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Abstract

Let ℙn be the space of polynomials of degree less than or equal to n. In this article,
using the Bernoulli basis {B0(x), . . . , Bn(x)} for ℙn consisting of Bernoulli polynomials,
we investigate some new and interesting identities and formulae for the product of
two Bernoulli and Euler polynomials like Carlitz did.

1 Introduction
The Bernoulli and Euler polynomials are defined by means of

t
et − 1

ext =
∞∑

n=0

Bn(x)
tn

n!
,

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
. (1)

In the special case, x = 0, Bn(0) = Bn and En(0) = En are called the n-th Bernoulli and

Euler numbers (see [1-17]).

From (1), we note that

Bn(x) =
n∑

l=0

(
n
l

)
Blxn−l, En(x) =

n∑
l=0

(
n
l

)
Elxn−l. (2)

For n ≥ 0, we have

d
dx

Bn(x) = nBn−1(x),
d
dx

En(x) = nEn−1(x), (3)

(see [7,8]).

By (1), we get the following recurrence for the Bernoulli and the Euler numbers:

B0 = 1, Bn(1)− Bn = δ1,n and E0 = 1, En(1) + En = 2δ0,n, (4)

where δk, n is the Kronecker symbol (see [1-17]).

Thus, from (3) and (4), we have

1∫
0

Bn(x)dx =
δ0,n

n + 1
,

1∫
0

En(x)dx = −2En+1

n + 1
. (5)
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It is known [12] that

A∫
0

Bm1

(
x
a1

)
. . . Bmn

(
x
an

)
dx = a1−m1

1 . . . a1−mn
n

1∫
0

Bm1(x) . . . Bmn (x)dx, (6)

where a1, a2, . . . , an are positive integers that are relatively prime in pairs A = a1a2 . . . an.

For n = 2, there is the formula

1∫
0

Bp(x)Bq(x)dx = (−1)p+1 Bp+q(
p + q

q

) , (7)

where p + q ≥ 2 (see [3,4]). In [3,4], we can find the following formula for a product

of two Bernoulli polynomials:

Bm(x)Bn(x) =
∑

r

[(
m
2r

)
n +

(
n
2r

)
m

]
B2rBm+n−2r(x)

m + n− 2r
+(−1)m+1 Bm+n(

m + n
n

) , for m+n ≥ 2.
(8)

Assume m, n, p ≥ 1. Then, by (7) and (8), we get

1∫
0

Bm(x)Bn(x)Bp(x)dx = (−1)p+1p!
∑

r

[(
m
2r

)
n +

(
n
2r

)
m

]
(m + n− 2r − 1)!
(m + n + p− 2r)!

B2rBm+n+p−2r , (9)

(see [4]).

In [8], it is known that for n Î ℤ+,

Bn(x) =
n∑

k=0
k �=1

(
n
k

)
BkEn−k(x) (10)

and

En(x) = −2
n∑

l=0

(
n
l

)
El+1

l + 1
Bn−l(x). (11)

Let ℙn = {∑iaix
i|ai Î ℚ} be the space of polynomials of degree less than or equal to

n. In this article, using the Bernoulli basis {B0(x), . . . , Bn(x)} for ℙn consisting of Ber-

noulli polynomials, we investigate some new and interesting identities and formulae

for the product of two Bernoulli and Euler polynomials like Carlitz did.

2 Bernoulli identities arising from Bernoulli basis polynomials
From (1), we note that

ext =
1
t

(
t(et − 1)

et − 1

)
ext

)
=

1
t

∞∑
n=0

(Bn(x + 1)− Bn(x))
tn

n!

=
1
t

∞∑
n=1

(Bn(x + 1)− Bn(x))
tn

n!

=
∞∑

n=0

(
Bn+1(x + 1)− Bn+1(x)

n + 1

)
tn

n!
.

(12)
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Thus, from (12), we have

xn =
1

n + 1
(Bn+1(x + 1)− Bn+1(x)) =

1
n + 1

n∑
l=0

(
n + 1

l

)
Bl(x). (13)

From (13), we note that {B0(x), B1(x), . . . , Bn(x)} spans ℙn. For p(x) Î ℙn, let

p(x) =
∑n

k=0 akBk(x) and g(x) = p(x + 1) - p(x). Then we have

g(x) =
n∑

k=0

ak(Bk(x + 1)− Bk(x)) =
n∑

k=0

kakxk−1. (14)

From (14), we can derive the following Equation (15):

g(r)(x) =
n∑

k=r+1

k(k− 1) . . . (k− r)akxk−r−1, (15)

where g(r)(x) = drg(x)
dxr and r = 0, 1, 2, . . . , n. Let us take x = 0 in (15). Then we have

g(r)(0) = (r + 1)!ar+1. (16)

By (16), we get, for r = 1, 2, . . . , n,

ar =
g(r−1)(0)

r!
=

1
r!

(p(r−1)(1)− p(r−1)(0)). (17)

Let 0 = p(x) =
∑n

k=0 akBk(x) . Then, from (17), we have

ar =
1
r!

g(r−1)(0) =
1
r!

(p(r−1)(1)− p(r−1)(0)) = 0. (18)

From (18), we note that {B0(x), B1(x), . . . , Bn(x)} is a linearly independent set.

Therefore, we obtain the following theorem.

Proposition 1 The set of Bernoulli polynomials {B0(x), B1(x), . . . , Bn(x)} is a basis for ℙn.

Let us consider polynomial p(x) Î ℙn as a linear combination of Bernoulli basis poly-

nomials with

p(x) = C0B0(x) + C1B1(x) + · · · + CnBn(x). (19)

We can write (19) as a dot product of two variables:

p(x) = (B0(x), B1(x), . . . , Bn(x))

⎛
⎜⎜⎜⎝

C0

C1
...
Cn

⎞
⎟⎟⎟⎠ . (20)

From (20), we can derive the following equation:

p(x) = (1, x, x2, . . . , xn)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 b12 b13 · · · b1n+1

0 1 b23 · · · b2n+1

0 0 1 · · · b3n+1
...

...
...

. . .
...

0 0 0 · · · bnn+1

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

C0

C1

C2
...
Cn

⎞
⎟⎟⎟⎟⎟⎠ , (21)
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where bij are the coefficients of the power basis that are used to determine the

respective Bernoulli polynomials. It is easy to show that

B0(x) = 1, B1(x) = x− 1
2

, B2(x) = x2 − x +
1
6

, B3(x) = x3 − 3
2

x2 +
1
2

x, . . . .

In the quadratic case (n = 2), the matrix representation is

p(x) = (1, x, x2)

⎛
⎝1 − 1

2
1
6

0 1 −1
0 0 1

⎞
⎠

⎛
⎝C0

C1

C2

⎞
⎠ . (22)

In the cubic case (n = 3), the matrix representation is

p(x) = (1, x, x2, x3)

⎛
⎜⎜⎝

1 − 1
2

1
6 0

0 1 −1 1
2

0 0 1 − 3
2

0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

C0

C1

C2

C3

⎞
⎟⎟⎠ . (23)

In many applications of Bernoulli polynomials, a matrix formulation for the Bernoulli

polynomials seems to be useful.

There are many ways of obtaining polynomial identities in general. Here, in Theo-

rems 2-9, we use the Bernoulli basis in order to express certain polynomials as linear

combinations of that basis and hence to get some new and interesting polynomial

identities.

Let Im,n =
∫ 1

0 Bm(x)Bn(x)dx for m, n ∈ Z+ . Then, by integration by parts, we get

I0,n = Im,0 = 0, Im,n = (−1)m+n Bm+n(
m + n

m

) , (m, n ≥ 2).
(24)

For n Î ℤ+ with n ≥ 2, let us consider the following polynomials in ℙn:

p(x) =
n∑

k=0

Bk(x)Bn−k(x) ∈ Pn. (25)

Then, from (25), we have

p(r)(x) =
(n + 1)!

(n− r + 1)!

n∑
k=r

Bk−r(x)Bn−k(x), (26)

where r = 0, 1, 2, . . . n.

By Proposition 1, we see that p(x) can be written as

p(x) =
n∑

k=0

akBk(x). (27)

From (25) and (27), we note that

a0 =

1∫
0

p(t)dt =
n∑

k=0

Ik,n−k = Bn

n−1∑
k=1

(−1)k−1(
n
k

) = Bn
(1 + (−1)n)

n + 2
=

2
n + 2

Bn.
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By (18) and (26), we get

ar+1 =
1

(r + 1)!
(p(r)(1)− p(r)(0))

=
(n + 1)!

(r + 1)!(n− r + 1)!

n∑
k=r

(Bk−r(1)Bn−k(1)− Bk−rBn−k)

=
1

n + 2

(
n + r
r + 1

) n∑
k=r

{(δ1,k−r + Bk−r)(δ1,n−k + Bn−k)− Bk−rBn−k}

=
1

n + 2

(
n + 2
r + 1

)
(Bn−r−1 + Bn−r−1 + δr,n−2)

=

⎧⎨
⎩

2
n+2

(
n + 2
r + 1

)
Bn−r−1 if r �= n− 2.

0 if r = n− 2.

(28)

Therefore, by (25), (27) and (28), we obtain the following theorem.

Theorem 2 For n Î ℤ+ with n ≥ 2, we have

n∑
k=0

Bk(x)Bn−k(x) =
2

n + 2

n−2∑
k=0

(
n + 2

k

)
Bn−kBk(x) + (n + 1)Bn(x).

For n Î ℤ+ with n ≥ 2, let us take polynomial p(x) in ℙn as follows:

p(x) =
n∑

k=0

1
k!(n− k)!

Bk(x)Bn−k(x) ∈ Pn. (29)

From Proposition 1, we note that p(x) is given by means of Bernoulli basis polyno-

mials:

p(x) =
n∑

k=0

akBk(x) ∈ Pn. (30)

By (24), (29) and (30), we get

a0 =

1∫
0

p(t)dt =
n∑

k=0

1
k!(n− k)!

Ik,n−k =
2I0,n

n!
+

n−1∑
k=1

(−1)k−1

k!(n− k)!
(

n
k

)Bn

=
Bn

n!

n−1∑
k=1

(−1)k−1 =
Bn

n!
(1 + (−1)n)

2
=

Bn

n!
.

(31)

From (29), we have that for r = 0, 1, 2, . . . , n,

p(r)(x) = 2r
n∑

k=r

Bk−r(x)Bn−k(x)
(k− r)!(n− k)!

. (32)

By (18), we get

ar+1 =
1

(r + 1)!
(p(r)(1)− p(r)(0))

=
2r

(r + 1)!

n∑
k=r

1
(k− r)!(n− k)!

(Bk−r(1)Bn−k(1)− Bk−rBn−k)

=
2r

(r + 1)!

(
2Bn−r−1

(n− 1− r)!
+

n∑
k=r

δ1,k−rδ1,n−k

)

=

⎧⎨
⎩

2r+1

n!

(
n

r + 1

)
Bn−r−1 if r �= n− 2,

0 if r = n− 2.

(33)
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Therefore, from (29), (30) and (33), we obtain the following theorem.

Theorem 3 For n Î ℤ+ with n ≥ 2, we have

n∑
k=0

(
n
k

)
Bk(x)Bn−k(x) =

n∑
k=0

k �=n−1

2k
(

n
k

)
Bn−kBk(x).

Let n Î ℤ+ with n ≥ 2. Then we consider polynomial p(x) in ℙn with

p(x) =
n−1∑
k=1

1
k(n− k)

Bk(x)Bn−k(x).

By Proposition 1, we see that p(x) is written as

p(x) =
n∑

k=0

akBk(x). (34)

From (34), we have

a0 =

1∫
0

p(t)dt =
n−1∑
k=1

1
k(n− k)

1∫
0

Bk(t)Bn−k(t)dt

=
n−1∑
k=1

1
k(n− k)

(−1)k−1(
n
k

) Bn =
(

1 + (−1)n

n2

)
Bn =

2Bn

n2
.

It is easy to show that for r = 1, 2 , . . . , n - 1,

p(r)(x) = 2CrBn−r(x) + (n− 1) · · · (n− r)
n−1∑

k=r+1

Bk−r(x)Bn−k(x)
(k− r)(n− k)

, (35)

where Cr =
1

n− r

∑r
j=1 (n− 1) ... (n− j + 1)(n− j− 1) ... (n− r).

By (17), we get

ar+1 =
1

(r + 1)!
(p(r)(1)− p(r)(0))

=
1

(r + 1)!

{
2Cr(Bn−r(1)− Bn−r)

+(n− 1) . . . (n− r)
n−1∑

k=r+1

Bk−r(1)Bn−k(1)− Bk−rBn−k

(k− r)(n− k)

}

=
2Cr

(r + 1)!
δr,n−1 +

1
n

(
n

r + 1

) n−1∑
k=r+1

Bk−rδ1,n−k + δ1,k−rBn−k + δ1,k−rδ1,n−k

(k− r)(n− k)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
n(n−r−1)

(
n

r + 1

)
Bn−r−1 if 0 ≤ r ≤ n− 3,

0 if r = n− 2,
2
n!

Cn−1 if r = n− 1.

(36)
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From the definition of Cr, we have

2
n!

Cn−1 =
2
n!

n−1∑
i=1

(n− 1)!
n− i

=
2
n

n−1∑
i=1

1
i

=
2
n

Hn−1, (37)

where Hn =
∑n

i=1
1
i .

Therefore, by (34), (36) and (37), we obtain the following theorem.

Theorem 4 For n Î ℤ+ with n ≥ 2, we have

n−1∑
k=1

Bk(x)Bn−k(x)
k(n− k)

=
2
n

n−2∑
k=0

1
n− k

(
n
k

)
Bn−kBk(x) +

2
n

Hn−1Bn(x).

Let Jm,n =
∫ 1

0 Em(t)En(t)dt , for m, n Î ℤ+. Then we see that

Jm,n =
2(−1)m−1

(n + m + 1)
(

n + m
m

)En+m+1, (see [3, 4, 7, 8]).
(38)

Let us take polynomials p(x) in ℙn with p(x) =
∑n

k=0 Ek(x)En−k(x) . Then, by Proposi-

tion 1, p(x) is written as p(x) =
∑n

k=0 akBk(x) .

It is not difficult to show that

a0 =

1∫
0

p(t)dt =
n∑

k=0

Jk,n−k =
2En+1

n + 1

n∑
k=0

(−1)k−1(
n
k

) = −2En+1

(
1 + (−1)n

n + 2

)
=
−4En+1

n + 2

and

p(r)(x) =
(n + 1)!

(n + 1− r)!

n∑
k=r

Ek−r(x)En−k(x), (r = 0, 1, 2, . . . , n). (39)

By (17) and (39), we get

ak =
1
k!

(p(k−1)(1)− p(k−1)(0))

=
(n + 1)!

k!(n− k + 2)!

n∑
l=k−1

(El−k+1(1)En−l(1)− El−k+1En−l)

=

(
n + 2

k

)
n + 2

n∑
l=k−1

{(− El−k+1 + 2δ0,l−k+1)(−En−l + 2δ0,n−l)− El−k+1En−l}

= −
4

(
n + 2

k

)
n + 2

En−k+1,

(40)

where k = 0, 1, 2, . . . , n. Therefore, by (40), we obtain the following theorem.

Theorem 5 For n Î ℤ+, we have

n∑
k=0

Ek(x)En−k(x) = − 4
n + 2

n∑
k=0

(
n + 2

k

)
En−k+1Bk(x).
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Let us take the polynomial p(x) in ℙn as follows:

p(x) =
n∑

k=0

1
k!(n− k)!

Ek(x)En−k(x). (41)

Then, by (41), we get

p(r)(x) = 2r
n∑

k=r

Ek−r(x)En−k(x)
(k− r)!(n− k)!

, (42)

where r = 0, 1, 2, . . . , n.

By Proposition 1, we see that p(x) can be written as

p(x) =
n∑

k=0

akBk(x). (43)

From (41), (42) and (43), we have

a0 =

1∫
0

p(t)dt =
n∑

k=0

1
k!(n− k)!

Jk,n−k

=
2En+1

(n + 1)!

n∑
k=0

(−1)k−1 = − 2En+1

(n + 1)!

(
1 + (−1)n

2

)
=
−2En+1

(n + 1)!

(44)

and

ar =
1
r!

(p(r−1)(1)− p(r−1)(0))

=
2r−1

r!

n∑
k=r−1

Ek−r+1(1)En−k(1)− Ek−r+1En−k

(k− r + 1)!(n− k)!

=
2r−1

r!

(
− 2En−r+1

(n− r + 1)!
− 2En−r+1

(n− r + 1)!
+ 4δn+1,r

)

= − 2r+1

(n + 1)!

(
n + 1

r

)
En−r+1,

(45)

where r = 1, 2, . . . , n.

Therefore, by (41), (43) and (45), we obtain the following theorem.

Theorem 6 For n Î ℤ+, we have

n∑
k=0

(
n
k

)
Ek(x)En−k(x) = − 2

n + 1

n∑
k=0

2k
(

n + 1
k

)
En−k+1Bk(x).

Let us take

p(x) =
n−1∑
k=1

1
k(n− k)

Ek(x)En−k(x)

in ℙn. Then, by Proposition 1, p(x) is given by means of basis polynomials:

p(x) =
n∑

k=0

akBk(x). (46)
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It is easy to show that

a0 =

1∫
0

p(t)dt =
n−1∑
k=1

1
k(n− k)

Jk,n−k

=
2En+1

n + 1

n−1∑
k=1

1
k(n− k)

(−1)k−1(
n
k

) =
2(1 + (−1)n)

n2(n + 1)
En+1 =

4En+1

n2(n + 1)

and

p(k)(x) = 2CkEn−k(x) + (n− 1) . . . (n− k)
n−1∑
l=k+1

El−k(x)En−l(x)
(l− k)(n− l)

, (k = 1, 2, . . . , n− 1)

where Ck = 1
(n−k)

∑k
j=1 (n− 1) . . . (n− j + 1)(n− j− 1) . . . (n− k) .

By the same method, we get

ak =
1
k!

(p(k−1)(1)− p(k−1)(0))

=
1
k!

{
2Ck−1(En−k+1(1)− En−k+1)

+(n− 1) . . . (n− k + 1)
n−1∑
l=k

El−k+1(1)En−l(1)− El−k+1En−l

(l− k + 1)(n− l)

}

= −4Ck−1

k!
En−k+1.

From the construction of Ck, we note that

Ck−1

k!
=

1
k!(n− k + 1)

k−1∑
j=1

(n− 1) . . . (n− j + 1)(n− j− 1) . . . (n− k + 1)

=
1

k!(n− k + 1)

k−1∑
j=1

(n− 1)!
(n− k)!(n− j)

=

(
n
k

)
n(n− k + 1)

k−1∑
j=1

1
n− j

=

(
n
k

)
n(n− k + 1)

⎛
⎝n−1∑

j=1

1
j
−

n−k∑
j=1

1
j

⎞
⎠ =

(
n
k

)
n(n− k + 1)

(Hn−1 −Hn−k).

Therefore, by the same method, we obtain the following theorem.

Theorem 7 For n Î ℤ+ with n ≥ 2, we have

n−1∑
k=1

Ek(x)En−k(x)
k(n− k)

=
4En+1

n2(n + 1)
− 4

n

n∑
k=1

(
n
k

)
n− k + 1

(Hn−1 −Hn−k)En−k+1Bk(x).

Let

Tm,n =

1∫
0

Bm(t)En(t)dt, for m, n ∈ Z+. (47)
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From (47), we have that

Tm,0 =

1∫
0

Bm(t)dt =
δ0,m

m + 1
and T0,n =

1∫
0

En(t)dt = −2En+1

n + 1
.

For m, n Î N, we have

Tm,n =
2(−1)m

(m + n + 1)
(

m + n
m

) m+n∑
l=m+1

(−1)l
(

m + n + 1
l

)
BlEn+m+1−l. (48)

Let us consider the following polynomial in ℙn:

p(x) =
n∑

k=0

Bk(x)En−k(x). (49)

For n Î N with n ≥ 2, by Proposition 1, p(x) is given by

p(x) =
n∑

k=0

akBk(x). (50)

From (49) and (50), we note that

a0 =

1∫
0

p(t)dt = T0,n +
n−1∑
k=1

Tk,n−k + Tn,0

= −2En+1

n + 1
+

2
n + 1

n−1∑
k=1

n∑
l=k+1

(−1)k+l

(
n + 1

l

)
(

n
k

) BlEn+1−l.

(51)

For k = 0, 1, 2, . . . , n, we have

p(k)(x) = (n + 1)n . . . (n + 2− k)
n∑

l=k

Bl−k(x)En−l(x)

=
(n + 1)!

(n− k + 1)!

n∑
l=k

Bl−k(x)En−l(x).

(52)

By (17), we get

ak =
1
k!

(p(k−1)(1)− p(k−1)(0))

=
(n + 1)!

k!(n− k + 2)!

n∑
l=k−1

(Bl−k+1(1)En−l(1)− Bl−k+1En−l)

=

(
n + 2

k

)
n + 2

n∑
l=k−1

{(Bl−k+1 + δ1,l−k+1)(−En−l + 2δ0,n−l)− Bl−k+1En−l}

=

(
n + 2

k

)
n + 2

⎛
⎝−2

n∑
l=k−1

Bl−k+1En−l − En−k + 2Bn−k+1 + 2δn,k

⎞
⎠ .

(53)
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Therefore, by (49), (50) and (53), we obtain the following theorem.

Theorem 8 For n Î ℤ+ with n ≥ 2, we have

n∑
k=0

Bk(x)En−k(x)

= −2En+1

n + 1
+

2
n + 1

n−1∑
k=1

n∑
l=k+1

(−1)k+l

(
n + 1

l

)
(

n
k

) BlEn+1−l + (n + 1)Bn(x)

+
1

n + 2

n−2∑
k=1

(
n + 2

k

) ⎛
⎝−2

n∑
l=k−1

Bl−k+1En−l − En−k + 2Bn−k+1

⎞
⎠ Bk(x).

For n Î N with n ≥ 2, let us take p(x) =
∑n

k=0
Bk(x)En−k(x)

k!(n−k)! in ℙn. Then we have

p(k)(x) = 2k
n∑

l=k

1
(l− k)!(n− l)!

Bl−k(x)En−l(x). (54)

From Proposition 1, we note that p(x) can be written as

p(x) =
n∑

k=0

akBk(x). (55)

Thus, by (55), we get

a0 =

1∫
0

p(t)dt =
n∑

k=0

1
k!(n− k)!

Tk,n−k

=
T0,n

n!
+

n−1∑
k=1

Tk,n−k

k!(n− k)!
+

Tn,0

n!

= − 2En+1

(n + 1)!
+

2
(n + 1)!

n−1∑
k=1

n∑
l=k+1

(−1)k+l
(

n + 1
l

)
BlEn+1−l.

(56)

From (17), we note that

ak =
1
k!

(p(k−1)(1)− p(k−1)(0))

=
2k−1

k!

n∑
l=k−1

Bl−k+1(1)En−l(1)− Bl−k+1En−l

(l− k + 1)!(n− l)!

=
2k−1

k!

⎛
⎝ n∑

l=k−1

−2Bl−k+1En−l

(l− k + 1)!(n− l)!
− En−k

(n− k)!
+

2Bn−k+1

(n− k + 1)!
+ 2δn,k

⎞
⎠ .

(57)

Therefore, by (54), (55) and (57), we obtain the following theorem.
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Theorem 9 For n Î N with n ≥ 2, we have

n∑
k=0

(
n
k

)
Bk(x)En−k(x)

= −2En+1

n + 1
+

2
n + 1

n−1∑
k=1

n∑
l=k+1

(−1)k+l
(

n + 1
l

)
BlEn+1−l

+
n−2∑
k=1

⎛
⎜⎜⎝−

2k

(
n + 1

k

)
n + 1

n∑
l=k−1

(
n− k + 1

n− l

)
Bl−k+1En−l − 2k−1

(
n
k

)
En−k

+
2k

(
n + 1

k

)
n + 1

Bn−k+1

⎞
⎟⎟⎠ Bk(x) + 2nBn(x).

For n Î N with n ≥ 2, let us consider the polynomial p(x) =
∑n−1

k=1
Bk(x)En−k(x)

k(n−k) in ℙn.

From Proposition 1, we note that p(x) can be written as p(x) =
∑n

k=0 akBk(x) . Then

the k-th derivative of p(x) is given by

p(k)(x) = Ck(Bn−k(x) + En−k(x)) + (n− 1) . . . (n− k)
n∑

l=k+1

Bl−k(x)En−l(x)
(l− k)(n− l)

, (58)

where k = 1, 2, . . . , n - 1 and

Ck =
1

n− k

k∑
j=1

(n− 1)(n− 2) . . . (n− j + 1)(n− j− 1) . . . (n− k).

In addition,

p(n)(x) = (p(n−1)(x))′ =
(
Cn−1(B1(x) + E1(x))

)′ = 2Cn−1 = 2(n− 1)!Hn−1.

From (17), we note that

ak =
1
k!

(p(k−1)(1)− p(k−1)(0))

=
Ck−1

k!
{(Bn−k+1(1)− Bn−k+1) + (En−k+1(1)− En−k+1)}

+
(n− 1) . . . (n− k + 1)

k!

n−1∑
l=k

1
(l− k + 1)(n− l)

(Bl−k+1(1)En−l(1)− Bl−k+1En−l)

=
Ck−1

k!
(−2En−k+1 + δ1,n−k+1) +

(
n
k

)
n

(
n−1∑
l=k

−2Bl−k+1En−l

(l− k + 1)(n− l)
− En−k

n− k

)
.

(59)

It is easy to show that

a0 =

1∫
0

p(t)dt =
n−1∑
k=1

1
k(n− k)

Tk,n−k

=
2

(n + 1)n(n− 1)

n−2∑
k=0

(−1)k+1(
n− 2

k

) n∑
l=k+2

(−1)l
(

n + 1
l

)
BlEn+1−l.

(60)
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Therefore, from (59) and (60), we have

n−1∑
k=1

1
k(n− k)

Bk(x)En−k(x)

=
2

n(n2 − 1)

n−2∑
k=0

n∑
l=k+2

(−1)k+l+1

(
n + 1

l

)
(

n− 2
k

)BlEn+1−l

+
n−2∑
k=1

{ −2
n(n− k + 1)

(
n
k

)
(Hn−1 −Hn−k)En−k+1

+
1
n

(
n
k

)(
−2

n−1∑
l=k

Bl−k+1En−l

(l− k + 1)(n− l)
− En−k

n− k

)}
Bk(x) +

2
n

Hn−1Bn(x).
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