EXPLORING THE q-RIEMANN ZETA FUNCTION AND q-BERNOULLI POLYNOMIALS

T. KIM, C. S. RYOO, L. C. JANG, AND S. H. RIM

Received 15 July 2004

We study that the q-Bernoulli polynomials, which were constructed by Kim, are analytic continued to $\beta_{s}(z)$. A new formula for the q-Riemann zeta function $\zeta_{q}(s)$ due to Kim in terms of nested series of $\zeta_{q}(n)$ is derived. The new concept of dynamics of the zeros of analytic continued polynomials is introduced, and an interesting phenomenon of "scattering" of the zeros of $\beta_{s}(z)$ is observed. Following the idea of q-zeta function due to Kim, we are going to use "Mathematica" to explore a formula for $\zeta_{q}(n)$.

1. Introduction

Throughout this paper, \mathbb{Z}, \mathbb{R}, and \mathbb{C} will denote the ring of integers, the field of real numbers, and the complex numbers, respectively.

When one talks of q-extension, q is variously considered as an indeterminate, a complex number, or a p-adic number. In the complex number field, we will assume that $|q|<1$ or $|q|>1$. The q-symbol $[x]_{q}$ denotes $[x]_{q}=\left(1-q^{x}\right) /(1-q)$.

In this paper, we study that the q-Bernoulli polynomials due to $\operatorname{Kim}($ see $[2,8])$ are analytic continued to $\beta_{s}(z)$. By those results, we give a new formula for the q-Riemann zeta function due to Kim (cf. $[4,6,8]$) and investigate the new concept of dynamics of the zeros of analytic continued polynomials. Also, we observe an interesting phenomenon of "scattering" of the zeros of $\beta_{s}(z)$. Finally, we are going to use a software package called "Mathematica" to explore dynamics of the zeros from analytic continuation for q-zeta function due to Kim.

2. Generating q-Bernoulli polynomials and numbers

For $h \in \mathbb{Z}$, the q-Bernoulli polynomials due to Kim were defined as

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\beta_{n}(x, h \mid q)}{n!} t^{n}=-t \sum_{l=0}^{\infty} q^{l(h+1)+x} e^{[l+x]_{q} t}+(1-q) h \sum_{l=0}^{\infty} q^{l h} e^{[l+x]_{q} t}, \tag{2.1}
\end{equation*}
$$

for $x, q \in \mathbb{C}(c f .[6,8])$.

In the special case $x=0, \beta_{n}(0, h \mid q)=\beta_{n}(h \mid q)$ are called q-Bernoulli numbers (cf. $[1,5,7,8]$).

By (2.1), we easily see that

$$
\begin{equation*}
\beta_{n}(x, h \mid q)=\frac{1}{(1-q)^{n}} \sum_{j=0}^{n}\binom{n}{j}(-1)^{j} \frac{j+h}{[j+h]_{q}} q^{j x}, \quad(c f .[2,6]) \tag{2.2}
\end{equation*}
$$

where $\binom{n}{j}$ is a binomial coefficient.
In (2.1), it is easy to see that

$$
q^{h}(q \beta(h \mid q)+1)^{n}-\beta_{n}(h \mid q)= \begin{cases}1 & \text { if } n=1 \tag{2.3}\\ 0 & \text { if } n>1\end{cases}
$$

with the usual convention of replacing $\beta^{n}(h \mid q)$ by $\beta_{n}(h \mid q)$.
By differentiating both sides with respect to t in (2.1), we have

$$
\begin{equation*}
\beta_{m}(h \mid q)=-m \sum_{n=0}^{\infty} q^{h n}[n]_{q}^{m-1}-(q-1)(m+h) \sum_{n=0}^{\infty} q^{h n}[n]_{q}^{m} . \tag{2.4}
\end{equation*}
$$

Expanding (2.1) as a series and matching the coefficients on both sides give

$$
\begin{align*}
& \beta_{0}(2 \mid q)=\frac{2}{[2]_{q}}, \quad \beta_{1}(2 \mid q)=\frac{2 q+1}{[2]_{q}[3]_{q}}, \quad \beta_{2}(2 \mid q)=\frac{2 q^{2}}{[3]_{q}[4]_{q}}, \\
& \beta_{3}(2 \mid q)=-\frac{q^{2}(q-1)\left(2[3]_{q}+q\right)}{[3]_{q}[4]_{q}[5]_{q}}, \ldots, \quad \beta_{0}(h \mid q)=\frac{h}{[h]_{q}}, \tag{2.5}\\
& \beta_{1}(h \mid q)=-\frac{\left(1+q+\cdots+q^{h-1}\right)+q\left(1+q+\cdots+q^{h-2}\right)+\cdots+q^{h-1}}{[h]_{q}[h+1]_{q}}, \ldots
\end{align*}
$$

By (2.1), the q-Bernoulli polynomials can be written as

$$
\begin{equation*}
\beta_{m}(x, h \mid q)=\sum_{j=0}^{m}\binom{m}{j}[x]_{q}^{n-j} q^{j x} \beta_{j}(h \mid q) . \tag{2.6}
\end{equation*}
$$

Figure 3.1. The curve of $\beta_{m}(x, 1 \mid 1 / 2), 1 \leq m \leq 10,-1 \leq x \leq 1$.

In the case $h=0, \beta_{m}(x, 0 \mid q)$ will be symbolically written as $\beta_{m, q}(x)$. Let $G_{q}(x, t)$ be the generating function of q-Bernoulli polynomials as follows:

$$
\begin{equation*}
G_{q}(x, t)=\sum_{n=0}^{\infty} \beta_{n, q}(x) \frac{t^{n}}{n!} . \tag{2.7}
\end{equation*}
$$

Then we easily see that

$$
\begin{equation*}
G_{q}(x, t)=\frac{q-1}{\log q} e^{t /(1-q)}-t \sum_{n=0}^{\infty} q^{h+x} e^{[n+x]_{q} t}, \quad|t|<1,(\text { cf. }[2,3,4,6]) . \tag{2.8}
\end{equation*}
$$

For $x=0, \beta_{n, q}=\beta_{n, q}(0)$ will be called q-Bernoulli numbers.
By (2.8), we easily see that

$$
\begin{equation*}
\beta_{m, q}(n)-\beta_{m, q}=m \sum_{l=0}^{n-1} q^{l}[l]_{q}^{m-1} . \tag{2.9}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\sum_{l=0}^{n-1} q^{l}[l]_{q}^{m-1}=\frac{1}{m} \sum_{l=0}^{m-1}\binom{m}{l} q^{n l} \beta_{l, q}[n]_{q}^{m-l}+\frac{1}{m}\left(1-q^{m n}\right) \beta_{m, q} . \tag{2.10}
\end{equation*}
$$

3. Beautiful shape of q-Bernoulli polynomials

In this section, we display the shapes of the q-Bernoulli polynomials $\beta_{m}(x, 1 \mid 1 / 2)$. For $m=1,2, \ldots, 10$, we can draw a plot of $\beta_{m}(x, 1 \mid 1 / 2)$, respectively. This shows the ten plots combined into one. For $m=1, \ldots, 10, q$, Figure 3.1 displays the shapes of the q-Bernoulli

Figure 3.2. Zeros of q-Bernoulli polynomials $\beta_{m}(x, 1 \mid 1 / 2), m=40,60$, and $x \in \mathbb{C}$.

Figure 3.3. Zeros of q-Bernoulli polynomials $\beta_{m}(x, 1 \mid-1 / 2), m=40,60$, and $x \in \mathbb{C}$.
polynomials $\beta_{m}(x, 1 \mid 1 / 2)$. We plot the zeros of $\beta_{m}(x, 1 \mid 1 / 2), m=40, m=60$, and $x \in \mathbb{C}$ (Figure 3.2). We plot the zeros of $\beta_{m}(x, 1 \mid-1 / 2), m=40, m=60$, and $x \in \mathbb{C}$ (Figure 3.3). We plot the zeros of $\beta_{m}(x, 1 \mid 11 / 10), m=40, m=60$, and $x \in \mathbb{C}$ (Figure 3.4). We plot the zeros of $\beta_{m}(x, 1 \mid-11 / 10), m=40, m=60$, and $x \in \mathbb{C}$ (Figure 3.5). Stacks of zeros of $\beta_{n}(x, 1 \mid 1 / 2), 1 \leq n \leq 60$, from a 3D structure are presented in Figure 3.6. The curve $\beta(s)$ runs through the points $\beta_{-n}(n \mid 1 / 2)$ (Figure 3.7). We draw the curve of $\beta_{-n}(n \mid q)$ and $\lim _{n \rightarrow \infty}=n \zeta_{q}(n+1), q=3 / 10,5 / 10,7 / 10,9 / 10,99 / 100,999 / 1000$ (Figures 3.8, 3.9, and 3.10).

Figure 3.4. Zeros of q-Bernoulli polynomials $\beta_{m}(x, 1 \mid 11 / 10), m=40,60$, and $x \in \mathbb{C}$.

Figure 3.5. Zeros of q-Bernoulli polynomials $\beta_{m}(x, 1 \mid-11 / 10), m=40,60$, and $x \in \mathbb{C}$.

4. q-Riemann zeta function

We display the plot of $\beta_{q}(s), 0.1 \leq s \leq 0.9,1.1 \leq q \leq 2$ (Figure 4.1). We display the plot of $\beta_{q}(s), 1.03 \leq s \leq 2,0.1 \leq q \leq 2$ (Figure 4.2). We draw the curve of $\zeta_{q}(n), q=7 / 10$, $9 / 10$ (Figure 4.3). We draw the curve of $\beta_{-q}(s, w), 2 \leq s \leq 3,-0.5 \leq w \leq 0.5, q=11 / 10$ (Figure 4.4).

The q-Riemann zeta function due to Kim was defined as

$$
\begin{equation*}
\zeta_{q}^{(h)}(s)=\frac{1-s+h}{1-s}(q-1) \sum_{n=1}^{\infty} \frac{q^{n h}}{[n]_{q}^{s-1}}+\sum_{n=1}^{\infty} \frac{q^{n h}}{[n]_{q}^{s}}, \quad \text { for } s, h \in \mathbb{C},(c f .[6,8]) \tag{4.1}
\end{equation*}
$$

Figure 3.6. Stacks of zeros of q-Bernoulli polynomials $\beta_{n}(x, 1 \mid 1 / 2), 1 \leq n \leq 60$, from a 3D structure.

Figure 3.7. The curve $\beta(s)$ runs through the points $\beta_{-n}(n \mid 1 / 2)$.

For $k \in \mathbb{N}, h \in \mathbb{Z}$, it was known that

$$
\begin{equation*}
\zeta_{q}^{(h)}(1-k)=-\frac{\beta_{k}(h \mid q)}{k}, \quad(c f .[6,8]) . \tag{4.2}
\end{equation*}
$$

In the special case $h=s-1, \zeta_{q}^{(s-1)}(s)$ will be written as $\zeta_{q}(s)$. For $s \in \mathbb{C}$, we note that

$$
\begin{equation*}
\zeta_{q}(s)=\sum_{n=1}^{\infty} \frac{q^{n(s-1)}}{[n]_{q}^{s}}, \quad(\text { cf. }[6,8]) . \tag{4.3}
\end{equation*}
$$

Figure 3.8. The curve of $\beta_{-n}(n \mid q)$ and $\lim _{n \rightarrow \infty} \beta_{-n}=n \zeta_{q}(n+1)=0, q=3 / 10,5 / 10$

Figure 3.9. The curve of $\beta_{-n}(n \mid q)$ and $\lim _{n \rightarrow \infty} \beta_{-n}=n \zeta_{q}(n+1)=0, q=7 / 10,9 / 10$

By (4.1), (4.2), and (4.3), we easily see that

$$
\begin{equation*}
\zeta_{q}(1-k)=-\frac{\beta_{k}(-k \mid q)}{k}, \quad \text { for } k \in \mathbb{N},(\text { cf. }[3,4,6]) \tag{4.4}
\end{equation*}
$$

From the above analytic continuation of q-Bernoulli numbers, we consider

$$
\begin{gather*}
\beta_{n}=\beta_{n}(-n \mid q) \longmapsto \beta(s), \\
\zeta_{q}(-n)=-\frac{\beta_{n+1}(-n+1 \mid q)}{n+1} \longmapsto \zeta_{q}(-s)=-\frac{\beta(s+1)}{s+1} \Longrightarrow \zeta_{q}(1-s)=-\frac{\zeta(s)}{s} . \tag{4.5}
\end{gather*}
$$

Figure 3.10. The curve of $\beta_{-n}(n \mid q), q=99 / 100,999 / 1000$.

Figure 4.1. The plot of $\beta_{q}(s), 0.1 \leq s \leq 0.9,1.1 \leq q \leq 2$.

From relation (4.5), we can define the other analytic continued half of q-Bernoulli numbers,

$$
\begin{align*}
& \beta(s)=-s \zeta_{q}(1-s), \quad \beta(-s)=s \zeta_{q}(1+s) \\
& \Longrightarrow \beta_{-n}=\beta_{-n}(n \mid q)=\beta(-n)=n \zeta_{q}(n+1), \quad n \in \mathbb{N} . \tag{4.6}
\end{align*}
$$

The curve $\beta(s)$ runs through the points β_{-n} and $\lim _{n \rightarrow \infty} \beta_{-n}=n \zeta_{q}(n+1)=0$.
However, the curve $\beta_{-n}(n \mid q)$ grows $\sim n$ asymptotically as $q \rightarrow 1,(-n) \rightarrow-\infty$.

$$
\begin{equation*}
\zeta_{q}(m)=\sum_{n=1}^{\infty} \frac{q^{n(m-1)}}{[n]_{q}^{m}} \Longrightarrow \lim _{m \rightarrow \infty} \zeta_{q}(m)=0 . \tag{4.7}
\end{equation*}
$$

Figure 4.2. The plot of $\beta_{q}(s), 1.03 \leq s \leq 2,0.1 \leq q \leq 2$.

Figure 4.3. The curve of $\zeta_{q}(n), q=7 / 10,9 / 10$.

Figure 4.4. The curve of $\beta(s, w), 2 \leq s \leq 3,-0.5 \leq w \leq 0.5, q=11 / 10$.

5. Analytic continuation of q-Bernoulli polynomials

For consistency with the redefinition of $\beta_{n}=\beta(n)$ in (4.5) and (4.6),

$$
\begin{equation*}
\beta_{n}(x)=\beta_{n}(x,-n \mid q)=\sum_{k=0}^{n}\binom{n}{k} \beta_{k} q^{k x}[x]_{q}^{n-k} . \tag{5.1}
\end{equation*}
$$

The analytic continuation can be then obtained as

$$
\begin{gather*}
n \longmapsto s \in \mathbb{R}, \quad x \longmapsto w \in \mathbb{C}, \\
\binom{n}{k} \longmapsto \frac{\beta_{k} \longmapsto \beta(k+s-[s] \mid q)=-(k+(s-[s])) \zeta_{q}(1-(k+(s-[s]))),}{\Gamma(1+k+(s-[s])) \Gamma(1+[s]-k)} \\
\Longrightarrow \beta_{n}(s) \longmapsto \beta(s, w \mid q)=\sum_{k=-1}^{[s]} \frac{\Gamma(1+s) \beta(k+s-[s]) q^{(k+s-[s]) w}[w]_{q}^{[s]-k}}{\Gamma(1+k+(s-[s])) \Gamma(1+[s]-k)} \\
=\sum_{k=0}^{[s]+1} \frac{\Gamma(1+s) \beta((k-1)+s-[s]) q^{((k-1)+s-[s]) w}[w]_{q}^{[s]+1-k}}{\Gamma(k+(s-[s])) \Gamma(2+[s]-k)},
\end{gather*}
$$

where $[s]$ gives the integer part of s, and so $s-[s]$ gives the fractional part.
Deformation of the curve $\beta(2, w)$ into the curve $\beta(3, w)$ via the real analytic continuation $\beta(s, w), 2 \leq s \leq 3,-0.5 \leq w \leq 0.5$.

Acknowledgments

The fourth author was supported by Kyungpook National University Research team Fund, 2003. The first author would like to dedicate this paper to the memory of Katsumi Shiratani.

References

[1] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.
[2] , On p-adic q-L-functions and sums of powers, Discrete Math. 252 (2002), no. 1-3, 179187.
[3] , A note on Dirichlet L-series, Proc. Jangjeon Math. Soc. 6 (2003), no. 2, 161-166.
[4] , A note on multiple zeta functions, JP J. Algebra Number Theory Appl. 3 (2003), no. 3, 471-476.
[5] __ , Non-Archimedean q-integrals associated with multiple Changhee q-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), no. 1, 91-98.
[6] , q-Riemann zeta function, Int. J. Math. Math. Sci. 2004 (2004), no. 9-12, 599-605.
[7] , Analytic continuation of multiple q-Zeta functions and their values at negative integers, Russ. J. Math. Phys. 11 (2004), no. 1, 71-76.
[8] T. Kim and S.-H. Rim, Generalized Carlitz's q-Bernoulli numbers in the p-adic number field, Adv. Stud. Contemp. Math. (Pusan) 2 (2000), 9-19.
T. Kim: Science Education Research Institute, Education Science Research Center, Kongju National University, Kongju 314-701, Korea

E-mail address: tkim@kongju.ac.kr
C. S. Ryoo: Department of Mathematics, Hannam University, Daejeon 306-791, Korea

E-mail address: ryoocs@math.hannam.ac.kr
L. C. Jang: Department of Mathematics and Computer Science, Konkuk University, Chungju-Si, Chungcheongbuk-do 380-701, Korea

E-mail address: leechae.jang@kku.ac.kr
S. H. Rim: Department of Mathematics Education, Teachers' College Kyungpook National University, Daegu 702-701, Korea

E-mail address: shrim@kongju.ac.kr

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

