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Abstract. In this paper, we consider Carlitz q-Bernoulli numbers and q-stirling numbers
of the first and the second kind. From the properties of q-stirling numbers, we derive many
interesting formulae associated with Carlitz q-Bernoulli numbers. Finally, we will prove

βn,q =

n
X

m=0

n
X

k=m

1

(1 − q)n+m−k

X

d0+···+dk=n−k

q
Pk

i=0 idis1,q(k, m)(−1)n−m m + 1

[m + 1]q
,

where βn,q are called Carlitz q-Bernoulli numbers.

1. Introduction

Let p be a fixed prime number. Throughout this paper, Zp, Qp, C and Cp will,
respectively, denote the ring of p-adic rational integers, the field of p-adic rational
numbers, the complex number field, and the completion of algebraic closure of Qp.
For d a fixed positive integer with (p, d) = 1, let

X = Xd = lim
←−
N

Z/dpNZ, X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

a + dpZp,

a + dpNZp = {x ∈ X | x ≡ a (mod dpN )},

where a ∈ Z lies in 0 ≤ a < dpN , see [1-21]. The p-adic absolute value in Cp

is normalized so that |p|p = 1/p. When one talks of q-extension, q is variously
considered as an indeterminate, a complex number q ∈ C or a p-adic number q ∈ Cp.

If q ∈ Cp, then we assume |q − 1|p < p−
1

p−1 , so that qx = exp(x log q) for |x|p ≤ 1.

We use the notation [x]q = [x : q] =
1− qx

1− q
. For f ∈ C(1)(Zp) = {f | f ′ ∈ C(Zp)},

let us start with the expressions

1

[pN ]q

∑

0≤j<pN

qjf(j) =
∑

0≤j<pN

f(j)µq(j + pNZp), see [6, 8],

representing q-analogue of Riemann sums for f . The p-adic q-integral of a function
f ∈ C(1)(Zp) is defined by

∫

X

f(x)dµq(x) =

∫

Zp

f(x)dµq(x) = lim
N→∞

1

[pN ]q

pN−1
∑

x=0

f(x)qx, see [8].
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For f ∈ C(1)(Zp), it is easy to see that,

|

∫

Zp

f(x)dµq(x)|p ≤ p‖f‖1, see [6− 14],

where ‖f‖1 = sup

{

|f(0)|p, supx 6=y |
f(x)− f(y)

x− y
|p

}

. If fn → f in C(1)(Zp),

namely ‖fn − f‖1 → 0, then

∫

Zp

fn(x)dµq(x)→

∫

Zp

f(x)dµq(x), see [6− 10].

The q-analogue of binomial coefficient was known as

[

x
n

]

q

=
[x]q[x− 1]q · · · [x− n + 1]q

[n]q!
,

where [n]q! =
∏n

i=1[i]q, (see [1, 5, 6, 10, 11]). From this definition, we derive,

[

x + 1
n

]

q

=

[

x
n− 1

]

q

+ qx

[

x
n

]

q

= qx−n

[

x
n− 1

]

q

+

[

x
n

]

q

, cf. [6, 10].

Thus, we have
∫

Zp

[

x
n

]

q

dµq(x) =
(−1)n

[n + 1]q
qn+1−(n+1

2 ). If f(x) =
∑

k≥0

ak,q

[

x
k

]

q

is the

q-analogue of Mahler series of strictly differentiable function f , then we see that

∫

Zp

f(x)dµq(x) =
∑

k≥0

ak,q

(−1)k

[k + 1]q
qk+1−(k+1

2 ).

Carlitz q-Bernoulli numbers βk,q(= βk(q)) can be determined inductively by

β0,q = 1, q(qβ + 1)k − βk,q =

{

1 if k = 1

0 if k > 1,

with the usual convention of replacing βi by βi,q, (see [2, 3, 4]). In this paper, we
study the q-stirling numbers of the first and the second kind. From these q-stirling
numbers, we derive some interesting q-stirling numbers identities associated with
Carlitz q-Bernoulli numbers. Finally we will prove the following formula :

βn,q =
n
∑

m=q

n
∑

k=m

1

(1− q)n+m−k

∑

d0+···+dk=n−k

q
Pk

i=0
idis1,q(k, m)(−1)n−m m + 1

[m + 1]q
,

where s1,q(k, m) is the q-stirling number of the first kind.

2. q-Stirling numbers and Carlitz q-Bernoulli numbers
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For m ∈ Z+, we note that

βm,q =

∫

Zp

[x]mq dµq(x) =

∫

X

[x]mq dµq(x).

From this formula, we derive

β0,q = 1, q(qβ + 1)k − βk,q =

{

1 if k = 1

0 if k > 1,

with the usual convention of replacing βi by βi,q. By the simple calculation of p-adic
q-integral on Zp, we see that

βn,q =
1

(1 − q)n

n
∑

i=0

(

n

i

)

(−1)i i + 1

[i + 1]q
, (1)

where
(

n
i

)

=
n!

i!(n− i)!
=

n(n− 1) · · · (n− i + 1)

i!
. Let F (t) be the generating func-

tion of Carlitz q-Bernoulli numbers. Then we have

F (t) =

∞
∑

n=0

βn,q

tn

n!
=

∞
∑

n=0

lim
ρ→∞

1

[pρ]q

pρ−1
∑

x=0

qxe[x]qt (2)

=

∞
∑

n=0

1

(1− q)n

{

∞
∑

k=0

(

n

k

)

k + 1

[k + 1]q
(−1)k

}

tn

n!

= e

t

1− q
∞
∑

k=0

(−1)k

(1− q)k

k + 1

[k + 1]q

tk

k!
.

From (2) we note that,

F (t) = e

t

1− q + e

t

1− q
∞
∑

k=1

(−1)k

(1− q)k−1

(

k

1− qk+1

)

tk

k!
(3)

+e

t

1− q
∞
∑

k=1

(−1)k

(1− q)k−1

(

1

1− qk+1

)

tk

k!

= −t
∞
∑

n=0

q2ne[n]qt + (1− q)
∞
∑

n=0

qne[n]qt.

Therefore we obtain the following:

Lemma 1. Let F (t) =
∑∞

n=0

∫

Zp
[x]nq dµq(x)

tn

n!
. Then we have

F (t) = −t

∞
∑

n=0

q2ne[n]qt + (1− q)

∞
∑

n=0

qne[n]qt.
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The q-Bernoulli polynomials in the variable x in Cp with |x|p ≤ 1 are defined
by

βn,q(x) =

∫

Zp

[x + t]nq dµq(t) =

∫

X

[x + t]nq dµq(x). (4)

Thus we have

∫

Zp

[x + t]nq dµq(x) =

n
∑

k=0

(

n

k

)

[x]n−k
q qkx

∫

Zp

[t]kqdµq(t)

=

n
∑

k=0

(

n

k

)

[x]n−k
q qkxβk,q = (qxβ + [x]q)

n.

From (4) we derive

∫

Zp

[x + t]nq dµq(x) = βn,q(x) =
1

(1− q)n

n
∑

k=0

(

n

k

)

(−1)kqkx k + 1

[k + 1]q
. (5)

Let F (t, x) be the generating function of q-Bernoulli polynomials. By (5) we see
that

F (t, x) =

∞
∑

n=0

βn,q(x)
tn

n!
= e

t

1− q
∞
∑

k=0

1

(1− q)k
qkx(−1)k k + 1

[k + 1]q

tk

k!
. (6)

From (6) we note that

F (t, x) = −t
∞
∑

n=0

q2n+xe[n+x]qt + (1− q)
∞
∑

n=0

qne[n+x]qt. (7)

By (4) and (7), we easily see that

[m]k−1
q

m−1
∑

i=0

qiβk,qm(
x + i

m
) = βk,q(x), m ∈ N, k ∈ Z+. (8)

If we take x = 0 in (8), then we have

[n]qβn,q =
m
∑

k=0

(

m

k

)

βk,qn [n]kq

n−1
∑

j=0

qj(k+1)[j]n−k
q .

By (2), (6) and (7), we see that

−

∞
∑

l=0

q2l+ne[n+l]qt +

∞
∑

l=0

q2le[l]qt =

∞
∑

m=1

(m

n−1
∑

l=0

q2l[l]m−1
q )

tm−1

m!
. (9)
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Note that
∑∞

l=0 q2l+ne[n+l]qt +
∑n

l=0 q2le[l]qt =
1

t
(F (t, n)− F (t)). Thus, we have

∞
∑

m=0

(βm,q(n)− βm,q)
tm

m!
=

∞
∑

m=0

(m

n−1
∑

l=0

q2l[l]m−1
q )

tm

m!
. (10)

By comparing the coefficients on both sides in (10), we see that

βm,q(n)− βm,q = m

n−1
∑

l=0

q2l[l]m−1
q . (11)

Therefore we obtain the following:

Proposition 2. For m, n ∈ N, we have

(q − 1)

n−1
∑

l=0

ql[l]mq +

n−1
∑

l=0

ql[l]m−1
q =

1

m

m−1
∑

l=0

(

m

l

)

[n]m−l
q qnlβl,q + (qmn − 1)βm,q.

Now we consider the q-analogue of Jordan factor as follows:

[x]k,q = [x]q[x− 1]q · · · [x− k + 1]q =
(1 − qx)(1 − qx−1) · · · (1− qx−k+1)

(1 − q)k
.

The q-binomial coefficient is defined by

[

n
k

]

q

=
[n]q!

[k]q![n− k]q!
=

(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− q)(1− q2) · · · (1− qk)
, (12)

where [n]q! = [n]q[n− 1]q · · · [2]q[1]q. The q-binomial formulas are known as

n
∏

i=1

(a + bqi−1) =

n
∑

k=0

[

n
k

]

q

q(
n

k)an−kbk, (13)

and
n
∏

i=1

(1 − bqi−1)−1 =

n
∑

k=0

[

n + k − 1
k

]

q

bk.

The q-Stirling numbers of the first kind s1,q(n, k) and the second kind s2,q(n, k) are
defined as

[x]n,q = q−(n
2)

n
∑

l=0

s1,q(n, l)[x]lq, n = 0, 1, 2, · · · , (14)

and

[x]nq =

n
∑

k=0

q(
k
2)s2,q(n, k)[x]k,q, n = 0, 1, 2, · · · , see [2, 3, 6]. (15)
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The values s1,q(n, 1), n = 1, 2, 3, · · · , and s2,q(n, 2), n = 2, 3, · · · , may be de-
duced from the following recurrence relation:

s1,q(n, k) = s1,q(n− 1, k − 1)− [n− 1]qs1,q(n− 1, k), see [2, 3, 6],

for k = 1, 2, · · · , n, n = 1, 2, · · · , with initial conditions s1,q(0, 0) = 1, s1,q(n, k) = 0
if k > n. For k = 1, it follows that

s1,q(n, 1) = −[n− 1]qs1,q(n− 1, 1), n = 2, 3, · · · ,

and since s1,q(1, 1) = 1, we have s1,q(n, 1) = (−1)n−1[n − 1]q!, n = 1, 2, 3, · · · .
The recurrence relation for k = 2 reduce to s1,q(n, 2) + [n − 1]qs1,q(n − 1, 2) =
(−1)n−2[n− 2]q!, n = 3, 4, · · · . By simple calculation, we easily see that

(−1)n+1s1,q(n + 1, 2)

[n]q!
−

(−1)ns1,q(n, 2)

[n− 1]q!
= (−1)n+1 s1,q(n + 1, 2)− [n]qs1,q(n, 2)

[n]q!

= (−1)n+1 (−1)n+1[n− 1]q!

[n]q!
=

1

[n]q
, n = 2, 3, 4, · · · .

Thus we have
(−1)ns1,q(n, 2)

[n− 1]q!
=

n−1
∑

k=1

1

[k]q
.

This is equivalent to s1,q(n, 2) = (−1)n[n− 1]q!
∑n−1

k=1

1

[k]q
. It is easy to see that

n
∑

m=1

(−1)m+1q(
m+1

2 )
[

n + 1
m + 1

]

q

m
∑

k=1

1

[k]q
=

n
∑

k=1

(−1)k+1q(
k+1

2 )

[

n
k

]

q

[k]q
.

From this, we derive

n
∑

k=1

(−1)k+1q(
k+1

2 ) 1

[k]q

(

[

n
k

]

q

−

[

n− 1
k

]

q

)

=
n
∑

k=1

(−1)k+1q(
k+1

2 ) 1

[k]q

(

qn−k

[

n− 1
k − 1

]

q

)

=
qn

[n]q

n
∑

k=1

(−1)k+1q(
k

2)
[

n
k

]

q

=
qn

[n]q
.

Note that
∑n

k=1(−1)k+1q(
k
2)
[

n
k

]

q

= −
∑n

k=0(−1)kq(
k
2)
[

n
k

]

q

+ 1 = 1. Thus, we have

n
∑

k=1

(−1)k+1q(
k+1

2 )

[

n
k

]

q

[k]q
=

n−1
∑

k=1

(−1)k+1q(
k+1

2 )

[

n− 1
k

]

q

[k]q
+

qn

[n]q
.

6



Continuning this process, we see that

n
∑

k=1

(−1)k+1q(
k+1

2 )

[

n
k

]

q

[k]q
=

n
∑

k=1

qn

[k]q
.

The p-adic q-gamma function is defined as Γp,q(n) = (−1)n
∏

1≤j<n
(j,p)=1

[j]q. For all

x ∈ Zp, we have Γp,q(x+1) = Ep,q(x)Γp,q(x), where Ep,q(x) =

{

−[x]q if |x|p = 1

−1 if |x|p < 1.

Thus, we easily see that

log Γp,q(x + 1) = log Ep,q(x) + log Γp,q(x). (16)

From the differentiating on both sides in (16), we derive

Γ′
p,q(x + 1)

Γp,q(x + 1)
=

Γ′
p,q(x)

Γp,q(x)
+

E′
p,q(x)

Ep,q(x)
.

Continuning this process, we have

Γ′
p,q(x)

Γp,q(x)
=





x−1
∑

j=1

qj

[j]q





log q

q − 1
+

Γ′
p,q(1)

Γp,q(1)
.

The classical Euler constant is known as γ =
Γ′(1)

Γ(1)
. In [15], Koblitz defined the

p-adic q-Euler constant as

γp,q = −
Γ′

p,q(1)

Γp,q(1)
.

Therefore, we obtain the following:

Theorem 3. For x ∈ Zp, we have

x−1
∑

k=1

(−1)k+1q(
k+1

2 )

[

x− 1
k

]

q

[k]q
=

q − 1

log q

(

Γ′
p,q(x)

Γp,q(x)
− γp,q

)

.

From (5), (12), (14) and (15), we derive the following theorem:

Theorem 4. For n, k ∈ Z+, we have

βn,q =
1

(1− q)n

n
∑

l=0

(

n

l

)

(−1)l

l
∑

k=0

(q − 1)k

[

l
k

]

q

k
∑

m=0

s1,q(k, m)βm,q,

where s1,q(k, m) is the q-Stirling number of the first kind.
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By simple calculation, we easily see that

qnt = ([t]q(q − 1) + 1)n =

n
∑

m=0

(

n

m

)

(−1)m(1 − q)m[t]mq =

n
∑

k=0

(q − 1)kq(
k
2)
[

n
k

]

q

[t]k,q

=

n
∑

k=0

(q − 1)k

[

n
k

]

q

k
∑

m=0

s1,q(k, m)[t]mq =

n
∑

m=0

(

n
∑

k=m

(q − 1)k

[

n
k

]

q

s1,q(k, m)

)

[t]mq .

Thus we note

∫

Zp

qntdµq(t) =
n
∑

m=0

(

n
∑

k=m

(q − 1)k

[

n
k

]

q

s1,q(k, m)

)

βm,q. (17)

From the definition of p-adic q-integral on Zp, we also derive

∫

Zp

qntdµq(t) =

n
∑

m=0

(

n

m

)

(q − 1)mβm,q. (18)

By comparing the coefficients on the both sides of (17) and (18), we see that

(

n

m

)

(q − 1)m =
n
∑

k=m

(q − 1)k

[

n
k

]

q

s1,q(k, m).

Therefore we obtain the following:

Theorem 5. For n ∈ N, m ∈ Z+, we have

(

n

m

)

=

n
∑

k=m

(q − 1)−m+k

[

n
k

]

q

s1,q(k, m).

From Theorem 5, we can also derive the following interesting formula for q-Bernoulli
numbers:

Theorem 6. For n ∈ Z+, we have

βn,q =
1

(1− q)n

n
∑

m=0

(

n
∑

k=m

(q − 1)−m+k

[

n
k

]

q

s1,q(k, m)

)

(−1)m m + 1

[m + 1]q
.

From the definition of q-binomial coefficient, we easily derive
[

x + 1
n

]

q

=

[

x
n− 1

]

q

+ qx

[

x
n

]

q

= qx−n

[

x
n− 1

]

q

+

[

x
n

]

q

. (19)

By (19), we see that

∫

Zp

[

x
n

]

q

dµq(x) =
(−1)n

[n + 1]q
qn+1−(n+1

2 ). (20)

8



From the definition of q-Stirling number of the first kind, we also note that

∫

Zp

[x]n,qdµq(x) = [n]q!

∫

Zp

[

x
n

]

q

dµq(x) = q−(n
2)

n
∑

k=0

s1,q(n, k)βk,q. (21)

By using (20), (21), we see

(−1)n q[n]q!

[n + 1]q
=

n
∑

k=0

s1,q(n, k)βk,q. (22)

From (15) and (21), we derive

βn,q = q

n
∑

k=0

s2,q(n, k)(−1)k [k]q!

[k + 1]q
.

Therefore we obtain the following:

Theorem 7. For n ∈ Z+, we have

βn,q = q

n
∑

k=0

s2,q(n, k)(−1)k [k]q!

[k + 1]q
,

where s2,q(n, k) is the q-Stirling number of the second kind.

It is easy to see that

[

n
k

]

q

=
∑

d0+···+dk=n−k

q
Pk

i=0
idi . (23)

By Theorem 4, we have the following:

Theorem 8. For n ∈ Z+, we have

βn,q =

n
∑

m=0

n
∑

k=m

1

(1− q)n+m−k

∑

d0+···+dk=n−k

q
P

k
i=0

idis1,q(k, m)(−1)n−m m + 1

[m + 1]q
,

where s1,q(k, m) is the q-Stirling number of the first kind.
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