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Abstract

We give a formula that expresses a sum of products of poly-Bernoulli numbers of

negative index as a linear combination of poly-Bernoulli numbers. More generally, we

show that if a two-variable formal power series satisfies a certain partial differential

equation, then its coefficients satisfy this type of formula. As an appendix, we solve

this partial differential equation.

1 Introduction and main results

Bernoulli numbers Bn (n = 0, 1, 2, . . .) are rational numbers defined by the following gener-
ating function:

tet

et − 1
=

∞
∑

n=0

Bn

n!
tn.

These numbers are important, especially in number theory, because they are related to
special values of the Riemann zeta function, class numbers of algebraic fields and so on.
There are many relations among Bernoulli numbers. For example, the following identity is
classically known:

n
∑

i=0

(

n

i

)

BiBn−i = nBn−1 − (n − 1)Bn (n ≥ 1). (1)

Many generalizations of (1) have been considered. Chen [5] gave formulas on sums of N
products of Bernoulli polynomials, generalized Bernoulli numbers and Euler polynomials by
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using special values of certain zeta functions at non-positive integers. Agoh and Dilcher [1, 2]
introduced certain lacunary sums of products of Bernoulli numbers and gave some formulas
for them. For other types of sums of products, see [6, 7, 12, 13].

The author [9] studied the following type of sums whose products include one poly-
Bernoulli number:

∑

i1+···+im=n

n!

i1! · · · im!
bi1 · · · bim−1

B
(k)
im

,

where k is a fixed integer. Here bn = (−1)nBn (it should be noted that bn is denoted by Bn

in [9]) and B
(k)
n are poly-Bernoulli numbers, which will be defined below. For m = 2 and 3,

these sums were expressed explicitly in terms of poly-Bernoulli numbers [9, Theorem 3 and
4]. In this paper we deal with another type of sums running over both indices m and n of

B
(−m)
n .

We first review poly-Bernoulli numbers. For any integer k, Kaneko [10] introduced the

n-th poly-Bernoulli number of index k (denoted by B
(k)
n ) as

Lik(1 − e−t)

1 − e−t
=

∞
∑

n=0

B
(k)
n

n!
tn,

where Lik is the k-th polylogarithm defined by Lik(x) =
∑∞

n=1 xn/nk. Since Li1(x) =

− log(1− x), the number B
(1)
n is nothing but the ordinary n-th Bernoulli number Bn. Poly-

Bernoulli numbers of positive index are also rational numbers, and they have a connection
with multiple zeta functions. For example, Arakawa-Kaneko [3] introduced a function ξk(s)
(k ≥ 1), which can be expressed as a sum of certain multiple zeta functions. They proved that
its special values at non-positive integers are expressed in terms of poly-Bernoulli numbers
of index k [3, Theorem 6].

For a non-positive index case, it is known that B
(−m)
n (m ≥ 0) are positive integers and

satisfy a duality relation:
B(−m)

n = B(−n)
m (m,n ≥ 0)

[10, Theorem 2]. These numbers B
(−m)
n have some combinatorial applications. Launois [11]

proved that B
(−m)
n is equal to the number of permutations σ ∈ Sm+n such that −m ≤

i − σ(i) ≤ n for all i = 1, . . . ,m + n. Recently Brewbaker [4] proved that B
(−m)
n coincides

with the number of certain m × n matrices called lonesum matrix (see [4, 14], for details).

One reason why B
(−m)
n have these combinatorial applications is that their generating

function can be written simply as

∑

m≥0, n≥0

B(−m)
n

xm

m!

yn

n!
=

1

e−x + e−y − 1
(2)

(see [10, §1]). We remark that the right-hand side of (2) satisfies the partial differential
equation

(

∂

∂x
+

∂

∂y

)

F = F + F 2. (3)
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Now we consider a slightly more general situation. Let C be the complex number field
and F (x, y) ∈ C[[x, y]] a two-variable formal power series:

F (x, y) =
∑

m≥0, n≥0

α(m,n)
xm

m!

yn

n!
, (α(m,n) ∈ C). (4)

We define a differential operator D := ∂
∂x

+ ∂
∂y

and assume that F satisfies a partial differential
equation

DF = F + F 2. (5)

Of course the right-hand side of (2) is such an example of F .
The following is the main theorem of this paper. This result means that a sum of products

of α(i, j) can be expressed as a linear combination of themselves, like the classical identity
(1) of Bernoulli numbers.

Theorem 1. Assume that F ∈ C[[x, y]] satisfies (5). For m,n ≥ 0 and k ≥ 1, we have

∑

i1,...,ik≥0
i1+···+ik=m

∑

j1,...,jk≥0
j1+···+jk=n

m!

i1! · · · ik!

n!

j1! · · · jk!
α(i1, j1) · · ·α(ik, jk)

=
1

(k − 1)!

∑

i,j≥0
i+j≤k−1

(−1)k−1+i+j

[

k

i + j + 1

](

i + j

i

)

α(m + i, n + j),

(6)

where
[

k
l

]

are Stirling numbers of the first kind.

Since the generating function (e−x + e−y − 1)−1 of B
(−m)
n satisfies (5), we obtain the

following corollary.

Corollary 2. For m,n ≥ 0 and k ≥ 1, we have

∑

i1,...,ik≥0
i1+···+ik=m

∑

j1,...,jk≥0
j1+···+jk=n

m!

i1! · · · ik!

n!

j1! · · · jk!
B

(−j1)
i1

· · ·B
(−jk)
ik

=
1

(k − 1)!

∑

i,j≥0
i+j≤k−1

(−1)k−1+i+j

[

k

i + j + 1

](

i + j

i

)

B
(−n−j)
m+i .

2 Proof of the Main Theorem

We first recall two kinds of Stirling numbers. For integers m ≥ 1 and l with 0 ≤ l ≤ m,
Stirling numbers of the first kind

[

m
l

]

and the second kind
{

m
l

}

are defined as follows:

x(x + 1) · · · (x + m − 1) =
m

∑

l=0

[

m

l

]

xl,

m
∑

l=0

{

m

l

}

x(x − 1) · · · (x − m + 1) = xm.
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These numbers play important roles in combinatorial theory and many relations among them
have been known (e.g., [8, 6-1]). We note that Stirling numbers of the first kind appear in
formulas for sums of products of the ordinary Bernoulli numbers and polynomials (e.g., [6,
Theorem 3]).

Throughout this section, we assume that F ∈ C[[x, y]] satisfies a differential equation
DF = F + F 2. Then it can be proved by induction on n that

DF n = nF n + nF n+1 (n ≥ 1). (7)

By using this, we obtain the following lemma.

Lemma 3. For n ≥ 1, we have

Dn−1F =
n

∑

i=1

{

n

i

}

(i − 1)!F i. (8)

This can be written as the following matrix representation:















D0F
D1F
D2F
D3F

...















=















{

1
1

}

{

2
1

} {

2
2

}

{

3
1

} {

3
2

} {

3
3

}

· · ·
{

4
1

} {

4
2

} {

4
3

} {

4
4

}

...





























0!F
1!F 2

2!F 3

3!F 4

...















(9)

Proof. We prove the lemma by induction on n. Since
{

1
1

}

= 1, Eq. (8) obviously holds for
n = 1. We assume that (8) holds for a certain n. By the inductive assumption, we have

DnF = DDn−1F

=
n

∑

i=1

{

n

i

}

(i − 1)!DF i.

By (7) and the well-known identity
{

n
i

}

i +
{

n
i−1

}

=
{

n+1
i

}

, we have

DnF =
n

∑

i=1

{

n

i

}

(i − 1)!(iF i + iF i+1)

=
n+1
∑

i=1

({

n

i

}

i +

{

n

i − 1

})

(i − 1)!F i

=
n+1
∑

i=1

{

n + 1

i

}

(i − 1)!F i,

and this proves that (8) holds for n+1. It is obvious that (8) means the matrix representation
(9).

4



This lemma states that Dn−1F can be expressed as a linear combination of F i (1 ≤ i ≤ n).
Conversely, we can express F k as a linear combination of DlF (1 ≤ l ≤ k) by multiplying
the inverse matrix:

Lemma 4. For k ≥ 1, we have

(k − 1)! F k =
k

∑

l=1

(−1)k−l

[

k

l

]

Dl−1F. (10)

This can be written as the following matrix representation:















[

1
1

]

−
[

2
1

] [

2
2

]

[

3
1

]

−
[

3
2

] [

3
3

]

· · ·

−
[

4
1

] [

4
2

]

−
[

4
3

] [

4
4

]

...





























D0F
D1F
D2F
D3F

...















=















0!F
1!F 2

2!F 3

3!F 4

...















Proof. By Lemma 3, the right-hand side of (10) is equal to

k
∑

l=1

(−1)k−l

[

k

l

] l
∑

i=1

(−1)k−l

{

l

i

}

(i − 1)!F i =
∑

1≤i≤l≤k

(−1)k−l

[

k

l

]{

l

i

}

(i − 1)!F i. (11)

It is known that, for 1 ≤ i ≤ k,

k
∑

l=i

(−1)k−l

[

k

l

]{

l

i

}

= δik,

where δik is the Kronecker delta function (e.g., [8, 6-1]). Hence all terms in the sum (11)
vanish except for i = l = k. Therefore this sum equals (k − 1)!F k and this completes the
proof.

Now it is easy to prove our main result.

Proof of the Main Theorem. The left-hand side of (6) is equal to the coefficient of xmyn/m!n!
in F k. Hence, by Lemma 4, it is equal to

1

(k − 1)!

k
∑

l=1

(−1)k−l

[

k

l

] l−1
∑

i=0

(

l − 1

i

)

α(m + i, n + l − 1 − i).

By rearranging the summation, we obtain (6).
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3 Solutions of the partial differential equation

In this section, we solve the partial differential equation

DF = F + F 2. (12)

If a solution of (12) have a series expansion (4), then its coefficients satisfy a relation (6) in
our main theorem.

Proposition 5. Let F (x, y) be a partially differentiable function satisfying (12). Then

F (x, y) = 0, −1, or
(

± exp

(

h(x − y) −
x + y

2

)

− 1

)−1

, (13)

where h is an arbitrary differentiable function.

Proof. Obviously F = 0 and −1 satisfy the differential equation (12). We assume that
F 6= 0, −1. By the transformation of variables

x = u + v, y = u − v

(

i.e., u =
x + y

2
, v =

x − y

2

)

,

Eq. (12) is rewritten as an ordinary differential equation with respect to u:

∂F

∂u
= F + F 2.

By the method of separation of variables, we have

F = (± exp(−g(v) − u) − 1)−1 ,

where g is an arbitrary function. By replacing −g(v) with h(2v), we obtain (13). Since F is
partially differentiable, the function h have to be differentiable.

If the exponential part is positive and h(s) = log(es/2 + e−s/2) in (13), then F (x, y) =
(e−x + e−y − 1)−1, which is a generating function of poly-Bernoulli numbers.

Remark 6. 1. We can regard the solution F (x, y) = 0 (resp. −1) as a general solution
(13) for h(s) = +∞ (resp. −∞).

2. Not all solutions of (13) have a series expansion such as (4). In fact, we get a solution

F (x, y) = (e−
x+y

2 − 1)−1 by setting h(s) = 0. In this case, however, the value F (0, 0)
does not exist and F can not have a series expansion.
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