
(2n− 2k − 2)2

(2k − 1)!(2n− 2k − 2)!

k−1
∑

j=0

(2n− 4− 2j)!τ(n− 1, k, j)d
(2)
2n−2−2j

=
1

(2k − 1)!(2n− 2k − 2)!

k−1
∑

j=0

(2n− 2− 2j)!τ(n, k, j)d
(2)
2n−2j

+
(2n− 2k − 2)2

(2k − 1)!(2n− 2k − 2)!

k
∑

j=1

(2n− 2− 2j)!τ(n− 1, k, j − 1)d
(2)
2n−2j. (30)

By using (30), and noting that

τ(n, k + 1, 0) = τ(n, k, 0),

τ(n, k + 1, k) = (2n− 2k − 2)2τ(n− 1, k, k − 1)

and
τ(n, k + 1, j) = τ(n, k, j) + (2n− 2k − 2)2τ(n− 1, k, j − 1),

12



we find that

(2k + 1)!(2n− 2k − 2)!d
(2k+2)
2n

=
k−1
∑

j=0

(2n− 2− 2j)!τ(n, k, j)d
(2)
2n−2j

+ (2n− 2k − 2)2
k
∑

j=1

(2n− 2− 2j)!τ(n− 1, k, j − 1)d
(2)
2n−2j

= (2n− 2)!τ(n, k, 0)d
(2)
2n + (2n− 2k − 2)2(2n− 2− 2k)!τ(n− 1, k, k − 1)d

(2)
2n−2k

+
k−1
∑

j=1

(2n− 2− 2j)!
[

τ(n, k, j) + (2n− 2k − 2)2τ(n− 1, k, j − 1)
]

d
(2)
2n−2j

= (2n− 2)!τ(n, k + 1, 0)d
(2)
2n + (2n− 2− 2k)!τ(n, k + 1, k)d

(2)
2n−2k

+
k−1
∑

j=1

(2n− 2− 2j)!
[

τ(n, k, j) + (2n− 2k − 2)2τ(n− 1, k, j − 1)
]

d
(2)
2n−2j

=
k
∑

j=0

(2n− 2− 2j)!τ(n, k + 1, j)d
(2)
2n−2j ,

which shows that (29) holds true also for the natural number k+1. This evidently completes
the proof of Theorem 8 by the principle of mathematical induction on k ∈ N.

Remark 9. By setting k = 2, 3, 4 in (29), we can immediately deduce

3!d
(4)
2n = (2n− 2)(2n− 3)d

(2)
2n + (2n− 4)2d

(2)
2n−2,

5!d
(6)
2n = (2n− 2)(2n− 3)(2n− 4)(2n− 5)d

(2)
2n

+ (2n− 4)(2n− 5)[(2n− 4)2 + (2n− 6)2]d
(2)
2n−2 + (2n− 6)4d

(2)
2n−4

and

7!d
(8)
2n = (2n− 2)(2n− 3)(2n− 4)(2n− 5)(2n− 6)(2n− 7)d

(2)
2n

+ (2n− 4)(2n− 5)(2n− 6)(2n− 7)[(2n− 4)2 + (2n− 6)2 + (2n− 8)2]d
(2)
2n−2

+ (2n− 6)(2n− 7)[(2n− 6)4 + (2n− 6)2(2n− 8)2 + (2n− 8)4]d
(2)
2n−4

+ (2n− 8)6d
(2)
2n−6.

4 A Set of Applications

We first give the following application of the results presented in the preceding sections.
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Theorem 10. Let k ∈ Z. Then

∫ π
2

0

(

sin t

t

)k+1

dt =
∞
∑

n=0

(−1)nD
(2n−k)
2n

(2n+ 1)!
. (31)

Proof. By using (5), we find that

∞
∑

n=0

(−1)nD
(2n−k)
2n

x2n

(2n)!
=

1√
1− x2

(

ix

log(ix+
√
1− x2)

)k+1

.

Therefore, we have

∞
∑

n=0

(−1)nD
(2n−k)
2n

(2n+ 1)!
=

∫ 1

0

1√
1− x2

(

ix

log(ix+
√
1− x2)

)k+1

dx

=

∫ π
2

0

1

cos θ

(

i sin θ

log(i sin θ + cos θ)

)k+1

d(sin θ) =

∫ π
2

0

(

sin θ

θ

)k+1

dθ,

which obviously completes the proof of Theorem 10.

Remark 11. Setting k = 0 in (31), we immediately obtain (6). Moreover, if we set k = −1
and k = −2 in (31) and note that

D
(2n+1)
2n =

(−1)n(2n)!

4n

(

2n

n

)

and D
(2n+2)
2n =

(−1)n4n

2n+ 1
(n!)2,

we get
∞
∑

n=0

1

(2n+ 1)4n

(

2n

n

)

=
π

2

and
∫ π

2

0

t

sin t
dt =

∞
∑

n=0

4n

(2n+ 1)2
(

2n
n

) ,

The sum on the right-hand side of this last result can be expressed as a Clausenian hyper-
geometric series as follows:

3F2

(

1

2
, 1, 1;

3

2
,
3

2
; 1

)

.

Moreover, by using a computer algebra system, the integral on the left-hand side can be
found to be twice the Catalan constant G which is defined by (see, for details, [14, p. 43 et
seq.])

G :=
1

2

∫ 1

0

K(κ)dκ =
∞
∑

n=0

(−1)n

(2n+ 1)2
.
= 0.91596 55941 77219 015 · · · ,
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where K(κ) is the complete elliptic integral of the first kind, given by

K(κ) :=

∫ π
2

0

dt
√

1− κ2 sin2 t
(|κ| < 1).

In fact, the above observation can be verified analytically by setting τ = tan
(

t
2

)

and dτ =
1
2
sec2

(

t
2

)

dt in the following known result [13, p. 110, Equation 2.3(37)]:
∫ 1

0

arctan τ

τ
dτ = G.

Theorem 12. Let k ∈ Z. Then
∫ π

2

0

(

sin t

t

)k

cos t dt =
∞
∑

n=0

(−1)n+1kD
(2n−k)
2n

(2n− k)(2n+ 1)!
. (32)

Proof. By using (9) and (11), we find that

∞
∑

n=0

(−1)n+1kD
(2n−k)
2n

(2n− k)(2n)!
x2n =

∞
∑

n=0

(−1)nd
(k)
2n x

2n =

(

ix

log(ix+
√
1− x2)

)k

.

Therefore, we have

∞
∑

n=0

(−1)n+1kD
(2n−k)
2n

(2n− k)(2n+ 1)!
=

∫ 1

0

(

ix

log(ix+
√
1− x2)

)k

dx

=

∫ π
2

0

(

i sin t

log(i sin t+ cos t)

)k

d(sin t) =

∫ π
2

0

(

sin t

t

)k

cos t dt,

which evidently completes the proof of Theorem 12.

Remark 13. By setting k = 1 and k = −1 in (32), we have
∫ π

0

sin t

t
dt = 2

∞
∑

n=0

(−1)n+1D
(2n−1)
2n

(2n− 1)(2n+ 1)!

and
∫ π

2

0

t cot t dt =
∞
∑

n=0

1

4n (2n+ 1)2

(

2n

n

)

or, equivalently,
∫ 1

0

arcsin τ

τ
dτ =

∞
∑

n=0

1

4n (2n+ 1)2

(

2n

n

)

by setting sin t = τ and cos t dt = dτ . The sum on the right-hand side of this last result can
be expressed in a closed form via a Clausenian hypergeometric series as follows:

∫ 1

0

arcsin τ

τ
dτ =

∞
∑

n=0

1

4n (2n+ 1)2

(

2n

n

)

= 3F2

(

1

2
,
1

2
,
1

2
;
3

2
,
3

2
; 1

)

=
π

2
ln 2.
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Theorem 14. Let k ∈ Z. Then

∞
∑

n=0

(−1)n+1k

(2n− k)(2n)!
D

(2n−k)
2n =

(

2

π

)k

, (33)

provided that each member of (33) exists.

Proof. By applying (9) and (11), we obtain

∞
∑

n=0

(−1)n+1k

(2n− k)(2n)!
D

(2n−k)
2n x2n =

∞
∑

n=0

(−1)nd
(k)
2n x

2n

=

(

ix

log(ix+
√
1− x2)

)k

=









1
∞
∑

n=0

1
(2n+1)4n

(

2n
n

)

x2n









k

.

Therefore, we get

∞
∑

n=0

(−1)n+1k

(2n− k)(2n)!
D

(2n−k)
2n =









1
∞
∑

n=0

1
(2n+1)4n

(

2n
n

)









k

=

(

2

π

)k

.

This completes the proof of Theorem 14.

Remark 15. Upon setting k = 1 in (33), we immediately obtain (8). If, on the other hand,
we put k = −2 in (33) and note that

D
(2n+2)
2n =

(−1)n4n

2n+ 1
(n!)2,

then we find that
∞
∑

n=0

4n(n!)2

(2n+ 2)!
=

π2

8
.

This last identity follows also from a known power-series expansion for the function (arcsin x)2.
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