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Let P, = {p(x) € R[x] | deg p(x) < n} be an inner product space with the inner product (p(x),
q(x)) = fgo x*e *p(x)q(x)dx, where p(x),q(x) € P, and a € R with a > 1. In this paper we
study the properties of the extended Laguerre polynomials which are an orthogonal basis for P,,.
From those properties, we derive some interesting relations and identities of the extended Laguerre
polynomials associated with Hermite, Bernoulli, and Euler numbers and polynomials.

1. Introduction/Preliminaries

For a € R with a > -1, the extended Laguerre polynomials are defined by the generating
function as follows:

exp(—=xt/(1-1)) & "
T n; MEYLL (1.1)
see [1-6].
From (1.1), we can derive the following;:
Ly(x) = Z Sl (m , (1.2)

see [1-9].
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As is well known, Rodrigues’ formula for Lf(x) is given by

1 - X dn —X . N+
Lﬁ(x):mx e <%e x ), (1.3)

see [1-6, 8, 9].
From (1.3), we note that

f x%e ™ Ly (x) L5 (x)dx = %F(a +n+1)0mn, (a>-1), (1.4)
0 .

where 6, , is the Kronecker symbol.
From (1.1), (1.2), and (1.3), we can derive the following identities:

(m+ 1)L (x)+ (x—a-2n-1)L;(x) + (n+a)L;_(x) =0, (neN), (1.5)
d d

ELZ (x) - aLi_l(x) +L% (x)=0, forn>1, (1.6)

x;—xLﬁ(x) =nLy(x)-(n+a)l)_(x)=0, (n>1), (1.7)

and L (x) is a solution of xy" + (a + 1 - x)y' + xy = 0.
The derivatives of general Laguerre polynomials are given by

A e =L, L) = (1 a)x L (),

d d
. x dx (1.8)
o (e™L%(x)) = —e L% (x), o (x"e*L%(x)) = (n+ 1)x" e L% 1 (x).
The nth Bernoulli polynomials, B, (x), are defined by the generating function to be
=3 tn
xt _ LB(x)t _ B L
e =e }(;) ,,(x)n!, (1.9)

see [10-17], with the usual convention about replacing B"(x) by B, (x). In the special case,
x =0, B,(0) = B, are called the nth Bernoulli numbers.

It is well known that the nth Euler polynomials are also defined by the generating
function to be

2
et +1

0 n
oxt = pE@ _ Z En(x)ﬁ, (1.10)
n=0 :

see [18-22], with the usual convention about replacing E"(x) by E,(x).
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The Hermite polynomials are given by
Hy(x)= (H+2x0)"= Y <’I1> 2'x'H,_, (1.11)
1=0

see [23, 24], with the usual convention about replacing H" by H,. In the special case, x = 0,
H,(0) = H, are called the nth Hermite numbers.
From (1.11), we note that

;—an(x) =2n(H +2x)""' = 2nH,_(x), (1.12)

see [23,24], and H,(x) is a solution of Hermite differential equation which is given by
y' -2xy' +ny =0, (1.13)

(see [1-6, 23-32]).

Throughout this paper we assume that « € R with @ > -1. Let P, = {p(x) € R[x]|
degp(x) < n}. Then P, is an inner product space with the inner product (p(x),q(x)) =
fgc’ x%e*p(x)q(x)dx, where p(x),q(x) € P,. By (1.4) the set of the extended Laguerre
polynomials {L{(x), L{(x),...,L;(x)} is an orthogonal basis for P,. In this paper we study
the properties of the extended Laguerre polynomials which are an orthogonal basis for P,,.
From those properties, we derive some new and interesting relations and identities of the
extended Laguerre polynomials associated with Hermite, Bernoulli and Euler numbers and
polynomials.

2. On the Extended Laguerre Polynomials Associated with Hermite,
Bernoulli, and Euler Polynomials

For p(x) € P, p(x) is given by

n
p(x) = Z CkLi(x), for uniquely determined real numbers Cy. (2.1)
k=0

From (1.3), (1.4), and (2.1), we note that

(p(x), Li(@)) = Ci(L{ (), Li(x) = Ci f "t LE () L () dx = O AR,

0 - (2.2)
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Thus, by (2.2), we get
c k! L
k= m(lﬂ(x)r 1(x))
k! 1 ® dk k+a —x
- r(a+k+1)ﬁf0 <ﬁx ¢ >p(x)dx (23)

v Jm d—kxk“"e*" (x)dx
Tark+1) ), \ dxr plxj e

Therefore, by (2.1) and (2.3), we obtain the following proposition.

Proposition 2.1. For p(x) € Py, let

p(x) = > CkLi(x), (a>-1). (2.4)
k=0
Then one has the following:
1 * dk k+a ,—x
Ck = m IO <wx e >p(x)dx (25)

To derive inverse formula of (1.2), let take one p(x) = x" € P,,. Then, by Proposition 2.1,

one gets
1 . dr —-x . k+a n
Ck-mﬂ <we X

cnn=1)---(n—-k+1) (*
IMNa+k+1) f

chn=1)---(n—-k+1)
IMa+k+1)

3 (—1)kn!(a+n)--~(xf(a)

~ (a+k)---al(a)(n-k)!

(a+n)---(a+k+1) +
= (-1)*n! T = (-1)*n! <Z_Z>

e *x""dx

0

= (-1 IlNa+n+1) (2.6)

Therefore, by (2.6), we obtain the following corollary.

Corollary 2.2 (Inverse formula of L (x)). For n € Z,, one has

n_ o xofatn a
x" = n! %(n i k) (-1)FLE(x). (2.7)
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Let one takes Bernoulli polynomials of degree n with p(x) = B,(x) € P,. Then B, (x)
can be written as

B,(x) = i CkLi(x), (a€R witha>-1). (2.8)
k=0

From Proposition 2.1, one has

Ck = ;J‘oo d—ke‘xxk”" B, (x)dx
KT T(a+k+1) ), \ dxk "

_ DD okt D) (7 kiap iy

Ta+k+1) 0
(D nmn=1)- (n=k+1) ' n-k - =
_s)mnn-L)---n—-k+ n- —x k+a+l
- Ta+k+1) %( ! )B"k’jo e X dx
(-Dfn(n-1)---(n-k+1) "_k<n—k>
= @ikt D) % ;) Brkal(@+k+1+1).
By the fundamental property of gamma function, one gets
T(a+k+1+1) (n—k> C(a+l+k)(@+k+ D@+ k+D)(n-k)!  (“F)
Tla+k+)(n-k)!\ I B Fa+k+1)(n—k)!(n-k-D S (n-k-DU
(2.10)
Therefore, by (2.8), (2.9), and (2.10), we obtain the following theorem.
Theorem 2.3. Forn € Z,, a € R with a > -1, one has
n n-k
— 1k a+k+l> Bn—k—l o
B, (x) n.kzzog(;( 1) ( , —(n_k_l)!Lk(x). (2.11)

As is known, relationships between Hermite and Laguerre polynomials are given by

Hopm(x) = (—1)"22mmIL-1/2 (x2>, (2.12)

Hopmsn (%) = (—1)m22m+1m!L-m1/2(x2>, (2.13)

see [1-6]. In the special case a« = —1/2, by (2.12) and (2.13), we obtain the following corollary.



6 Abstract and Applied Analysis

Corollary 2.4. For n € Z,, one has

nonk i) L sk e1\  Bus
2\ _ 2k + K+ n—k-1
Bn<x ) =ny 2\ 2 rr— e (2.14)

By the same method as Theorem 2.3, one gets

n n-k
Ex)=n} S (—1)"("‘ - ;‘ " l> (nE"k" Lo LE(x), (2.15)

k=0 1=0 D!

where E,(x) are the nth Euler polynomials. In the special case, x = 0, E,(0) = E,, are called
the nth Euler numbers.

Let one considers the nth Hermite polynomials with p(x) = H,(x) € P,. Then H,(x)
can be written as

H,(x) = i CkLi(x), (a€R with a>-1). (2.16)

From Proposition 2.1, one notes that

_ 2 x, k+a
Cr = (a+k+1)f <dxke x >Hn(x)dx

_ (—211) = dk_l -x k+a
S TarkeD) Jo \aa® ¥ JHmdx

_ (2m)(2n-1) (2 -k+ 1) (T e 217)
- Ta+k+1) f e Hyoie(x)dx

(~1)k2kp! n- k< ) ’F o
F(a+k+1)(n_k)|z Hy k12 . e Xxkratlgy

(=1)k2kn! nk
F(tx+k+1)(71:—k)'z< ) Hy 2 T(a+ k +1+1).

It is not difficult to show that

(")Ta+k+1+1)  (n-Kl(a+k+D)---(@a+k+ D (a+k+1)  (“F7)
T(a+k+1)(n-k) (mn—k-DIT(a+k+1)(n-k)! S (n-k-DU

(2.18)

Therefore, by (2.16), (2.17), and (2.18), we obtain the following theorem.
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Theorem 2.5. Forn € Z,, a € R with a > -1, one has

n

n-k
Ha(x)=n! 3 Y (~1)k2k <“ " ;‘ " l) Hukd_payy.

k=0 1=0 (n—k-1D!

In the special case, @ = —1/2, we obtain the following corollary.

Corollary 2.6. For n € Z,, one has

n nk Ik () —1+k+l Hy ki
Hi() =m 2 3, — = (27 ) e

k=0 1=0
For p € Rwith > -1, let one takes
p(x) = Li(x) € P

Then Lﬁ(x) is also written as

im:iqqm.
k=0

From Proposition 2.1, one can determine the coefficients of (2.22) as follows:
1 “ dk x . k+a p
= - — e L, (x)d
Cr lxa+k+1)£]<dﬂf x n(x)dx

1 “ dk_l —x  k+a p+1
T Ta+k+1) Jo <dxk—1e Xt >Ln1(x)dx

1 o
‘rm+k+uJ;e

Kk (=1)" n+p .
1 X ( 1) < n-k-r ) f e—xxk+a+rdx
0

xx“‘"Lﬁt’,i(x)dx

lla+k+1) = 7!
= ! 5 (—1)r<nﬁ[_§r > Ik+a+r+1)
T Ta+k+1) & ﬂ grr+a.

By the fundamental property of gamma function, one gets

Ik+a+r+1) (k+a+r)---(a+k+1)I'(a+k+1) _ <k+a+r>.

riT(a+k+1) riT(a+k+1) r

Therefore, by (2.22), (2.23), and (2.24), we obtain the following theorem.

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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Theorem 2.7. For f € Rwith > -1, and n € Z,, one has

Lﬁ(x) gn k( 1)( n+ﬂ ><a+k+r>L,ﬁ(x). (2.25)

r=0 r

In the special case, a = f3, one has

Z_(l)(nZ( 1)" < n+a ><a+f+r>>Lz(x)=0. (2.26)

Thus, by (2.26), we obtain the following corollary.

Corollary 2.8. For0 <k <n-1, a € Rwith a > -1, one has

Z( 1)< n+a ><a+l;+r>=0‘ (2.27)

Let one assumes that
n
p(x) = D’ Bi(x)Byi(x) € P, (2.28)
1=0
Then p(x) can be rewritten as a linear combination of L{(x), L{(x), ..., L;(x) as follows:

p() = 3 B Bui(x) = 3 CeLi (). (229)
1=0 k=0

By Proposition 2.1, one can determine the coefficients of (2.29) as follows:

Ci = T(a+ k " 1) J <—6"‘x"+“>Bz(x)Bn_z (x)dx. (2.30)

It is known that

2 n-2
n+2

Z Bl(x)Bn l(x

<" * 2) B,Bi(x) + (n +1)B, (), (2.31)
1=0

—

=0

see [25].
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From (2.30) and (2.31), one notes that

n+1 ® d" —-x . n+a
= Tarna ), (e Bt
n+1 w o (C (n+1)I(-1)"
- - - (_ 1 X N+ _ At AT
F(a+n+1)( 1) n.Le x" % dx F(a+n+1)r(n+a+1)
= (n+ I,
n+1 dn_l -x n 1+a
© = T ), <dxn—1e >B (x)dx (232)
_ n+1 (_1)n—1n,fw e—xxn—1+aB (x)dx
I'(a+n) Jo !
ol e _1
= F(zx+n)( 1) n.{F(a+n+1) 2F(a+n)}

(n+1)1(-1)"" <n - %)

For 0 <k <n -2, one has

1 2 En+2 >/ dk
Ck_I“(zx+k+1){n+21_0< I >B"_ZL <dxke Bi(x)dx
o0 dk
+(n+1)f < e k“">B (x)dx}
0 dx

n-2

I=k

+n+1)(-Dnn-1)---(n-k+1) foo e‘xxk+”‘Bn_k(x)dx}
0

- r(a+1k+1){nizgc;z)&“l(_l) k)'z< )B’k]fe_xkadx
e k)|z<” k) nk]fwe-xxk+a+fdx}

1 2 2lkpnyo
IMNa+k+1) {n+ZIZ]Z< >

-k
( k)'< . >B1k,1"(cx+k+]+1)
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. on ok .
+(n+1)(-1) (n—k)!j§< j )Bnkjl"(a+k+]+1)}

5 n=2l-k L2 a+k+j7)--(a+k+1)Bxj
RN G s
1=k j=0 jl=k=j)!

B '"k(a k+j)--(a+k+1)
n-k—j
j=0 ](1’1 k- ])' !

+(n+1)(-1)'n

n-2 l-k

2 <n+2) knfa+k+j Blk]
= B,(-1) l!< .

(I-k-j)

n-k . Bn— .
=0 '
(2.33)

Therefore, by (2.29) and (2.32), we obtain the following theorem.

Theorem 2.9. Forn € Z., a € R with a > -1, one has

> Bi(x) Bk (x)
k=0
e R U’ ( 1)k<n+2)l'B <a+k+]> Bk
= - +Dn-1 .
=0 | 21X ocimk ! J (I-k-j)!

Ckfa+k+\  Brk
+(n+1)!05jgzn—k( 1) ( i >—(n o ),} Li(x)

+(-D)"(n+ 1)!{Lﬁ(x) - <n +a-— —> 1(x)}

(2.34)

Let one takes the polynomial p(x) in P, as follows:

p)= 3 By(0)By(x) By (x) €Py (2.35)

i1++i,=n

From the orthogonality of {L{(x),..., L;(x)}, one notes that

p(x)= >, Bi(0)By(x):- B (x) = Y, CeL{(x), (2.36)

i1 ++ip=n k=0

where

Ck m’[ <—€ xxk“">p(x)dx. (237)
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It is known in [25] that

S By(x)--B; (%)

i+t =n

1S n+r-1 r
B 2 Z( k ) {max[ Z ]Sa§r<a> Z BBy - B (2.38)

k=0 0,k+r-n i1+-+ig=n+a—k-r

n+r-1
+- Z Bil"'Bir}Ek(x)+< . >En(x).
i+t =n—k

From (2.35), (2.37), and (2.38), one notes that

(n+£—1 ) w©

Ma+n+1) ),

C, = ( d e‘xx"“")En(x)dx

dxm

n+r-1 ©
_ ( n ) (_1)nn!J‘ XM o™X 5

IlNa+n+1) 0
_ (mr ) no _(n+r-1 "
= m(—l) n.T(a+n+ 1) = < n >(—1) n.,
(n+;—1) ®© dn—l ~ 5
- xynal Vo 2.39
Cna Tarm ), dx"‘le x E,(x)dx ( )

( n+r-1 ) ) o .
— n 1)L X ynta-lp d
F((x+n)( ) nJO e *x 1(x)dx

= r((r::iz) (-1)"—1n!{r(a +n+1)- %F(a{ + n)}

(n +:l - 1> (—1)"_1n!<n +a- %)

For 0 < k <n-2,by (2.37) and (2.38), one gets

1 1S /n+r-1 r
A E Gr | (I A T
r(a +k+ 1) { 2 1=0 ! max{0,l+r-n}<a<r a i1+--+ig=n+a-l-r s

o] dk
+ B, ---Bi, J <—e‘xx”+“>E,(x)dx
1'1+-~+Zir:7l—l 1 > 0 ka

n+r—1\ (©/ d _ ..
+< . >L <ﬂe x >En(x)dx}
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1 1"‘2<n+r—1) (r)
R _Z Z Z BB, ---B;,
r(a +k+ 1) { 2 1=k ! max{0,l+r-n}<a<r a/ ig= s

i1+-+ig=n+a-l-r

+ Y B,»l---Bir>(—1)kl(l—1)---(l—k+1)

i+--+i,=n-1

f e xMOE 1 (x)dx
0

+<” > “Datn-1)-(n- k+l)J xk+“En_k(x)dx}

1S /n+r-1
m{2< >< 2 & BB

max{0,l+r-n}<a<r ij+-+ig=n+a-l-r

b By >(1);Z: Z( >E1_k_]~

i+ tip=n-1

© .
x J‘ e—xxk+u+]dx
0

G L G et

11’1
:EZ n+r 1 < Z B -- B + Z Bil"'Bir>

max{ Ol+r —n}<a<r ij+-+ig=n+a—l-r i+tiy=n-l

Ik
% (-1)F I a+k+j\ Erkj
i/ -k=))

()

(2.40)

Therefore, by (2.36), (2.39), and (2.40), we obtain the following theorem.

Theorem 2.10. Forn € Z.,r € N, and a € R with a > -1, one has

D, Bi(0)Bi(x)- B (x)

i1+e+i,=n

n-2

n+r-— r
{zz.( )< s () s ses
k=0 max{0,l+r-n}<a<r i1+ +ig=n+a-l-r
+ Z Bi1 ce Bi,>
n-1

14+, =n—
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Xlk a+k+j\  Erkj . n+r-1 (<1)knt
j=0 ] (l k- ]), n .
n-k . En, - _

x <"‘+’.‘+]>—’<{ L5(x) + ("” 1>(—1)"*1n!
S\ T/ (n-k-j) n

« (n ra- %)szl(x) + (” e 1) (=1)"nIL% ().

(2.41)
For m, s € Z, with m + s = n, let one assumes that p(x) = L% (x)L%,(x) € P,,.
By Proposition 2.1, one sees that p(x) can be written as
p(x) = L%(x)L% (x) = Z CkL{(x), a€R witha>-1. (2.42)
k=0
From the orthogonality of {L{(x), L{(x),...,L;(x)}, one has
Y x k+a
Cr = I'(a+ k +1) J <dxke X >p(x)dx. (2.43)
By (1.2), (1.3), and (1.8), one gets
S _1 n m _1 Lyl
e - (XS (e ) (S ()
120 71! S—nNn 220 1! m-—r;
(2.44)

S(Eer ()
Thus, from (2.44), one has
e =SS ()EN ()5 5)
By (2.44) and (2.45), one gets
e I PO LA [ I
x J:O <;—;exxk+“>xrdx
S = DTG ol (1o [ (R £
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x (-D)*r@r-1)---(r—k+1) foo e X" dx
0

- S OGN G
. (-1)kr!
(r-k)!

= %<‘1>k(2(?)<21?)(ﬁ1ii7) (“+T)(“+T(r—_1;(-)~!-(a+k+1)>

1=0

=S (SOEDEEED)

Fa+r+1)

(2.46)

Therefore, by (2.42) and (2.46), we obtain the following theorem.

Theorem 2.11. For s,m € Z, withs+m =n, a € R with a > -1, one has

e -3 (SN GN D e en

k=0 r=k =0
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