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Carlitz ¢-Bernoulli Numbers and ¢-Stirling Numbers
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ABSTRACT. In this paper, we consider Carlitz g-Bernoulli numbers and ¢-stirling numbers
of the first and the second kind. From the properties of ¢-stirling numbers, we derive many
interesting formulae associated with Carlitz ¢-Bernoulli numbers. Finally, we will prove

E id; n-m m+1
Z Z l—q 1= q)n+m—F Z q=="""s1,4(k,m)(—1) CEST
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where (3,4 are called Carlitz ¢g-Bernoulli numbers.

1. Introduction

Let p be a fixed prime number. Throughout this paper, Z,, Q,, C and C, will,
respectively, denote the ring of p-adic rational integers, the field of p-adic rational
numbers, the complex number field, and the completion of algebraic closure of Q,,.
For d a fixed positive integer with (p,d) = 1, let

X = Xg=lmZz/dp"Z, X, =7Z,,
N
X* = U a+ dpZy,
0<a<dp
(a,p):l
N _ — N
a+dp"Z, = {reX|z=a (moddp")},

where a € Z lies in 0 < a < dp", see [1-21]. The p-adic absolute value in C,
is normalized so that |p|, = 1/p. When one talks of g-extension, ¢ is variously
considered as an indeterminate, a Complex number ¢ € C or a p-adic number ¢ € C,,.

If ¢ € C,, then we assume |q — 1|, < p~ 7- 77, so that ¢% = = exp(xlogq) for |x|, < 1.

We use the notation [x ]q_[az.q]_ll—q For f € CM(Z,) = {f | f' € C(Z,)},

let us start with the expressions

— S A= Y FG)ma +pE,), see 6, 8),

N
[Pl 0<j<pN 0<j<pN

representing g-analogue of Riemann sums for f. The p-adic g-integral of a function
f e CM(Z,) is defined by

/f x)dpg(x /f x)dpg(x hm 1 Z f(x)g®, seel8].
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For f € CM(Z,), it is easy to see that,

[ s@dna)ly < plflh, see fo - 14),
Zp

where [l = sup {1F Oy sup,p, EEZII L 1 p, o p i 000z,

namely || f, — f|l1 — 0, then
| tu@dnata) = [ f@idug(a). see 6 10
Zyp Zyp

1l e[z — 1
The g-analogue of binomial coefficient was known as [i] = [2q [ ]q[ ] Ew n+ 1 ,
nlg!
q q

where [n],! = [T\, [ilq, (see [1, 5, 6, 10, 11]). From this definition, we derive,

[xzqq:{nqu+¢ﬂﬂq:qran1L+[ﬂJ of. [6,10].

—1 n n
Thus, we have [, [:v] dug(z) = (=) q”“*( 5. I flx) = Y arg {ﬂ is the
PN, [n+1lg k>0 kf,
g-analogue of Mahler series of strictly differentiable function f, then we see that

_ (=" 1— (3t
/pr(x)d,uq(x)—Zakyq[k_i_l]qqlwr ("3,

k>0

Carlitz g-Bernoulli numbers 8y o(= Bx(¢)) can be determined inductively by

1 itk=1

=1 1)k — =
60.,q ) Q(QB'F ) ﬁk,q {O lf k > 1,

with the usual convention of replacing 3° by 3; 4, (see [2, 3, 4]). In this paper, we
study the g-stirling numbers of the first and the second kind. From these g-stirling
numbers, we derive some interesting g-stirling numbers identities associated with
Carlitz ¢-Bernoulli numbers. Finally we will prove the following formula :

L 1 [ m+1
— - Zi: id; _1yn—m__
Bn.q = § : § : (1— q)ntm—F § : q==0"%s1,4(k,m)(—1) m+ 1),

m=q k=m do+--+dr=n—k

where s1 4(k,m) is the g-stirling number of the first kind.

2. ¢-Stirling numbers and Carlitz ¢-Bernoulli numbers



For m € Z, we note that

B = [ (el aug@) = [ (el ).

P

From this formula, we derive

1 itk=1

=1, 1k — =
Bo.q q(gB+1) Br.q {O i k> 1,

with the usual convention of replacing 3 by 3; ;. By the simple calculation of p-adic
g-integral on Z,, we see that

1 (n i1
bram g 5 ()L 1
=i 2= )V o
! —1)---(n—i+1
where () = a & i = nin—1) .'(n s ) Let F'(t) be the generating func-
il(n —1)! 0!
tion of Carlitz g-Bernoulli numbers. Then we have
p’—1
F(t) = Zﬁn,q ,HOO Z gFellat (2)
x=0
> 1 = (n) k41 ol
- S 2SS () e
—(1-q) {k_o k) [k+1], n!
t

T a (DR k41t
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From (2) we note that,

> k tk
_ 1— 1—¢ E

-l-e1 -4 i 1 ﬁ
(1—q)k 1—qgktt ) k!
—t Z q2"e["]qt + (1 _ q) Z q"e["]qt'
n=0 n=0

Therefore we obtain the following:

tn
Lemma 1. Let F(t) =3 [, [z —'. Then we have
» n!

_ _tz q2ne[n]qt + (1 _ q) ane[n] t
n=0 n=0



The ¢-Bernoulli polynomials in the variable z in C, with |z|, < 1 are defined
by

B gl) = / [+ 7 dpag (8) = /X [+ 7 djag (). (4)

P

Thus we have

[t = 3 ()l [ i)

Zyp k=0

From (4) we derive

[ttt = uae) = 2 - ()0 @

P

Let F(t,z) be the generating function of ¢-Bernoulli polynomials. By (5) we see
that

t
LA e — 1 k+1 ok
From (6) we note that
JJ) — _tz q2n+we[n+m]qt + (1 _ Q) Z qne[n-l-;v]qt' (7)
n=0 n=0
By (4) and (7), we easily see that
k 1Zq16k¢1 ) 6kq( )7 mGN,k€Z+. (8)
If we take x = 0 in (8), then we have
m m n—1 )
abna = (p )l Il
k=0 §=0

By (2), (6) and (7), we see that
n—1

Zq2l+n [n+lqt + Zqﬂe — i m 2 q2l
m=

1 =0

tmfl
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1
Note that > ;g2 +melntlat 4 5™ g2lellat = g(F(t,n) — F(t)). Thus, we have

m tm

oo oo n—1
Z ﬁm,q ﬁm,q Z Z m 1)% (10)
m=0 =0 ’

By comparing the coefficients on both sides in (10), we see that

n—1

Bm,g(n) = Brm.g =m Y ¢ 7. (11)

1=0
Therefore we obtain the following;:
Proposition 2. For m,n € N, we have
n—1 n—1 1 m—1 m
(g=D D dWg+ D dWg == ( z )[n];”"q”’ﬁz,q + (@™ = 1)Bmg.
1=0 1=0 1=0

Now we consider the g-analogue of Jordan factor as follows:

(I—g)(1—g""Y)--(1-¢" ")

[@lk,q = [2lgle =g [z -k +1]g = (1—q)F
The g-binomial coefficient is defined by
n] Il (A-g¢")(l—g¢"")-(1—g" M
R o e R e e e
where [n],! = [n]q[n — 1]4 - - - [2]4[1]¢- The ¢-binomial formulas are known as
H(a + bqi_l) = Z {Z} q(z)an_kbk, (13)
i=1 k=0 - dq

and

The ¢-Stirling numbers of the first kind sl_rq(n, k) and the second kind sz 4(n, k) are
defined as

n

Zslq q’ n2071527"'7 (14)
=0
and .
2z =3 ¢ sa g (n, k) alhg, n=0,1,2,--, see [2, 3, 6]. (15)



The values s1,4(n,1), n =1,2,3,---, and s24(n,2), n =2,3,---, may be de-
duced from the following recurrence relation:

Sla‘l(nvk) = Squ(n - 17k - 1) - [n - 1](1517(1(” - 15 k)v see [27 37 6]7

fork=1,2,---,n,n=12,---, with initial conditions s1 4(0,0) =1, s1,4(n,k) =0
if K > n. For k = 1, it follows that

Sl,q(nal):_[n_l]qsl,q(n_lvl)a TL:2,3,"' )

and since s1 4(1,1) = 1, we have s1 4(n,1) = (=1)""'[n—1],!, n=1,23,---.
The recurrence relation for k = 2 reduce to s1,4(n,2) + [n — 1]gs1,4(n — 1,2) =

(-1)"2[n—2],!, n=3,4,---. By simple calculation, we easily see that
(_1)n+1517q(n+ 1a2) _ (_1)7151#1(”’ 2) _ (_1>n+1 Sl,q(n'i_ 172) - [n]qslaq(na 2)
[n]q! [n —1]! [n]q!
B Gk el 'L ST R

[n]y! [n]q

Thus we have

k=1 q k=1 q
LN e[
20 M op

Note that Zzzl(—l)k"’lq(g) [Z} = - ZZZO(—l)kq(g) [Z} + 1 =1. Thus, we have
q q

zn:(—l)k“q(kgl)@ = 7125(-1)“@(%5@ L

qn
1 [K]q 1 [k]q [nlg’



Continuning this process, we see that

zn:(—nkﬂq(’“f) [ZL _ Zn: a

p Klq = Kle

The p-adic g-gamma function is defined as I'y 4(n) = (—=1)" [[1<j<n [Jj]4. For all
(4.p)=1
— if =1
x € Zp, wehave I'y, ((x+1) = Ep () 4(x), where B, 4(x) = [#q l =l
' ' ' ' -1 if |z, < 1.
Thus, we easily see that
log'pq(x 4+ 1) = log Ejp q() + logI'y 4 (). (16)
From the differentiating on both sides in (16), we derive

I, (z+1) _ r, () E, (v)

Tpolz+1)  Tpe(x)  Epg(r)

Continuning this process, we have

Tpa(®) ziq_j logg T ,(1)
Lpq() Ulg | a—1  Tp4(1)

j=1

The classical Euler constant is known as v =

p-adic ¢-Euler constant as

Therefore, we obtain the following:

Theorem 3. For x € Zj,, we have

xi:l(—l)lwrlq(k;l) [x ; IL _g-1 (F;vq(x) ) :

— — Yp,
[klq logg \T'pq(x) P
From (5), (12), (14) and (15), we derive the following theorem:
Theorem 4. For n,k € Z, we have
1 " (n : l &
Pr,q = R > (l) =D (g —1)* [k] > s1.9(km) B,
V715 k=0 7 m=0

where s1,q(k,m) is the g-Stirling number of the first kind.



By simple calculation, we easily see that

= (=040 = Y () E0ma - omy =3 05O ;]

m=0

Thus we note
IREZCEDS (Z@— K sl,qac,m)) B (17
Zp m=0 \k=m q

From the definition of p-adic g-integral on Z,, we also derive

n

/Z q"dpg(t) =Y

P m=0

(1)@= 1" (18)

By comparing the coefficients on the both sides of (17) and (18), we see that

n

(D)= S 0[] svathom

k=m q
Therefore we obtain the following:
Theorem 5. Forn € Nym € Z,, we have
n " Cmak |
(m> = k_z (q—1)~™tF [k]qsl)q(k,m).

From Theorem 5, we can also derive the following interesting formula for ¢-Bernoulli
numbers:

Theorem 6. Forn € Z, we have

1 N ek [ o om1
Bra = oo O <Z<q—1> +k[,€Ls1,q<k,m>> R e

m=0 \k=m

From the definition of g-binomial coefficient, we easily derive

[:vj;l]q—[nf1L+qw[ﬂq_qw—n[nflh+[ﬂq. (19)

By (19), we see that

[ o () = DT ), (20)



From the definition of g-Stirling number of the first kind, we also note that

[ natio@) = ot [ [ doto) = j{jslq no k)i

ZP P

By using (20), (21), we see

(- n—|—1 Zslanﬁkq

From (15) and (21), we derive

Brg =0 s24(n,k)(—1)F

Therefore we obtain the following;:

Theorem 7. Forn € Z, we have

Brg =0 s2.4(n,k)(—1)F

where s2 q(n, k) is the q-Stirling number of the second kind.
It is easy to see that

n ko sd.

M =2 e
q do+---+dr=n—~k

By Theorem 4, we have the following:

Theorem 8. Forn € Z, we have

(21)

Sk o ids _1\yn—m m+1
Bn.q = Z Z 1_q yntm— (1 — g)n+m—k Z q ’ Slx‘](k7m)( 1) [m+1]q7

m=0k=m do+-+dr=n—Fk

where s1,4(k, m) is the q-Stirling number of the first kind.
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