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We study some interesting identities and properties of Laguerre polynomials in connection with
Bernoulli and Euler numbers. These identities are derived from the orthogonality of Laguerre

polynomials with respect to inner product 〈f, g〉 =
∫∞
0 e

−x2

f(x)g(x)dx.

1. Introduction/Preliminaries

As is well known, Laguerre polynomials are defined by the generating function as

exp(−xt/(1 − t))
1 − t

=
∞∑

n=0

Ln(x)tn (1.1)

(see [1, 2]). By (1.1), we get

∞∑

n=0

Ln(x)tn =
exp(−xt/(1 − t))

1 − t
=

∞∑

r=0

(−1)rxrtr

r!
(1 − t)−(r+1)

=
∞∑

n=0

∞∑

r=0

(−1)rxr(r + s)!
r!r!s!

tr+s =
∞∑

n=0

(
n∑

r=0

(−1)r( n
r )

r!
xr

)

tn.

(1.2)
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Thus, from (1.2), we have

Ln(x) =
n∑

r=0

(−1)r( n
r )

r!
xr. (1.3)

By (1.3), we see that Ln(x) is a polynomial of degree n with rational coefficients and the
leading coefficient (−1)n/n!. It is well known that Rodrigues’ formula is given by

Ln(x) =
1
n!
ex
(

dn

dxn
e−xxn

)
(1.4)

(see [1–27]). From (1.1), we can derive the following of Laguerre polynomials:

L0(x) = 1, L1(x) = −x + 1,

(n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x), (n ≥ 1),
(1.5)

L′
n(x) = L′

n−1(x) − Ln−1(x) = 0, (n ≥ 1), (1.6)

xL′
n(x) = nLn(x) − nLn−1(x) = 0, (n ≥ 1). (1.7)

By (1.7), we easily see that u = Ln(x) is a solution of the following differential equation of
order 2:

xu′′(x) + (1 − x)u′(x) + nu(x) = 0. (1.8)

The Bernoulli numbers, Bn, are defined by the generating function as

t

et − 1
= eBt =

∞∑

n=0

Bn
tn

n!
(1.9)

(see [1–28, 28]), with the usual convention about replacing Bn by Bn.
It is well known that Bernoulli polynomials of degree n are given by

Bn(x) = (B + x)n =
n∑

l=0

(
n
l

)
Bn−lxl (1.10)

(see [2, 26]). Thus, from (1.10), we have

B′
n(x) =

dBn(x)
dx

= nBn−1(x) (1.11)

(see [3–12]). From (1.9) and (1.10), we can derive the following recurrence relation:

B0 = 1, (B + 1)n − Bn = δ1,n (1.12)

where δn,k is Kronecker’s symbol.



Discrete Dynamics in Nature and Society 3

The Euler polynomials En(x) are also defined by the generating function as

2
et + 1

ext = eE(x)t =
∞∑

n=0

En(x)
tn

n!
(1.13)

(see [27, 28]), with the usual convention about replacing En(x) by En(x).
In this special case, x = 0, En(0) = En are called the nth Euler numbers. From (1.13),

we note that the recurrence formula of En is given by

E0 = 1, (E + 1)n + En = 2δ0,n (1.14)

(see [24]). Finally, we introduce Hermite polynomials, which are defined by

e2xt−t
2
= eH(x)t =

∞∑

n=0

Hn(x)
tn

n!
(1.15)

(see [29]). In the special case, x = 0,Hn(0) = Hn is called the n-th Hermite number. By (1.15),
we get

Hn(x) = (H + 2x)n =
n∑

l=0

(
n
l

)
Hn−l2lxl (1.16)

(see [29]). It is not difficult to show that

∫∞

0
e−xLm(x)Ln(x)dx = δm,n, (m,n ∈ Z+ = N ∪ {0}). (1.17)

In the present paper, we investigate some interesting identities and properties of Laguerre
polynomials in connection with Bernoulli, Euler, and Hermite polynomials. These identities
and properties are derived from (1.17).

2. Some Formulae on Laguerre Polynomials in Connection with
Bernoulli, Euler, and Hermite Polynomials

Let

Pn =
{
p(x) ∈ Q[x] | deg p(x) ≤ n

}
. (2.1)

Then Pn is an inner product space with the inner product

〈
p1(x), p2(x)

〉
=
∫∞

0
e−xp1(x)p2(x)dx,

(
p1(x), p2(x) ∈ Pn

)
. (2.2)

By (1.17), (2.1), and (2.2), we see that L0(x), L1(x), . . . , Ln(x) are orthogonal basis for Pn.
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For p(x) ∈ Pn, it is given by

p(x) =
n∑

k=0

CkLk(x), (2.3)

where

Ck =
〈
p(x), Lk(x)

〉
=
∫∞

0
e−xLk(x)p(x)dx =

1
k!

∫∞

0

(
dk

dxk
e−xxk

)

p(x)dx. (2.4)

Let us take p(x) = xn ∈ Pn. From (2.3) and (2.4), we note that

Ck =
1
k!

∫∞

0

(
dk

dxk
e−xxk

)

xndx =
−n
k!

∫∞

0

(
dk−1

dxk−1 e
−xxk

)

xn−1dx

=
(−n)(−(n − 1))

k!

∫∞

0

(
dk−2

dxk−2 e
−xxk

)

xn−2dx

= · · ·

= (−1)k n(n − 1) · · · (n − k + 1)
k!

∫∞

0
e−xxndx = (−1)k

(
n
k

)
n!.

(2.5)

Therefore, by (2.3), (2.4), and (2.5), we obtain the following theorem.

Theorem 2.1. For n ∈ Z+, one has

xn = n!
n∑

k=0

(−1)k
(
n
k

)
Lk(x). (2.6)

Let us consider p(x) = Bn(x) ∈ Pn. Then, by (2.3) and (2.4), we get

Ck =
1
k!

∫∞

0

(
dk

dxk
e−xxk

)

Bn(x)dx =
−n
k!

∫∞

0

(
dk−1

dxk−1 e
−xxk

)

Bn−1(x)dx

=
(−n)(−(n − 1))

k!

∫∞

0

(
dk−2

dxk−2 e
−xxk

)

Bn−2(x)dx

= · · ·

= (−1)k n(n − 1) · · · (n − k + 1)
k!

n−k∑

l=0

(
n − k
l

)
Bn−k−l

∫∞

0
e−xxk+ldx

= (−1)k
(
n
k

)n−k∑

l=0

(
n − k
l

)
Bn−k−l(k + l)! = n!(−1)k

n−k∑

l=0

(
k + l
k

)
Bn−k−l

(n − k − l)!
.

(2.7)

Therefore, by (2.3), (2.4), and (2.7), we obtain the following theorem.
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Theorem 2.2. For n ∈ Z+, one has

Bn(x) = n!
n∑

k=0

n−k∑

l=0

(−1)k
(
k + l
k

)
Bn−k−l

(n − k − l)!
Lk(x). (2.8)

Let us take p(x) = En(x) ∈ Pn. By the same method, we easily see that

En(x) = n!
n∑

k=0

n−k∑

l=0

(−1)k
(
k + l
k

)
En−k−l

(n − k − l)!
Lk(x). (2.9)

For p(x) = Hn(x) ∈ Pn, we have

Hn(x) =
n∑

k=0

CkLk(x), (2.10)

where

Ck =
1
k!

∫∞

0

(
dk

dxk
e−xxk

)

Hn(x)dx =
−2n
k!

∫∞

0

(
dk−1

dxk−1 e
−xxk

)

Hn−1(x)dx

=
(−2n)(−2(n − 1))

k!

∫∞

0

(
dk−2

dxk−2 e
−xxk

)

Hn−2(x)dx

= · · ·

=
(−2n)(−2(n − 1)) · · · (−2(n − k + 1))

k!

∫∞

0
e−xxkHn−k(x)dx

=
(−1)k2kn(n − 1) · · · (n − k + 1)

k!

n−k∑

l=0

(
n − k
l

)
Hn−k−l2l

∫∞

0
e−xxk+ldx

= (−1)k
(
n
k

)n−k∑

l=0

(
n − k
l

)
2k+lHn−k−l(k + l)! = n!(−1)k

n−k∑

l=0

2k+l
(
k + l
k

)
Hn−k−l

(n − k − l)!
.

(2.11)

Therefore, by (2.10) and (2.11), we obtain the following theorem.

Theorem 2.3. For n ∈ Z+, one has

Hn(x) = n!
n∑

k=0

n−k∑

l=0

(−1)k2k+l
(
k + l
k

)
Hn−k−l

(n − k − l)!
Lk(x). (2.12)

Let p(x) =
∑n

k=0 Bk(x)Bn−k(x) ∈ Pn. Then we have

p(x) =
n∑

k=0

Bk(x)Bn−k(x) =
n∑

k=0

CkLk(x), (2.13)
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where

Ck =
1
k!

∫∞

0

(
dk

dxk
e−xxk

)

p(x)dx. (2.14)

In [15], it is known that

n∑

k=0

Bk(x)Bn−k(x) =
2

n + 2

n−2∑

l=0

(
n + 2
l

)
Bn−lBl(x) + (n + 1)Bn(x). (2.15)

By (2.14) and (2.15), we get

Ck =
1
k!

{
2

n + 2

n−2∑

l=0

(
n + 2
l

)
Bn−l

∫∞

0

(
dk

dxk
e−xxk

)

Bl(x)dx

+(n + 1)
∫∞

0

(
dk

dxk
e−xxk

)

Bn(x)dx

}

.

(2.16)

From (2.16), we can derive the following equations ((2.17)-(2.18)):

Cn = (−1)n(n + 1)!, Cn−1 = n(n + 1)!(−1)n−1 − 1
2
(−1)n−1(n + 1)!. (2.17)

For 0 ≤ k ≤ n − 2, we have

Ck =
2

n + 2

n−2∑

l=k

l−k∑

m=0

(
n + 2
l

)(
k +m
k

)
l!(−1)kBn−l

Bl−k−m
(l − k −m)!

+ (−1)k(n + 1)!
n−k∑

m=0

(
k +m
k

)
Bn−k−m

(n − k −m)!
.

(2.18)

Therefore, by (2.13), (2.17), and (2.18), we obtain the following theorem.

Theorem 2.4. For n ∈ Z+, one has

n∑

k=0

Bk(x)Bn−k(x) =
n−2∑

k=0

{
2

n + 2

n−2∑

l=k

l−k∑

m=0
(−1)kl!

(
n + 2
l

)(
k +m
k

)
Bn−l

Bl−k−m
(l − k −m)!

+(−1)k(n + 1)!
n−k∑

m=0

(
k +m
k

)
Bn−k−m

(n − k −m)!

}

Lk(x)

+
(
n(n + 1)!(−1)n−1 − 1

2
(−1)n−1(n + 1)!

)
Ln−1(x) + (−1)n(n + 1)!Ln(x).

(2.19)
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Let us take p(x) =
∑n

k=0 Ek(x)En−k(x) ∈ Pn. By (2.3) and (2.4), we get

p(x) =
n∑

k=0

Ek(x)En−k(x) =
n∑

k=0

CkLk(x), (2.20)

where

Ck =
1
k!

∫∞

0

(
dk

dxk
e−xxk

)

p(x)dx. (2.21)

It is known (see [15]) that

n∑

k=0

Ek(x)En−k(x) =
n−1∑

k=0

(n + 1)( n
k )

n − k + 1

(
n∑

l=k

El−kEn−l − 2En−k

)

Ek(x) + 2(n + 1)En(x). (2.22)

From (2.20), (2.21), and (2.22), we can derive the following equations ((2.23)-(2.24)):

Cn =
(−1)n
n!

2(n + 1)(n!)2 = 2(−1)n(n + 1)!. (2.23)

For 0 ≤ k ≤ n − 1, we have

Ck =
n−1∑

l=k

(n + 1)( n
l )

(n − l + 1)!

(
n∑

m=l

Em−lEn−m − 2En−l

)
l−k∑

p=0
(−1)kl!

(
k + p
k

)
El−k−p

(
l − k − p

)
!

+ 2(n + 1)!(−1)k
n−k∑

p=0

(
k + p
k

)
En−k−p

(
n − k − p

)
!
.

(2.24)

Therefore, by (2.20) and (2.24), we obtain the following theorem.

Theorem 2.5. For n ∈ Z+, one has

n∑

k=0

Ek(x)En−k(x) =
n−1∑

k=0

⎧
⎨

⎩

n−1∑

l=k

(n + 1)( n
l )

(n − l + 1)!

(
n∑

m=l

Em−lEn−m − 2En−l

)
l−k∑

p=0
(−1)kl!

(
k + p
k

)

× El−k−p
(
l − k − p

)
!
+ 2(n + 1)!(−1)k

n−k∑

p=0

(
k + p
k

)
En−k−p

(
n − k − p

)
!

⎫
⎬

⎭
Lk(x)

+ 2(−1)n(n + 1)!Ln(x).
(2.25)
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It is known that

n∑

k=0

Ek(x)En−k(x) = p(x) = − 4
n + 2

n∑

k=0

(
n + 2
k

)
En−k+1Bk(x) (2.26)

(see [15]). From (2.20), (2.21), and (2.23), we have

Ck =
1
k!

∫∞

0

(
dk

dxk
e−xxk

)

p(x)dx

= − 4
n + 2

n∑

l=k

(
n + 2
l

)
En−l+1

1
k!

∫∞

0

(
dke−xxk

dxk

)

Bl(x)dx

= − 4
n + 2

n∑

l=k

l−k∑

m=0

(
n + 2
l

)
(−1)kEn−l+1

Bl−k−m
(l − k −m)!

l!
(
m + k
k

)
.

(2.27)

Therefore, by (2.20) and (2.27), we obtain the following theorem.

Theorem 2.6. For n ∈ Z+, one has

n∑

k=0

Ek(x)En−k(x)

= − 4
n + 2

n∑

k=0

n∑

l=k

l−k∑

m=0

(
n + 2
l

)
(−1)kEn−l+1

Bl−k−m
(l − k −m)!

l!
(
m + k
k

)
Lk(x).

(2.28)

Remark 2.7. Laguerre’s differential equation

ty′′ + (1 − t)y′ + ny = 0 (2.29)

is known to possess polynomial solutions when n is a nonnegative integer. These solutions
are naturally called Laguerre polynomials and are denoted by Ln(t). That is, y = Ln(t) are
solutions of (2.29) which are given by

y = Ln(t) =
n∑

r=0

( n
r )(−1)r
r!

tr , L0(1) = 1. (2.30)

From (2.30), we note that Laplace transform of y = Ln(t) is given by

L(y) = L(Ln(t)) =
1
s

n∑

r=0

(
n
r

)
(−1)r

(
1
s

)r

=
(s − 1)n

sn+1
. (2.31)
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It is not difficult to show that

L
(
et

n!

(
dn

dtn
e−ttn

))
= L(y) = (s − 1)n

sn+1
. (2.32)

Thus, we conclude that

Ln(t) =
et

n!

(
dn

dtn
e−ttn

)
, for n ∈ Z+. (2.33)
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