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Poly-Bernoulli numbers

par MAasaNoBU KANEKO

RESUME. Par le biais des séries logarithmiques multiples, nous
définissons ’analogue en plusieurs variables des nombres de Ber-
noulli. Nous démontrons une formule explicite ainsi qu’un théo-
réme de dualité pour ces nombres. Nous donnons aussi un théo-
réme de type von Staudt et une nouvelle preuve d’un théoréme
de Vandiver.

ABSTRACT. By using polylogarithm series, we define “poly-Ber-
noulli numbers” which generalize classical Bernoulli numbers. We
derive an explicit formula and a duality theorem for these num-
bers, together with a von Staudt-type theorem for di-Bernoulli
numbers and another proof of a theorem of Vandiver.

For every integer k, we define a sequence of rational numbers B(® (n =
0,1,2,---), which we refer to as poly-Bernoulli numbers, by

(1) “Lis(2)

oo
=S B
n=0 " n'

Here, for any integer k, Li.(2) denotes the formal power series (for the k-th
polylogarithm if £ > 1 and a rational function if k¥ < 0) Y >_, 2™ /mk*.

When k = 1, B! is the usual Bernoulli number (with Bgl) =1/2):
ze® > z"
— €3 Bl
ez —1 Zo B, n!’

and when k£ > 1, the lefthand side of (1) can be written in the form of
“iterated integrals”:

z=1—e"%
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In this paper, we give both an explicit formula for B(® in terms of the
Stirling numbers of the second kind and a sort of duality for negative index
poly-Bernoulli numbers. Both formulas are elementary, and in fact almost
direct consequences of the definition and properties of the Stirling numbers.
As applications, we prove a von Staudt-type theorem for di-Bernoulli num-
bers (k = 2) and give an alternative proof of a theorem due to Vandiver on
a congruence for B{J.

1. Explicit formula and duality
An explicit formula for B{¥ is given by the following:

THEOREM 1.
n e (-1)"m!S(n,m
B = (-1 Y SRR (02 0, i),
m=0
where

- (_1)111 — _1\¢ m\ ,n
S(n,m) = — g( 1) (z>z
is the Stirling number of the second kind.
REMARK. When k£ = 1, the theorem and its many variants are classical
results in the study of Bernoulli numbers (cf. [1]).

Because the Stirling numbers are integers, we see from the formula that
B for k < 0 is an integer (actually positive, as demonstrated in the
remark at the end of this section).

THEOREM 2. For any n,k > 0, we have

B = B{™.

PROOF OF THEOREMS 1 AND 2. One way to define the Stirling numbers
of the second kind S(n,m) (n > 0,0 < m < n) is via the formula

o = 3 S(n,m)(@)m,

where, for each integer m > 0, we denote by (z),, the polynomial z(z —
1)(z—2)---(z—m+1) ((z)o = 1). Then they satisfy the following formulas
(when n = 0 in (3), the identity 0° = 1 is understood):
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_ (__1)m - m\ n
( t__ 1)y™ st Al
®) = Y semy

For other definitions, further properties and proofs, we refer to [3].
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Now Theorem 1 is readily derived from the definition (1) and the formula

(4). In fact,

1

-z-Lik(Z) o~ (1—e™)™

=2 (m+1)"’

z=1—e™% m=0
- = (- )"

= Z (m+1)’° > (-1)"S(n,m)

= = (=™ m"'-ls(n,m) (—z)"
n!

- Z(Z (m+ 1)k

n=0 m=0

)

Hence the theorem follows.

To prove Theorem 2, we calculate the generating function of B{™®):

I
s

s T0Je

© 0o n,k k

B(—k)_w_.y__ 1—e-%)™ 1 vy
,;n_o "R (=) m 1
(1 _ e—z)me(m+1)y

0
estv

e* 4 e¥ — e:c+y'
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1

The last expression being symmetric in z and y yields Theorem 2.
REMARK. Since

ez tv e*ty
e +ev—exty 1—(er—1)(e¥—1)

= eI+ (e*—1)(e=1)+ ((e* ~1)(e? - 1))* +--

the number B{® (k > 0) is always positive.

)
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2. Denominators of di-Bernoulli numbers

Using Theorem 1, we can completely determine the denominator of di-
Bernoulli numbers as follows.
THEOREM 3.

(1) When n is odd, B® = ———ZB(I) (n > 1). (Hence the descrip-
tion of the denominator reduces to the classical Clausen-von Stoudt
theorem.)

(2) When n is even (> 2), the p-order ord(p,n) of B» for a prime
number p is given as follows.

(a) ord(p,n)>0ifp>n+1.
(b) For 5 <p<n+1, we have:
(i) ord(p,n) = -2 if p—1|n.
(i) Ifp—1 [n, then:
(A) ord(p,n) 20 ifp|2§l, orn =n' mod p(p —1) for
somel<n' <p-1.
(B) ord(p,n) = —1 otherwise.
(c) ord(3,n) > 0ifn=2mod3 andn > 2. Otherwise ord(3,n) =
—2.
(d) ord(2,n) > 0 ifn=2mod 4 and n > 2. ord(2,n) = -1 if
n =0 mod 4. ord(2,2) = -2.
Before proving the theorem, we establish the following lemma, which will
be needed in the proof.

LEMMA 1. Assume n > 2 is even and p > 5 is a prime number such that
m+1=2p. Then

(=1)™m!S(n,m) = 0 mod p?,

and hence (—1)™m!S(n,m)/(m + 1)? is p-integral.
ProOOF. By (3),

(-1)™mlS(n,m) = zil( 1) ( >
- Z{( 1) (2p 1)£"+( 1)~ ‘(Zp_z)@p—f)"}
+(—1)p<2pp_ )p"

= pi:{(—l)t (2])2 1) £+ (-1)° (25_—11) (=2np** +£)} mod p.
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2p -1 + 2p -1 222 2p—1
{ {-1 L\L-1)

the last sum is equal to

Since

-1
1_n)z 1)1(217 )[n 1
Noting that
2p—1 — (_1ye-1

we see that

p—-1 2
Z(—l)z(f )E” ! ——Eé"’ =0 modp,
=1

because p — 1 fn — 1 (recall that n is even and p is odd). This proves the
lemma.

PROOF OF THEOREM 3. 1. Let B, = B{Y forn # 1 and B; = —1/2. Then
Yoo Brz™/nl = z/(e® —1). By (2) in the introduction, we have

oo n T z OO tl
BZ - _° / B,Sdt
; " nl ez-10§ ‘o
oo m o0 £
= B(l)i._. B___"E___.
,; ™ m! ; “e+1)

From this we see that

n n BS_)th
Bg>=2(£> i+1

£=0

Since szl) = B, = 0 for odd £ > 3, we have for odd n

B® = 2B(1)lB +BVB, , =-=2 " 2) g

2. We make use of Theorem 1. Part (a) is obvious because the Stirling
numbers in the formula in Theorem 1 are integers. For the remainder of
the proof, first we note that the expression m!/(m+1)? in the summand of
the formula is an integer except when m +1 = 8,9, a prime number, or 2x
a prime number, as can be checked in an elementary way. Now, Lemma 1
tells us that any prime number p > 5 satisfying m+1 = 2p does not appear
in the denominator of B?.
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Our next task is to consider the case m + 1 = p, where p is a prime
number > 5. In this case

p—1 p— 1
m — 4 n
(-1)"m!S(n,m) = ;(—1) ( ’ )Z .
The righthand side is congruent modulo p to —1 if p — 1|n and to 0 if
p —1 fn. Thus if p — 1|n, the p-order of (—1)™m!S(n,m)/(m + 1)* is —2.
Since the other summands in the formula in Theorem 1 are p-integral, we
have shown part (b)-i. Suppose p — 1 Jn and calculate modulo p®. Using

(p; 1) = (-4 (-1)"p) ¢ mod?,

=1

we see that
p—1 p— 1 p—1 -1 £ 1
z(_ly( E )e" 5r 5 ey ! s
£=1 =1 =1 =1 4

It is known that (cf. Cor. of Prop. 15.2.2 in [2]) if n is even and p~1 fn,
then

p—1

> £ =pB{Y modp’.

=1
On the other hand, when we put n mod p — 1 =n/,1 < n’ < p—1 (since
both n and p — 1 are even, n’ is also even), we find

1 A |
7 = Zl" Z-, mod p
£=1

p—1
o

£
=1 i=1 4

=1
= BS) mod p (see (63) of Vandiver [4] and Section 3 below).
We therefore have
(=1)™m!S(n,m) = p(BY — BY) mod p?,

where m+1=pandn'=n modp—-1,1<n' <p-—1.Sincep—1 Jn,
the number B® /n is p-integral and BY = n’B® /n mod p (Prop. 15.2.4

and Th.5 following it in [2]). Thus
B
n

This readily gives part (b)-ii of the theorem.

The only summands in Theorem 1 which may not be 3-integral are
21S(n,2)/3%, —5!S(n,5)/62, and 8!S(n,8)/92. By direct calculation using
the formula (3), we obtain part (¢). In a similar manner, we can determine
the 2-order as well, but we omit the details here.

(-1)™miS(n,m) = p(n —n') mod p?.
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3. A theorem of Vandiver

As an application of Theorems 1 and 2, we prove the following proposi-
tion originally due to Vandiver.
PROPOSITION. Let p be an odd prime number. For 1 <i<p-—2,

p=-2
1 1 .
B =3 (1+z++— 1)* mod p.
; m:l( +5+ +m)(m+ ) mod p

Proor. By Theorem 1 and Fermat’s little theorem, we see that
BM =B mod p.

Theorem 2 says that the righthand side is equal to B;:"z) , which by Theorem
1 is equal to — S22 (=1)™m!S(p — 2, m)(m + 1)*.

m=0

LEMMA 2. Suppose p is an odd prime, and 1 <m < p—2. Then
(-D)™ 'm!S(p-2,m)=1+ % +- 4 % mod p.
PrOOF. The Stirling numbers satisfy the recurrence formula
S(n,m)=8S(n—1,m—-1)+mS(n-1,m) (n >1) (see [3]).
Thus if we put (—1)™"'m!S(p — 2,m) = b,,, we get
(=)™ Im!S(p — 1,m) = m(~bp_1 + bm) (M > 2).
But by (3),

(=1)™*mlS(p ~ 1,m)

= efm p—1
L (D)
—zm:(—l)l<1?> mod p

1 mod p,

and we thus conclude that
1
by = byp—1 + — mod p.
m

This together with the relation b, = S(p — 2,1) = 1 gives the lemma and
hence completes the proof of the proposition.

REMARK. If ¢ > 1, the righthand side of the proposition is congruent
modulo p to

p—1
1 1, .,
£(1+§+---+E)m,
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and this being congruent to B; (even when ¢ = 1) is a special case of
Vandiver’s congruence (63) in [4].
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