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Poly-Bernoulli numbers

par MASANOBU KANEKO

RÉSUMÉ. Par le biais des séries logarithmiques multiples, nous
définissons l’analogue en plusieurs variables des nombres de Ber-
noulli. Nous démontrons une formule explicite ainsi qu’un théo-
rème de dualité pour ces nombres. Nous donnons aussi un théo-
rème de type von Staudt et une nouvelle preuve d’un théorème
de Vandiver.

ABSTRACT. By using polylogarithm series, we define "poly-Ber-
noulli numbers" which generalize classical Bernoulli numbers. We
derive an explicit formula and a duality theorem for these num-
bers, together with a von Staudt-type theorem for di-Bernoulli
numbers and another proof of a theorem of Vandiver.

For every integer k, we define a sequence of rational numbers (n =
0,1, 2, ~ ~ ~ ), which we refer to as poly-Bernoulli numbers, by

Here, for any integer k, Lik (z) denotes the formal power series (for the k-th
polylogarithm if k &#x3E; 1 and a rational function if k  0) 
When k = 1, is the usual Bernoulli number (with Bi1) = 1/2):

,..-v

and 1, the lefthand side of (1) can be written in the form of
"iterated integrals" :

Manuscrit reçu Ie 17 fevrier 1994.
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In this paper, we give both an explicit formula for B~~~ in terms of the
Stirling numbers of the second kind and a sort of duality for negative index
poly-Bernoulli numbers. Both formulas are elementary, and in fact almost
direct consequences of the definition and properties of the Stirling numbers.
As applications, we prove a von Staudt-type theorem for di-Bernoulli num-
bers (I~ = 2) and give an alternative proof of a theorem due to Vandiver on
a congruence for 

1. Explicit formula and duality

An explicit formula for B~~~ is given by the following:
THEOREM 1.

where

is the Stirling number of the second kind.
REMARK. When k = 1, the theorem and its many variants are classical
results in the study of Bernoulli numbers (cf. (1]).

Because the Stirling numbers are integers, we see from the formula that
for k  0 is an integer (actually positive, as demonstrated in the

remark at the end of this section).
THEOREM 2. For any n, k &#x3E; 0, we have

PROOF OF THEOREMS 1 AND 2. One way to define the Stirling numbers
of the second kind S(n, m) (n &#x3E; 0, 0  m  n) is via the formula

where, for each integer m &#x3E; 0, we denote by the polynomial x(x -
1)(x-2) (-m+1) ((x)o = 1). Then they satisfy the following formulas
(when n = 0 in (3), the identity 00 = 1 is understood):
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For other definitions, further properties and proofs, we refer to [3].
Now Theorem 1 is readily derived from the definition (1) and the formula

(4). In fact,

Hence the theorem follows.

To prove Theorem 2, we calculate the generating function of B~ ’~~ :

The last expression being symmetric in x and y yields Theorem 2.
REMARK. Since

the number (k &#x3E; 0) is always positive.
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2. Denominators of di-Bernoulli numbers

Using Theorem 1, we can completely determine the denominator of di-
Bernoulli numbers as follows.

THEOREM 3.

(1) When n is odd, B~2~ _ -~n42 Bnl~l (n &#x3E; 1). (Hence the descrip-
tion of the denominator reduces to the classical Clausen-von Staudt
theorem.)

(2) When n is even (&#x3E; 2), the p-order ord(p, n) of for a prime
number p is given as follows.

(a) ord(p, n) &#x3E; 0 if p &#x3E; n + 1.

(b) we have:

(i) ord(p, n) = -2 if p - 
(ii) If p - 1 An, then:

(A) 0 or n - n’ mod p(p - 1) for
somme 1  n’  p - 1.

(B) ord(p, n) = -1 otherwise.
(c) ord(3, n) &#x3E; 0 if n - 2 mod 3 and n &#x3E; 2. Otherwise ord(3, n) =

-2.

(d) ord(2, n) &#x3E; 0 if n - 2 mod 4 and n &#x3E; 2. ord(2, n) = -1 if
n - 0 mod 4. ord(2,2) = -2.

Before proving the theorem, we establish the following lemma, which will
be needed in the proof.
LEMMA 1. Assume n &#x3E; 2 is even and p &#x3E; 5 is a prime numbers such that
m + 1 = 2p. Then

and hence m)/(m + 1)2 is p-integral.
PROOF. By (3),
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Since

the last sum is equal to

Noting that

we see that

because p - 1 1 (recall that n is even and p is odd). This proves the
lemma.
PROOF OF THEOREM 3. 1. Let Bn = for n ~ 1 and Bl = -1/2. Then
E"O 0 Bn Xn /n! = x/(eX - 1). By (2) in the introduction, we have

From this we see that

Since jg"’ - B, = 0 for odd 1 &#x3E; 3, we have for odd n

2. We make use of Theorem 1. Part (a) is obvious because the Stirling
numbers in the formula in Theorem 1 are integers. For the remainder of
the proof, first we note that the expression m! / (m + 1 ) 2 in the summand of
the formula is an integer except when m + 1 = 8, 9, a prime number, or 2 x
a prime number, as can be checked in an elementary way. Now, Lemma 1
tells us that any prime number p &#x3E; 5 satisfying m + 1 = 2p does not appear
in the denominator of B~2&#x3E; .
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Our next task is to consider the case m + 1 = p, where p is a prime
number &#x3E; 5. In this case

The righthand side is congruent modulo p to -1 if p - Iln and to 0 if
p - 1 In. Thus if p - 11n, the p-order of m) / (m + 1)2 is -2.
Since the other summands in the formula in Theorem 1 are p-integral, we
have shown part (b)-i. Suppose p - and calculate modulo p . Using

we see that
- , ,

It is known that (cf. Cor. of Prop. 15.2.2 in [2]) if n is even and p - 1 Xn,
then

On the other hand, when we put n mod p - 1 = n’,1  n’  p - 1 (since
both n and p - 1 are even, n’ is also even), we find

= B;~1~ mod p (see (63) of Vandiver [4] and Section 3 below).
We therefore have

where m + 1 = p and n’ - n mod p - 1,1  n’  p - 1. Since p - 1 aen,
the number is p-integral and mod p (Prop. 15.2.4
and Th.5 following it in [2]). Thus

r 1

This readily gives part (b)-ii of the theorem.
The only summands in Theorem 1 which may not be 3-integral are

2!S(n, 2)/32, -5!S(n, 5)/62, and 8!S(n, 8)/92. By direct calculation using
the formula (3), we obtain part (c). In a similar manner, we can determine
the 2-order as well, but we omit the details here.
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3. A theorem of Vandiver

As an application of Theorems 1 and 2, we prove the following proposi-
tion originally due to Vandiver.
PROPOSITION. Let p be an odd prime number. For 1  i  p - 2,

PROOF. By Theorem 1 and Fermat’s little theorem, we see that
¿4 B.. ,- B..

Theorem 2 says that the righthand side is equal to which by Theorem
1 is equal 2, rra)(rn, + 1)2.
LEMMA 2. Suppose p is an odd prime, and 1 ~ m  p - 2. Then

PROOF. The Stirling numbers satisfy the recurrence formula

Thus if we put 2, m) = bm, we get

But by (3),

and we thus conclude that

This together with the relation bi = S(p - 2,1) = 1 gives the lemma and
hence completes the proof of the proposition.
REMARK. If i &#x3E; 1, the righthand side of the proposition is congruent
modulo p to
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and this being congruent to Bi (even when i = 1) is a special case of
Vandiver’s congruence (63) in [4].
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