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A survey on the theory of multiple Bernoulli

polynomials and multiple L-functions of root systems

By

Yasushi Komori∗, Kohji Matsumoto∗∗and Hirofumi Tsumura∗∗∗

§ 1. Introduction

In [36], Witten found that a certain series of Dirichlet type appear in two dimen-

sional quantum gauge theories with connected compact semisimple Lie groups. Moti-

vated by this observation, Zagier [37] defined the Witten zeta-functions as

(1.1) ζW (s; g) =
∑
ϕ

1

(dimϕ)s

for s ∈ C, where the summation runs over all finite dimensional irreducible representa-

tions ϕ of a given semisimple Lie algebra g. It is known that a semisimple Lie algebra is

a direct sum of simple Lie algebras and simple Lie algebras of rank r are associated to an

irreducible root system of type Xr where X = A,B, . . . , G (see Section 4 for the details).

In the case where g is of type A1, the series reduces to the Riemann zeta-function

(1.2) ζ(s) =
∞∑
n=1

1

ns
.

It is well known that the notion of “zeta-functions” plays an important tool in various

areas of modern mathematics.

When s is an even positive integer, then their values are crucial (if s is an odd

integer, those with appropriate characters play the same role); mathematically, they
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give the volumes of certain moduli spaces of flat connections, and physically, the 0-th

orders of the partition functions of two dimensional quantum gauge theories. Assume

that s is an even positive integer 2k. Witten and Zagier showed that their values are

in Qπ|∆+|2k, where ∆+ denotes the set of all positive roots. Euler already evaluated

them in the A1 case. The A2 case was first studied by Tornheim [33] and Mordell [29]

independently, and further considered by several authors [7, 31, 34]. In [32], Szenes

gave a certain algorithm for the computation in general cases, from the viewpoint of

hyperplane arrangements. Gunnells and Sczech also gave another general algorithm and

the explicit forms in the A3 case as an application [6].

This article is a survey on a new approach to this problem proposed in [11,12,15–18,

22,28] and is an extended and updated version of the informal articles [13,14]. We will

introduce generalizations of Bernoulli polynomials and zeta-functions associated with

root systems, which include the Riemann zeta-function, the Euler-Zagier zeta-functions

and the Witten zeta-functions. Furthermore we will develop a theory similar to that of

the classical Riemann zeta-function.

Acknowledgment: The authors would like to thank the referee for critical reading

of the manuscript and useful comments.

§ 2. A Review of Classical Theory

Before stating our results, first we recall the classical theory of the Riemann zeta-

function and Bernoulli numbers.

The following is a well-known formula for the Riemann zeta-function and Bernoulli

numbers: For k ∈ Z≥1,

(2.1) 2ζ(2k) = −B2k
(2πi)2k

(2k)!
,

where the definition of Bk is given by, for t ∈ C with |t| < 2π,

(2.2)
t

et − 1
=
∞∑
k=0

Bk
tk

k!
.

Using this formula, we obtain for k ∈ Z≥1,

ζ(2k) + (−1)2kζ(2k) = −B2k
(2πi)2k

(2k)!
,(2.3)

ζ(2k + 1) + (−1)2k+1ζ(2k + 1) = −B2k+1
(2πi)2k+1

(2k + 1)!
= 0.(2.4)

Hence we have the following important relations: For k ∈ Z≥2,

(2.5) ζ(k) + (−1)kζ(k) = −Bk
(2πi)k

k!
,
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that is, value-relations can be written in terms of Bernoulli numbers.

These relations are generalized to the case of Lerch zeta-functions and periodic

Bernoulli functions. Let ϕ(s, y) be the Lerch zeta-function defined by

(2.6) ϕ(s, y) =
∞∑
n=1

e2πiny

ns
.

Then a formula for Lerch zeta-functions implies that for k ∈ Z≥2 and y ∈ R,

(2.7) ϕ(k, y) + (−1)kϕ(k,−y) = −Bk({y}) (2πi)k

k!
,

that is, functional relations as functions in y can be written in terms of periodic Bernoulli

functions, which are defined by

(2.8)
tet{y}

et − 1
=
∞∑
k=0

Bk({y}) t
k

k!
,

and {y} = y − [y] is the fractional part of y.

Once we obtain the notion of periodic Bernoulli functions, we can calculate special

values of Dirichlet L-functions L(s, χ) in terms of them. For a primitive character χ of

conductor f and k ∈ Z≥2 satisfying (−1)kχ(−1) = 1, we have

(2.9) L(k, χ) =

∞∑
n=1

χ(n)

nk
=

(−1)k+1

2

(2πi)k

k!fk
g(χ)Bk,χ,

where g(χ) is the Gauss sum, χ is the complex conjugate of χ, and

(2.10) Bk,χ = fk−1

f∑
a=1

χ(a)Bk(a/f).

Our aim is to find a good class of multiple zeta-functions which generalizes the theory

above. First we will introduce zeta- and L-functions associated with semisimple Lie

algebras, which are corresponding to simply-connected Lie groups. Moreover besides

those, we will study zeta-functions associated with Lie groups that may not be simply-

connected.

§ 3. An Overview of Our Results

Based on the observation given in the previous section, we will construct multiple

generalizations of Bernoulli polynomials and multiple zeta- and L-functions associated
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with arbitrary root systems. Before introducing the general theory, we give two sim-

ple theorems without using the terminology of root systems. For s1, s2, s3 ∈ C with

<s1,<s2,<s3 ≥ 2 and y1, y2 ∈ R, we consider the convergent series

(3.1) ζ2(s1, s2, s3, y1, y2;A2) =
∞∑

m,n=1

e2πi(my1+ny2)

ms1ns2(m+ n)s3
.

Theorem A. For k1, k2, k3 ∈ Z≥2,

(3.2) ζ2(k1, k2, k3, y1, y2;A2) + (−1)k1ζ2(k1, k3, k2,−y1 + y2, y2;A2)

+ (−1)k2ζ2(k3, k2, k1, y1, y1 − y2;A2) + (−1)k2+k3ζ2(k3, k1, k2,−y1 + y2,−y1;A2)

+ (−1)k1+k3ζ2(k2, k3, k1,−y2, y1 − y2;A2) + (−1)k1+k2+k3ζ2(k2, k1, k3,−y2,−y1;A2)

= (−1)3P(k1, k2, k3, y1, y2;A2)
(2πi)k1+k2+k3

k1!k2!k3!
,

where P(k1, k2, k3, y1, y2;A2) is a multiple periodic Bernoulli function (defined later).

In particular, we have

(3.3) ζ2(2, 2, 2, 0, 0;A2) =
1

6
(−1)3 1

3780

(2πi)2+2+2

2!2!2!
=

π6

2835
.

This should be compared with (2.7) and

(3.4) ζ(2) =
1

2
(−1)

1

6

(2πi)2

2!
=
π2

6
.

For s1, s2, s3 ∈ C with <s1,<s2,<s3 ≥ 2 and primitive Dirichlet characters χ1, χ2, χ3,

consider the convergent series

(3.5) L2(s1, s2, s3, χ1, χ2, χ3;A2) =

∞∑
m,n=1

χ1(m)χ2(n)χ3(m+ n)

ms1ns2(m+ n)s3
.

Theorem B. For k ∈ Z≥2 and a primitive Dirichlet character χ of conductor

f such that (−1)kχ(−1) = 1,

(3.6) L2(k, k, k, χ, χ, χ;A2) =
(−1)3k+3

6

(
(2πi)k

k!fk
g(χ)

)3

Bk,k,k,χ,χ,χ(A2),

where Bk1,k2,k3,χ1,χ2,χ3
(A2) is a multiple generalized Bernoulli number (defined later).

In particular, for the quadratic character of conductor 5, namely ρ5(1) = ρ5(4) = 1 and

ρ5(2) = ρ5(3) = −1, we have

(3.7) L2(2, 2, 2, ρ5, ρ5, ρ5;A2) =
(−1)6+3

6

(
(2πi)2

2!52

√
5

)3(
− 28

125

)
= − 112

√
5

1171875
π6.
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This should be compared with

(3.8)

L(k, χ) =
(−1)k+1

2

(2πi)k

k!fk
g(χ)Bk,χ,

L(2, ρ5) =
(−1)2+1

2

(2πi)2

2!52

√
5

4

5
=

4
√

5

125
π2.

Theorems A and B are special cases of our main theorems. In the following sections,

we will formulate those theorems.

Remark. Tornheim [33] already showed that for a, b, c ∈ N, ζ2(a, b, c, 0, 0;A2) can

be expressed as a polynomial in Riemann zeta values with Q-coefficients if a + b + c

is odd. On the other hand, it seems difficult to treat the case when a + b + c is even.

Actually, in [7], it is stated that only the following four cases can be evaluated in terms

of Riemann zeta values: (a, b, c) = (1, 1, N − 2), (j,N − j − 1, 1), (N/3, N/3, N/3) and

(N/3, N/3− 1, N/3 + 1), where N ∈ Z≥3 is even and j ∈ Z≥1. Hence, for example, it is

unknown whether the case (2p, 2q, 2r) can be evaluated, except for the case p = q = r.

Especially, as for the double zeta value ζ2(a, 0, b, 0, 0;A2) where a + b is even, it is

unknown whether it can be evaluated in terms of Riemann zeta values if a + b ≥ 8,

except for the case a = b or a = 1 (see [1, Section 4]).

§ 4. Root Systems

Now we start to describe our general theory. First, for reader’s convenience, we

give the definition and several examples of root systems.

§ 4.1. Definitions

Let V be an r dimensional real vector space equipped with the inner product 〈·, ·〉.
A root system ∆ ⊂ V is a set of vectors (roots) satisfying

1. |∆| <∞ and 0 6∈ ∆,

2. σα∆ = ∆ for all α ∈ ∆,

3. 〈α∨, β〉 ∈ Z for all α, β ∈ ∆,

4. α, cα ∈ ∆ for c ∈ R =⇒ c = ±1,

where σα denotes the reflection with respect to the hyperplane Hα orthogonal to α and

α∨ = 2α/〈α, α〉 (coroot). A root system ∆ is called irreducible if it cannot be partitioned

into the union of two proper subsets such that each root in one set is orthogonal to each

root in the other.
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Let W be the Weyl group (the group generated by all σα). Let {α1, . . . , αr} be

the set of all fundamental roots (a basis by which any α ∈ ∆ can be written as α =

c1α1 + · · · + crαr ∈ ∆, ci ∈ Z with all ci ≥ 0 or all ci ≤ 0). Let ∆+ be the set

of all positive roots (all roots α = c1α1 + · · · + crαr ∈ ∆, ci ∈ Z with all ci ≥ 0),

ρ = 1
2

∑
α∈∆+

α. Let Q =
⊕r

i=1 Zαi be the root lattice, Let P =
⊕r

i=1 Zλi (the weight

lattice) and P+ =
⊕r

i=1 Z≥0λi, where {λ1, . . . , λr} is the dual basis of {α∨1 , . . . , α∨r }.

§ 4.2. Examples

Since we mainly treat coroots in this paper, we give examples of root systems in

terms of coroots. Note that if ∆ is a root system, then ∆∨ = {α∨ | α ∈ ∆} is also a

root system.

There is only one root system of rank 1, that is, of type A1 and there are four root

systems of rank 2, that is, of type A1×A1, A2, C2 (or B2) and G2 (roots in the shaded

region are positive):

A1 A1 ×A1 A2 C2 (or B2) G2

α∨1

α∨1

α∨2

α∨1

α∨2

α∨1

α∨2

α∨1

α∨2

∆∨+ = {α∨1 } {α∨1 , α∨2 }

{
α∨1 , α

∨
2

α∨1 + α∨2

} {
α∨1 , α

∨
1 + α∨2

α∨2 , α
∨
1 + 2α∨2

} 

α∨1 , α
∨
1 + α∨2

α∨2 , α
∨
1 + 2α∨2

α∨1 + 3α∨2

2α∨1 + 3α∨2


§ 5. Zeta-Functions of Root Systems

§ 5.1. Witten Zeta-Functions

As prototypes of zeta-functions of root systems, we give the definition of Witten

zeta-functions.

Definition 5.1 (Witten zeta-functions [36,37]). For a complex simple Lie alge-

bra g with the root system ∆,

(5.1) ζW (s; ∆) =
∑
ϕ

(dimϕ)−s = K(∆)s
∑
λ∈P+

∏
α∈∆+

1

〈α∨, λ+ ρ〉s
,

where the summation runs over all finite dimensional irreducible representations ϕ on

the second member of the above and K(∆) ∈ Z≥1 is a constant.
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Note that in the second equality in Definition 5.1, we have used Weyl’s dimension

formula.

We also use the notation

(5.2) ζW (s;Xr) = ζW (s; ∆)

if ∆ is of type Xr.

Example 5.2. From the second expression of Definition 5.1, we obtain the ex-

plicit forms of Witten zeta-functions as follows in the A1, A2, C2 cases:

ζW (s;A1) =
∞∑
m=1

1

ms
= ζ(s),

m

ζW (s;A2) = 2s
∞∑

m,n=1

1

msns(m+ n)s
, m

n m+ n

ζW (s;C2) = 6s
∞∑

m,n=1

1

msns(m+ n)s(m+ 2n)s
. m

n m+ n

m+ 2n

Comparing these with Section 4.2, we observe that each factor of the form am + bn

(a, b ∈ Z≥0) in the denominators corresponds to the coroot of the form aα∨1 + bα∨2 .

§ 5.2. Zeta-Functions of Root Systems

Definition 5.3 (Zeta-functions of root systems [11,15,17,28]). For a root sys-

tem ∆, define

(5.3) ζr(s,y; ∆) =
∑
λ∈P+

e2πi〈y,λ+ρ〉
∏
α∈∆+

1

〈α∨, λ+ ρ〉sα
,

where s = (sα)α∈∆+
∈ C|∆+| and y ∈ V .

As in the case of Witten zeta-functions, we may write

(5.4) ζr(s,y; ∆) = ζr(s,y;Xr)

if ∆ is of type Xr. It is easy to see that (5.3) with y = 0 is essentially a multi-variable

version of Witten zeta-functions. Indeed we see that ζW (s; ∆) = K(∆)sζr((s, ..., s),0; ∆).

To define an action of the Weyl group, we extend s = (sα)α∈∆+ to (sα)α∈∆ by

sα = s−α and define (ws)α = sw−1α. Then we have our first theorem.
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Theorem 5.4 ([17]). For s = k = (kα)α∈∆+
∈ Z|∆+|

≥2 , we have

(5.5)∑
w∈W

( ∏
α∈∆+∩w∆−

(−1)kα
)
ζr(w

−1k, w−1y; ∆) = (−1)|∆+|P(k,y; ∆)

( ∏
α∈∆+

(2πi)kα

kα!

)
,

where P(k,y; ∆) is a multiple periodic Bernoulli function (defined later).

Example 5.5. If Xr = A1, noting that W = {id, σα}, we have (2.7).

§ 6. Special Zeta-Values

Theorem 5.4 immediately implies the following theorem:

Theorem 6.1 ([17]). For k = (kα)α∈∆+ ∈ (2Z≥1)|∆+| satisfying w−1k = k for

all w ∈W (i.e. kα = kβ if α and β are of the same length),

(6.1) ζr(k,0; ∆) =
(−1)|∆+|

|W |
P(k,0; ∆)

( ∏
α∈∆+

(2πi)kα

kα!

)
∈ Qπ|k|

where |k| =
∑
α∈∆+

kα.

Example 6.2. If Xr = A1, we have

(6.2) ζ(k) =
−1

2
Bk

(2πi)k

k!
∈ Qπk (k ∈ 2Z≥1).

In particular, k = (k)α∈∆+ with k ∈ 2Z≥1 (that is, all kα = k) satisfies the

condition in Theorem 2. In this case, ζr(k,0; ∆) ∈ Qπ|∆+|k was shown by Witten and

Zagier. In our method, the rational factor is explicitly evaluated via the generating

function. Our statement is indeed a non-trivial generalization of their results since we

also have for example,

ζ2((2, 4, 4, 2),0;C2) =
∞∑

m,n=1

1

m2n4(m+ n)4(m+ 2n)2

=
(−1)4

222!

53

1513512000

(
(2πi)2

2!

)2(
(2πi)4

4!

)2

=
53π12

6810804000
.

(6.3)

§ 7. Multiple Periodic Bernoulli Functions

In this section, we give the definition of generating functions of multiple periodic

Bernoulli functions. Let V be the set of all R-bases V ⊂ ∆+ and let V∨ = {β∨}β∈V. Let
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V∗ = {µV
β }β∈V be the dual basis of V∨. Let Q∨ =

⊕r
i=1 Zα∨i be the coroot lattice and

L(V∨) =
⊕

β∈V Zβ∨, which is a sublattice of Q∨ with finite index (|Q∨/L(V∨)| <∞).

Fix a certain φ ∈ V and define a multiple generalization of the notion of “fractional

part” of y ∈ V as

(7.1) {y}V,β =

{〈y, µV
β 〉} (〈φ, µV

β 〉 > 0),

1− {−〈y, µV
β 〉} (〈φ, µV

β 〉 < 0).

Using these definitions, we have

Definition 7.1 (The generating function [12,16,17]). For t = (tα)α∈∆+
∈ C|∆+|,

F (t,y; ∆) =
∑
V∈V

( ∏
γ∈∆+\V

tγ
tγ −

∑
β∈V tβ〈γ∨, µV

β 〉

)
× 1

|Q∨/L(V∨)|
∑

q∈Q∨/L(V∨)

(∏
β∈V

tβ exp(tβ{y + q}V,β)

etβ − 1

)
.

(7.2)

It can be shown that the generating function F (t,y; ∆) is holomorphic in the

neighborhood of the origin in t.

Definition 7.2 (Multiple periodic Bernoulli functions [12,16,17]). We define mul-

tiple periodic Bernoulli functions P(k,y; ∆) by the coefficients of the Taylor expansion

(7.3) F (t,y; ∆) =
∑

k∈Z
|∆+|
≥0

P(k,y; ∆)
∏
α∈∆+

tkαα
kα!

.

Example 7.3. If Xr = A1, we have

(7.4) F (t, y) =
tet{y}

et − 1
=
∞∑
k=0

Bk({y}) t
k

k!
.

From this example, we see that P(k,y; ∆) can be regarded as natural generaliza-

tions of Bk({y}).

§ 8. An Example: A2 Case

We calculate a multiple periodic Bernoulli function and its generating function in

the case of the root system of type A2.

We have the basic data as follows:

∆∨+ = {α∨1 , α∨2 , α∨1 + α∨2 }, V = {V1,V2,V3},
t = (tα1 , tα2 , tα1+α2) = (t1, t2, t3),

y = y1α
∨
1 + y2α

∨
2 ,

α∨1

α∨2 α∨1 + α∨2

where V1 = {α1, α2}, V2 = {α1, α1+α2} and V3 = {α2, α1+α2}. By definition, we also
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have V∨1 = {α∨1 , α∨2 }, V∨2 = {α∨1 , α∨1 + α∨2 }, V∨3 = {α∨2 , α∨1 + α∨2 } and V∗1 = {λ1, λ2},
V∗2 = {λ1−λ2, λ2}, V∗3 = {λ2−λ1, λ1}. Fix a sufficiently small ε > 0 and φ = α∨1 +εα∨2 .

Then by Definition 7.1 and using these data, we have the generating function as

F (t,y;A2) =
t3

t3 − t1 − t2
t1e

t1{y1}

et1 − 1

t2e
t2{y2}

et2 − 1
(8.1a)

+
t2

t2 + t1 − t3
t1e

t1{y1−y2}

et1 − 1

t3e
t3{y2}

et3 − 1
(8.1b)

+
t1

t1 + t2 − t3
t2e

t2(1−{y1−y2})

et2 − 1

t3e
t3{y1}

et3 − 1
,(8.1c)

where (8.1a), (8.1b) and (8.1c) correspond to V1, V2 and V3 respectively. Note that

in this case, L(V∨1 ) = L(V∨2 ) = L(V∨3 ) = Q∨ and the second sum of (7.2) is trivial.

For k = 2 = (2, 2, 2), expanding the right-hand side of (8.1a)–(8.1c), we find that

the multiple periodic Bernoulli function is

(8.2) P(2, (y1, y2);A2) =
1

3780
+

1

90
({y1} − {y1 − y2} − {y2})

+
1

90
(−{y1}2 − 2{y1 − y2}{y1}+ {y1 − y2}2 − {y2}2 + 2{y1 − y2}{y2})

+
1

18
(−{y1}3 + 3{y1 − y2}{y1}2 + 3{y2}3 + 3{y1 − y2}{y2}2)

+
1

18
({y1}4 − 2{y1 − y2}{y1}3 − 3{y1 − y2}2{y1}2

− 5{y2}4 − 10{y1 − y2}{y2}3 − 3{y1 − y2}2{y2}2)

+
1

30
({y1}5 − 5{y1 − y2}{y1}4 + 10{y1 − y2}2{y1}3

+ 5{y2}5 + 15{y1 − y2}{y2}4 + 10{y1 − y2}2{y2}3)

+
1

30
(−{y1}6 + 4{y1 − y2}{y1}5 − 5{y1 − y2}2{y1}4

− {y2}6 − 4{y1 − y2}{y2}5 − 5{y1 − y2}2{y2}4).

By Theorem 5.4, we have a functional relation in y1, y2 corresponding to this multiple

periodic Bernoulli function:

(8.3) ζ2(2, (y1, y2);A2) + ζ2(2, (−y1 + y2, y2);A2) + ζ2(2, (y1, y1 − y2);A2)

+ ζ2(2, (−y2, y1 − y2);A2) + ζ2(2, (−y1 + y2,−y1);A2) + ζ2(2, (−y2,−y1);A2)

= (−1)3P(2, (y1, y2);A2)
(2πi)6

(2!)3
.

In particular if (y1, y2) = (0, 0), then

(8.4) ζ2(2, (0, 0);A2) =
1

6
(−1)3 1

3780

(2πi)6

(2!)3
=

π6

2835
.
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Example 8.1. If Xr = A1, we have

(8.5) ζ(2) =
1

2
(−1)

1

6

(2πi)2

2!
=
π2

6
, B2({y}) =

1

6
− {y}+ {y}2.

§ 9. Multiple Bernoulli Polynomials

In the classical theory, Bernoulli polynomials can be derived by the analytic con-

tinuation of periodic Bernoulli functions. We explain this fact. Let H = {y ∈ R | {y} ∈
Z} = Z (discontinuous points of {y}). Let R \H =

∐
ν∈Z D

(ν), where D(ν) = (ν, ν + 1).

From each D(ν) to C, the function B({y}) is analytically continued to a polynomial

function B
(ν)
k (y) = Bk(y − ν) ∈ Q[y].

0 1

D(0) = (0, 1)

0 1 0 1

R \ H =
∐
ν∈J D

(ν) Bk({y}) B
(0)
k (y) = Bk(y)

A similar procedure works well in general cases and we can define multiple gener-

alizations of Bernoulli polynomials. Let

(9.1) H =
⋃

V∈V

⋃
q∈Q∨

⋃
β∈V

{y ∈ V | {y + q}V,β ∈ Z}

(discontinuous points of {y + q}V,β appearing in the

generating function). Let

(9.2) V \ H =
∐
ν∈J

D(ν),

0

α∨1

α∨2

A2 case

where D(ν) is an open connected component and J is a set of indices.

The above figure is the situation in the A2 case, where lines are H and open triangles

are D(ν). For example, {y + q}V1,α1
= {〈y1α

∨
1 + y2α

∨
2 + q, λ1〉} = {y1} ∈ Z gives the

lines parallel to α∨2 .

Theorem 9.1 ([12,16,17]). From each region D(ν) to the whole space C ⊗ V ,

P(k,y; ∆) is analytically continued in y to a polynomial function B(ν)
k (y; ∆) ∈ Q[y] of

total degree at most |k|, where y =
∑r
n=1 ynα

∨
n .

§ 9.1. An Example: A2 Case

The Bernoulli polynomial B(0)
2 (y;A2) is obtained by the analytic continuation of

the periodic Bernoulli function P(2,y;A2) from the region D(0), which is the shaded

triangle region in the figure below.
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0

V \ H =
∐
ν∈J D

(ν) P(2,y;A2) B(0)
2 (y;A2)

(Periodic Bernoulli function) (Bernoulli polynomial)

The explicit form of the Bernoulli polynomial B(0)
2 (y;A2) is given, simply by re-

moving all curly brackets from (8.2), as follows:

(9.3) B(0)
2 (y;A2) =

1

3780
+

1

45
(y1y2 − y2

1 − y2
2) +

1

18
(3y1y

2
2 − 3y2

1y2 + 2y3
1)

+
1

9
(−2y1y

3
2 − 3y2

1y
2
2 + 4y3

1y2 − 2y4
1 + y4

2)

+
1

30
(−5y1y

4
2 + 10y2

1y
3
2 + 10y3

1y
2
2 − 15y4

1y2 + 6y5
1)

+
1

30
(6y1y

5
2 − 5y2

1y
4
2 − 5y4

1y
2
2 + 6y5

1y2 − 2y6
1 − 2y6

2) ∈ Q[y].

§ 9.2. Further Examples: C2, G2 Cases

The following graphs in the upper (resp. lower) row are of type C2 (resp. G2).



Multiple Bernoulli polynomials and multiple L-functions of root systems 13

We summarize what we have obtained: We have constructed periodic Bernoulli

functions so that they describe functional-relations in y of multiple zeta-functions of

root systems, which can be calculated by use of the generating function; Bernoulli

polynomials are obtained by the analytic continuation of periodic Bernoulli functions.

§ 10. L-Functions of Root Systems

We give another application of periodic Bernoulli functions or equivalently Bernoulli

polynomials. For this purpose, we define an L-analogue of zeta-functions of root systems.

Definition 10.1 (L-functions of root systems [12,16]). For a root system ∆, de-

fine

(10.1) Lr(s,χ; ∆) =
∑
λ∈P+

∏
α∈∆+

χα(〈α∨, λ+ ρ〉)
〈α∨, λ+ ρ〉sα

,

where χ = (χα)α∈∆+
is a set of primitive Dirichlet characters of conductors fα ∈ Z≥1.

We extend χ = (χα)α∈∆+ to (χα)α∈∆ by χα = χ−α and define (wχ)α = χw−1α.

Then we have value-relations of L-functions.

Theorem 10.2 ([12,16]). For s = k = (kα)α∈∆+
∈ Z|∆+|

≥2 , we have

(10.2)
∑
w∈W

( ∏
α∈∆+∩w∆−

(−1)kαχα(−1)
)
Lr(w

−1k, w−1χ; ∆)

= (−1)|∆+|
( ∏
α∈∆+

χα(−1)g(χα)
(2πi)kα

kα!fkα

)
Bk,χ(∆),

where Bk,χ(∆) is a multiple generalized Bernoulli number (defined later).
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Example 10.3. If Xr = A1, we have the classical result

(10.3) L(k, χ) + (−1)kχ(−1)L(k, χ) = −χ(−1)g(χ)
(2πi)k

k!fk
Bk,χ,

where Bk,χ is the genealized Bernoulli number given in (2.10). As for the traditional

account of this formula, see [3, chapter 1] for example.

§ 11. Special L-Values

Theorem 10.2 immediately implies a formula for special values of L-functions:

Theorem 11.1 ([12,16]). For k ∈ (Z≥2)|∆+| and χ such that w−1k = k, w−1χ =

χ for all w ∈W and (−1)kαχα(−1) = 1 for all α ∈ ∆+, we have

(11.1) Lr(k,χ; ∆) =
(−1)|k|+|∆+|

|W |

( ∏
α∈∆+

(2πi)kα

kα!fkαα
g(χα)

)
Bk,χ(∆).

Example 11.2. If Xr = A1, we have

(11.2) L(k, χ) =
(−1)k+1

2

(2πi)k

k!fk
g(χ)Bk,χ.

Example 11.3. Let ρ7 be the Dirichlet character of conductor 7 defined by

ρ7(1) = ρ7(6) = 1, ρ7(2) = ρ7(5) = e2πi/3, ρ7(3) = ρ7(4) = e4πi/3. Then the associated

Gauss sum is g(ρ7) = 2
(
cos(2π/7) + e2πi/3 cos(4π/7) + e4πi/3 cos(6π/7)

)
and we have

(11.3) L2((2, 4, 4, 2), (1, ρ7, ρ7, 1);C2) =

∞∑
m,n=1

ρ7(n)ρ7(m+ n)

m2n4(m+ n)4(m+ 2n)2

=
(−1)12+4

222!

(
(2πi)2

2!

)2(
(2πi)4

4!74
g(ρ7)

)2(
69967019

6988350600
+

102810289
√
−3

6988350600

)
= g(ρ7)2π12

(
69967019

181289027372537700
+

102810289
√
−3

181289027372537700

)
.

Example 11.4. Let ρ5 be the quadratic character of conductor 5 given in The-

orem B. Then we have

L2((2, 2, 2, 2), (ρ5, ρ5, ρ5, ρ5);C2) =
92

29296875
π8;(11.4)

L3((2, 2, 2, 2, 2, 2), (ρ5, ρ5, ρ5, ρ5, ρ5, ρ5);A3) = − 1856

213623046875
π12.(11.5)

The latter can be regarded as a character analogue of the formula in [6, Prop. 8.5].
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§ 12. Multiple Generalized Bernoulli Numbers

The generating function of multiple generalized Bernoulli numbers is given in terms

of that of multiple Bernoulli polynomials as in the classical theory.

Definition 12.1 (The generating function [12,16]). For t = (tα)α∈∆+ ,

(12.1) G(t,χ; ∆) =

fα∑
aα=1
α∈∆+

( ∏
α∈∆+

χα(aα)

fα

)
F (f t,y(a; f); ∆),

where F (t,y; ∆) is the generating function of multiple periodic Bernoulli functions in

Definition 7.1 and f t = (fαtα)α∈∆+ , y(a; f) =
∑
α∈∆+

aαα
∨/fα.

Definition 12.2 (Multiple generalized Bernoulli numbers [12,16]). We define mul-

tiple generalized Bernoulli numbers Bk,χ(∆) by the coefficients of the Taylor expansion

(12.2) G(t,χ; ∆) =
∑

k∈Z
|∆+|
≥0

Bk,χ(∆)
∏
α∈∆+

tkαα
kα!

.

We note that Bk,χ(∆) can be written in terms of multiple periodic Bernoulli func-

tions as

(12.3) Bk,χ(∆) =
( ∏
α∈∆+

fkα−1
α

) fα∑
aα=1
α∈∆+

( ∏
α∈∆+

χα(aα)
)
P(k,y(a; f); ∆).

Example 12.3. If Xr = A1, we have the generating function

(12.4) G(t, χ) =

f∑
a=1

χ(a)

f
F (ft, a/f) =

f∑
a=1

χ(a)

f

fteft{a/f}

eft − 1
=
∞∑
k=0

Bk,χ
tk

k!
.

Theorem 12.4 ([12,16]). Assume that ∆ is irreducible. Moreover assume that

fα > 1 if ∆ is of type A1. Then for w ∈W , we have

(12.5) Bw−1k,w−1χ(∆) =
( ∏
α∈∆+∩w∆−

(−1)kαχα(−1)
)
Bk,χ(∆).

Hence Bk,χ(∆) = 0 if there exists an element w ∈Wk ∩Wχ such that

(12.6)
∏

α∈∆+∩w∆−

(−1)kαχα(−1) 6= 1,

where Wk and Wχ are the stabilizers of k and χ respectively.
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Example 12.5. If Xr = A1, we have

(12.7) Bk,χ = 0 if (−1)kχ(−1) 6= 1.

Several other properties in the classical theory such as

F (t, y) = F (−t,−y) for y ∈ R \ Z, Bk(1− y) = (−1)kBk(y),
1

t

∂

∂y
F (t, y) = F (t, y)

can be reinterpreted in terms of root systems and Weyl groups.

§ 13. Zeta-Functions for Lie Groups

Recall that volume formulas are associated with all connected compact semisimple

Lie groups. It is known that there is one-to-one correspondence between finite di-

mensional representations of complex semisimple Lie algebra g and those of connected

simply-connected compact semisimple Lie group G. In the cases of general compact

semisimple Lie groups, we need analytically integral forms L for a maximal torus of G,

which satisfies Q ⊂ L ⊂ P .

Definition 13.1 (Zeta-functions of Lie groups). For a connected compact semisim-

ple Lie group G,

(13.1) ζr(s,y;G) =
∑

λ∈L∩P+

e2πi〈y,λ+ρ〉
∏
α∈∆+

1

〈α∨, λ+ ρ〉sα
.

Lemma 13.2.

(13.2) ζr(s,y;G) =
∑

µ∈P∨/Q∨
ι̂L+ρ(µ)ζr(s,y + µ; ∆),

where ι̂L+ρ : P∨/Q∨ → C is the Fourier transformation of the characteristic function

of L+ ρ given by

(13.3) ι̂L+ρ(µ) =
1

|P/Q|
∑

λ∈(L+ρ)/Q

e−2πi〈µ,λ〉.

Note that this expression plays the same role as the finite Fourier transformation

of the Dirichlet character (see [35, Lemma 4.7]) in the theory of Dirichlet L-functions,

whose origin is the study of prime numbers satisfying congruence conditions. In fact,

our ζr(s,y;G) is a kind of Dirichlet series with congruence conditions (see (13.8) as an

example).

In the A1 case with L = Q, Lemma 13.2 implies

(13.4)

∞∑
m=0

e2πi(2m+1)y

(2m+ 1)s
=

∞∑
m=0

1

2

e2πi(m+1)y

(m+ 1)s
+

∞∑
m=0

−1

2

e2πi(m+1)(y+ 1
2 )

(m+ 1)s
.
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Lemma 13.3. For µ ∈ P∨/Q∨, we have

(13.5) ι̂L+ρ(µ) =
(−1)〈µ,2ρ〉

|π1(G)|
δL∗/Q∨(µ) ∈ {−1, 0, 1}

|π1(G)|
⊂ Q,

where π1(G) denotes the fundamental group of G and

(13.6) δL∗/Q∨(µ) =

{
1 (µ ∈ L∗/Q∨),

0 (µ /∈ L∗/Q∨).

Noting P/L ' L∗/Q∨ ' π1(G), we have the following, where G may not be simply-

connected.

Theorem 13.4 ([22]). For k = (kα)α∈∆+ ∈ (2Z≥1)|∆+| satisfying w−1k = k

for all w ∈W , and ν ∈ P∨/Q∨ (a central element of G), we have

(13.7) ζr(k, ν;G) =
(−1)|∆+|

|W |
P(k, ν;G)

( ∏
α∈∆+

(2πi)kα

kα!

)
∈ Qπ|k|.

As an example, we obtain for the projective unitary group PU(3),

ζ2(2,0;PU(3)) =
∞∑

m,n=1
m≡n (mod 3)

1

m2n2(m+ n)2

=
∑

2m−n,2n−m>0

1

(2m− n)2(2n−m)2(m+ n)2

=
(−1)3

3!

187

918540

( (2πi)2

2!

)3

=
187π6

688905
.

(13.8)

Remark. Originally, Witten zeta-functions represent the volumes of certain mod-

uli spaces. Introducing multi-variable generalizations, we find some new applications.

For example, we give a new interpretation of the shuffle product in the theory of Euler-

Zagier multiple zeta values [19] and evaluate a class of Euler-Zagier multiple zeta val-

ues [20, 23]. However the geometric meaning of special values of zeta-functions of root

systems is yet to be clarified.

§ 14. An Integral Representation

This section is based on the results by the first author in [9,10]. So far, we focused on

special values on the region of convergence. On the other hand, analytic continuations

enable us to discuss special values on the whole space in s.
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The analytic continuations of general multiple zeta-functions were already obtained

by Lichtin [24], Essouabri [4, 5], Matsumoto [25, 26], de Crisenoy [2], etc. (See [27] for

an elaborated survey on the analytic continuations of multiple zeta-functions.) However

we give yet another method which is a generalization of the formula

(14.1) ζ(s) =
∞∑
n=1

1

ns
=

1

Γ(s)(e2πis − 1)

∫
C

zs−1

ez − 1
dz (C: Hankel contour).

Let N,R be positive integers. For ξ = (ξ1, . . . , ξR) ∈ CR, a = (a1, . . . , aN ), s =

(s1, . . . , sN ) ∈ CN and b = (bij)1≤i≤N,1≤j≤R ∈ CN×R, consider the multiple series

(14.2) ζ(ξ,a, b, s) =
∞∑

m1=0

· · ·
∞∑

mR=0

eξ1m1 · · · eξRmR
(a1 + b11m1 + · · ·+ b1RmR)s1 · · · (aN + bN1m1 + · · ·+ bNRmR)sN

.

Theorem 14.1 ([9, 10]).

(14.3) ζ(ξ,a, b, s) =
1

Γ(s1) · · ·Γ(sN )

∏
t∈S

1

e2πit(s) − 1
×

∫
Σ

e(b11+···+b1R−a1)z1 · · · e(bN1+···+bNR−aN )zN zs1−1
1 · · · zsN−1

N

(ez1b11+···+zNbN1 − eξ1) · · · (ez1b1R+···+zNbNR − eξR)
dz1 ∧ · · · ∧ dzN ,

where Σ is a union of certain surfaces and S is a set of certain linear functionals on

CN .

If bij > 0 for all i, j satisfying 1 ≤ i ≤ N , 1 ≤ j ≤ R, then this integral repre-

sentation can be derived by use of Shintani’s result [30]. In fact, Theorem 14.1 is a

refinement of his integral representation.

Setting ξi = 0, aα = 〈α∨, ρ〉 and bαi = 〈α∨, λi〉 for α ∈ ∆+ and 1 ≤ i ≤ R = r,

we obtain integral representations of zeta-functions of root systems. In this setting,

from the integrand, we can construct generating functions of Bernoulli numbers for

nonpositive domain.

§ 15. Possibilities of Elliptic Generalizations

Lastly we give two possibilities of “elliptic” generalizations by regarding ζr(s,y; ∆)

as “rational” or “trigonometric” versions.

The first is an Eisenstein analogue. Let k > 2 be an integer, (x, y) ∈ R2 \ Z2 and

τ ∈ C with =τ > 0. The Eisenstein series is defined by

(15.1) Gk(τ ;x, y) =
∑

(m,n)∈Z2\{(0,0)}

e2πi(mx+ny)

(m+ nτ)k
.
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We define Hk(x, y; τ) by

(15.2) e2πixt θ
′(0; τ)θ(t+ xτ − y; τ)

θ(t; τ)θ(xτ − y; τ)
=
∞∑
k=0

Hk(x, y; τ)
(2πi)ktk−1

k!
,

where t ∈ C with |t| < ε for sufficiently small ε > 0 and θ(z; τ) is the Jacobi theta

function defined by

(15.3) θ(z; τ) = −i
∑
n∈Z

exp
(
πi
(
n+

1

2

)2

τ + 2πi
(
n+

1

2

)
z + πin

)
for z ∈ C. Then we have the following, which can be regarded as an elliptic analogue

of the result on the zeta-function of root system of type A1 given in (2.7).

Proposition 15.1 (Katayama [8]). For k ∈ Z≥2, we have

(15.4) Gk(τ ;x, y) = −Hk(x, y; τ)
(2πi)k

k!
.

From this viewpoint, it is desirable to develop a theory on elliptic analogues of

the results on zeta-functions of root systems mentioned in the previous sections, by

constructing corresponding Eisenstein series. For example, we hope to extend (15.4) to

that associated with root systems.

The second is a q-analogue. Instead of Weyl’s dimension formula, we employ the

character formula. For q = e−2πi/τ , s, z ∈ C with <z > 0 and x ∈ R, define

(15.5)

ζq(s, z;x) =
∞∑
m=1

e2πimxqmz

[m]sq
, [m]q =

1− qm

1− q
, [m]q! = [m]q[m− 1]q · · · [1]q.

Let

(15.6) ψ(t) =
τ

2πi

e2πit/τ − 1

e2πitz/τ
= t+O(t2)

be a local coordinate around the origin. Define Qk(x, y, z; τ) by

(15.7) e2πixt θ
′(0; τ)θ(t+ xτ − y; τ)

θ(t; τ)θ(xτ − y; τ)
=
∞∑
k=0

Qk(x, y, z; τ)
(2πi/τ

1− q

)kψ′(t)ψ(t)k−1

[k]q!
.

Then

Theorem 15.2. For k ∈ N, 0 < z < 1 and x, y ∈ R with y + kz ∈ Z, we have

(15.8) ζq(k, k(1− z);x) + (−1)kζq(k, kz;−x) = −Qk(x, y, z; τ)
1

[k]q!
.
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This is a q-analogue of (2.7). Not only the result, but also the proof can be done

analogously. In fact, formula (2.7) can be shown by a residue calculus on the space C.

Similarly, we can prove Theorem 15.2 employing the space C/τZ.

In particular, from this formula, we have for τ = i,

(15.9) ζq(2, 1; 0) = (1− e−2π)2π − 3

24π
, ζq(4, 2; 0) = (1− e−2π)4 30π3 − 11π4 + 3$4

1440π4
,

where $ is the lemniscate constant defined by

(15.10) $ = 2

∫ 1

0

dx√
1− x4

.

By aid of generalizations of Eisenstein series, these special values are also calculated

in [21].

We hope that generalizations of the above will be constructed in arbitrary root

systems.
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