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1 Introduction

The Cauchy numbers of the first kind, denoted by ¢, ([5]), are defined by the
integral of the falling factorial:

cn:/olx(:v—l)...(x—n+1)dx.

The generating function of the Cauchy numbers of the first kind ¢,, is given
by
x = "
In(l1+4z) ;C"H

([23]).

Cauchy numbers are not so famous, though they seem to have similar
properties to those of the Bernoulli numbers. The classical Bernoulli numbers
B,, are defined by the generating function

x = " 1
= B,— B =—|.
er —1 nZ:o n! ( ! 2)
Before the terminology of Cauchy numbers appeared in Comtet’s book

([5]), the concept of the Cauchy numbers was first introduced by Norlund
([24, pp.146-147]) in 1924. Here, the higher order Bernoulli numbers By

are defined by
z \'_ Zoo (T
(ex — 1) B, " (|z| < 2m)

n=0
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See also [8, p.257,p.259]. Then

B :/Ol(x—l)(:c—2)-~(x—n)da:

1
B£T1:—”/ z(x—1)--(z —n)dr.
0

Hence, ¢, = —B{"™Y /(n —1). Ch. Jordan studied the Bernoulli numbers of
the second kind b, ([13, p.131]), defined by

by = (1) = b 0) = [ 1 (0},

Hence, b, = ¢,/n!. In 1961 Carlitz ([4]) introduced the numbers (3,,, defined
by

1—|—x ;ﬁ"n'

Namely, 3, = c,.

Cauchy numbers and Bernoulli numbers are much related to the Stirling
numbers of the first kind and of the second kind. The (unsigned) Stirling
numbers of the first kind [;ﬂ arise as coefficients of the rising factorial

n

x(m—kl)...(m—kn—l)zz [:J ™.

m=0

The Stirling numbers of the second kind {;:L} are determined by

{"- %g—w@) om— )"

There are many identities about the Bernoulli numbers. They are much
related to the (unsigned) Stirling numbers of the first kind ["] and the



Stirling numbers of the second kind {:Z} Some of them are
1 o n+1 1
—_ —1)™ Bm = y
n! mZ:O( ) [m + 1] n+1
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m=0

The corresponding identities of the classical Cauchy numbers are
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2 Polylogarithms

The k-th polylogarithm function is defined by
= "
Li —.
lk mz m

The k-th polylogarithm factorial function is defined by

oo xm

Lify,(z) = Zom

For k > 2 p
SO - .
Lig(z) :/ —lkfl( )dt;
0 t
on the other hand,
d . .
%(xLlfk(m)) = Lify_1(x),
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1 T
0



In special, for £ = 0,1 we have

Lig(z) = = ~, Lij(2) = ~In(1 - 2)
and
Lifo(z) = €*, Lifi(z) = (" —1)/z.
For k = —r we have
) 1 "/ i
Ll_r($):mz<>$ J (7":0,1,2,...)
=0 \J
([3]), where

are the Eulerian numbers.
On the other hand, for £ = —r we have

r 1 '
Lifr(:n):ezZ{;il}x] (r=0,1,2,...).

Jj=0

We have the record for the first some values r.

1+ 152 + 2522 + 102° + z*)e”,
1+ 31x + 902% 4 652° + 152* + 2°)e”.

Lifo(x) = €*,
Lif q(z) = (1 + x)e”,
Lif 5(z) = (1 + 3z + 2%)e”,
Lif_s(z) = (1 + 7o + 62% + 2%)e”,
(z) = (
() = (

Lip(1 —e™®) < "
A S A N 1 pay
1— e Z

When k = 1, BY" is the classical Bernoulli number with Bgl) =1/2.



Recently, we [19] introduced the poly-Cauchy numbers b by

Lif,(In(1 + ) Zc“f

When k =1, ) = ¢y, 1s the classical Cauchy number.
Poly-Cauchy numbers of the first kind M may be defined by

1 1
cff):/.../ (129 ... xp) (X129 . .. ), — 1)
0 0
k

c(rxe .o —n+ 1)drydey .. dxy

In addition, poly-Cauchy numbers of the second kind & are defined by

1 1
@gf):/ / (—x129 ... x) (2129 . .. T, — 1)
0 0

—_——
k

o (—mme ...k — n+ 1)drydas ... dxy .

The generating function of the poly-Bernoulli numbers are written in
terms of iterated integrals:

e’ ol Tl
de .. . dr = B(k
ef”—l/o e’ —1 /Oeﬂ”—lxxm == Z

v~

k—1
An explicit formula for Bflk) is given by
a —1)"m!
B® = (—1) {”}<— >0,k>1). 1
O=cr S {0 Gy 20k 1)

The generating function of the poly-Cauchy numbers can be also written
in the form of iterated integrals:

1 v 1 ¢ 1
de...d
ln(1+:c)/0 (1+2)In(1 + 2) /0 (1+)In(1+x) e

g

k-1




An explicit formula for e i given by

B = (—1)n Y [;} % (2)

m=0

There are some relations between poly-Cauchy numbers and poly-Bernoulli
numbers.

Theorem 1. Forn > 1 we have

n n _1
a =35 m {7 e

=1 m=1
T als
n e m)! ml L1 Lo

3 Duality theorem

It is known that the duality theorem holds for poly-Bernoulli numbers ([18]).
Namely,
BCM =BU (n, k> 0).

n

It is due to the symmetric formula:

erty

izg—k)ﬁy_k _ ,
"onlkl et 4 eV —erty

n=0 k=0

It follows that

Bk — i(—l)"””m! {Z} (m + 1)k

m=0

k
cn =S P15 1)
" = Jj+1) lj+1

However, the duality theorem does not hold for poly-Cauchy numbers. In
fact, we have



Proposition 1.

By using Proposition 1 we have explicit expressions of the poly-Cauchy

numbers with negative indices.

Theorem 2 ([16]).

o ()5

E+1

kE+1
J+1

>_(=1"!

it

Moreover, using Theorem 2 with (2) we have the following congruence
results.

J+1

Theorem 3. For any positive integer k, P = Y

(mod 10) and &
A(—k—1) , N (—k—4)
Cn (mod 10). In special, when n = 1, for k > 1, ¢

cg_k)

| =
(mod 30) and &\"Y = ég_k) (mod 30).

Theorem 4. For k > 1 we have

ifn=1o0rn>4;
ifn=2,3,
ifn=1o0rn>4;
ifn=23.



4 Sums of products
Sums of products of Bernoulli numbers

n!
E ﬁBil"'Bim (m>1,n2>0)
I S LA 2L

D] 5ees im >0

have been considered by many authors (see, e.g. [1, 2, 6]). When m = 2, one
has the famous Euler’s identity:

n

3 (”) BBp_i= 1By, — (n—1)B, (n>1). (3)
i
=0
Kamano ([14]) considered the sums of products of Bernoulli numbers, includ-
ing poly-Bernoulli numbers

|
Sk (n) = E T |nZ ,Bz'l"'Bim_1Bi(:) (m>1,n>0).
11+ +1m>0n 1 m:
DY 5eeey im >

Then, S (n) satisfies the following relation:

Proposition 2.

m

S | s

=0

|§:[ } nm+r (TLZ?TL),

r—=

O 0<n<m-1).

Kamano also showed the explicit formulae S,(,lf)(n) for m = 2,3. For
example, when m = 2 we have

Proposition 3. For k> 1 and n > 0,
% (n) = B,

Sék)( nZB(])

S( k)( +nZB( 7).



It seemed to be difficult to give an explicit formula for ng)(n) for m > 4,
but recently a general formula for all m > 1 is given.

Theorem 5 ([20]). Form >1,n >0 and k > 1, we have
Sa(n) = S (n),

m

:0 (Z) (z'( 111);k553)+1_r(n )

m (M 1 [ s
+(=1) (m) . Z gjz...mij[V]Bnm+V’
J1

14 im <k—1 v=1

S (Z) :0 (Z) (~1)i(i+ 1S9, (n—7)

r=0

() 5 oS e

J1++im<k v=1
J1 j

Sums of products of Cauchy numbers

n!
Z — i1 " Cin, (m>1, n>0)

il iy,

were studied by Zhao ([25]). Consider the sums of products of Cauchy num-
bers, including poly-Cauchy numbers

n!
Trr(rf:)(n) = Z ﬁcil e Cim—1cgi) (m 2 1’ n 2 O) '
UL 5eees im =

Then, T, (n) satisfies the following relation:
Proposition 4 ([22]).

- _ + 1|
D E RN k0
mnimn! [ m (k)
— Zﬁ(n—m—z){l}cl” (n = m);
1=0 i=0
0 0<n<m-1).



When m = 2, we have the following explicit formulae.

Proposition 5 ([22]). Forn >0 and k > 1 we have

k 0
737 (n) = 1,7 (n) =n Y (e + (n = 1)e)
j=1
k—1 ‘
;7 (n) = T, (n) + 0 Y (7 + (n = D).
7=0

Putting £ = 1 in the second identity, we have
Corollary 1 (]25]).

n

3 CL) Cieni = —n(n —2)en1 — (n—1en (0> 0).

1=0

This is an analogue of Euler’s identity (3).
In general, we can obtain the following explicit expression of T, ik )(n) for any
general m > 2.

Theorem 6. For n > 0 and k > 0 we have

TOm) =T (n) + T (n — 1),

m—2 T ;
_1)2
T (1) — _r (" " <—T(O) _
m (n) ( ) (T Z i (i+1)k m—r(n T)
r=0 =0
i1 m—1
(—1)"™1n! e i N ()
R S/ Z 272375 (m— 1) Imt P s(n)ey,
(n —m+ )' J1tiotHim—1=k+m—2 7j=1 k=0
315325 dm—121
w2 n\ o /[T
T = v (1) 3 () ot -
r=0 1=0
B — 2]'23]'3.“ Jm 1 Pmn :J )
_ [ "
(n m + 1) j1tio+ - +im_1=k—m+1 ]:0 k=0

J15325-dm—120



Py (n) - m—1 m—t—1 (n—m+1)!
mue\T) =
’ m—t—1f \m—-rk—1)(n—m-—rx+t+1)!
=0
(k=0,1,...,m—2)

and

m—2
Povms(n) = {
t=0

n—m+1)""".

m—1 (n—m+1)!
m—t—1) (n—2m+1t+2)!

5 Hypergeometric Bernoulli numbers and hy-
pergeometric Cauchy numbers

Hypergeometric Bernoulli numbers By, (N > 1, n >0) ([7, 9, 10, 11, 12])
are defined by

R o DL
1PN+ 1Lz) e — /) B Nn 1’
where 1 F(a;b; z) is the confluent hypergeometric function defined by

- (a)n

n=0

I8
3

1F1(a;b; Z) =

—~
S

N
3
S

with the Pochhammer symbol (z), = z(z+1)...(x +n—1) (n > 1) and
(x)o =1. When N =1, By, = B, are classical Bernoulli numbers.

Hypergeometric Cauchy numbers ¢y, (N > 1, n > 0) ([21]) are defined
by

1 (—)N 12N /N - "
= == CNn—7
(LN N+ L—2)  In(l4a) - SV (—Lntanjn 2=Vl

where 5 F(a, b; ¢; z) is the hypergeometric function defined by

o
n

o Fi(a,b;c;2) = E
CTL

n=0

n




When N =1, ¢, = ¢, are classical Cauchy numbers.
We record of the first few values of cy

CNO = 1,
N

CN1 = 77 >

N +1
2N

T TIN T DI 4 2)
_ 6N(N?2+4 N +2)
N3 TN L 13N +2)(N +3)
4!N(N5 +5N* + 14N3 + 24N?% 4 20N + 12)

CNA= T (N + DA(N + 2)2(N + 3)(N +4) ’
P 5IN(N" +8N®+ 35N° + 96 N* + 160N + 184N? 4+ 116N + 48)
N5 = (N +1)5(N + 2)2(N + 3)(N +4)(N +5) ‘

The sums of products of hypergeometric Bernoulli numbers were studied
by Kamano ([15]) and those of hypergeometric Cauchy numbers are also
studied in [21].
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