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Abstract

In this paper, we define a new g—analogy of the Bernoulli polynomials and the
Bernoulli numbers and we deduced some important relations of them. Also, we de-
duced a g—analogy of the Euler-Maclaurin formulas. Finally, we present a relation
between the g—gamma function and the g—Bernoulli polynomials.

1 ¢—Notations

Let ¢ € (0,1) and define the g—shifted factorials by

(a7q)0 =1,

(a1, ar; @ = [Ty [T5ma (1 —aid?),  k=0,1,2, ...,

(a;9)00 = [TiZo(1 — ag').

The classical exponential function e* has two different natural g—extension [10] one of
them denoted by e4(z) and given by

. 2k 1
fal2) = z:: @GOk (50w

k=0

where z € C,| z [< 1 and 0 < ¢ < 1. The function e,(2) can be considered as formal
power series in the formal variable z and satisfies that lim, .1 e4((1 — ¢)z) = e*. For the
g-commuting variables x and y such that zy = qyz [11],

eq(x +y) = eq(y)eq(z).
The g—difference operator D, is defined by

f@tam) g
DCIf(:L') = { dfa(c(%iq)

T =0

where

tim D, () = L.
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Thomae [1869-1870] defined the g—integral on the interval [0, 1] [4]-[5] by

/0 fOdt = (1—q) S Fla™)g"
n=0

Jackson [1910] extended this to the interval [a,b] [4]-[5] via
b b a
/ f(t)dgt :/0 f(t)dgt _/0 f(t)dqt,

/0 gt = al - 0) S Flag")a"
n=0

where

The g—analogue of n! is defined by

B 1, ifn=20
[n]y! = { [n]gln —1]4...[1],, ifn=12,..

where [n], is the quantum number and is given by

The g—binomial coefficient (}}), is defined by

(1= — @D [l

(@ Or (G Dn—rk [klg![n — Klg!

2 ¢—Bernoulli polynomials

The classical Bernoulli polynomials By, (z) are defined by the generating function

Z Bn(ZL‘) P - z i
n! e —1

n=0

The Bernoulli numbers are defined through the relation B,, = B, (0).
The g—Bernoulli polynomials By, (z, h|q) [3]- [8] are defined by g—generating function

e o j+h ix . 1 i > Bn(mahM) n
eT=7 ' P (=1 —— = = = Ty heZ,r eC.
jz—:o G TV T 2=

n=0

Note that
q—>

The ¢—Bernoulli numbers are defined through the relation

B (0, hlg) = Bu(hlq).
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In this paper we suggest a new approach to study the ¢—Bernoulli polynomials. Let B (t)
be the generating function of the classical Bernoulli numbers [12]

Then we get

Also, on exponent
/9 .
B (%> e = B(t)e' = B(x;t).

Now we will define a g—analogy of the generating function B (t) as

Eq(t) = Z
n=0

where b,,(¢) is a g—analogy of the Bernoulli numbers. By using the g—difference operator
D, we get

bn(q) n
[n]g! "

n=0
This procedure will suggest the following g—analogy of Bernoulli polynomials

k

By(z,q) = Z(ﬁ)qbn(anfn-

Also,

By(Deytet) = 320y (i(ff’“ tk)

k=0
= Bi(z,q) = B(z,t,
kz:%(q’(”k k(z,9) = B(z,t,q)

From this point of view we can define the ¢—Bernoulli polynomials.
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Definition 1. The ¢—Bernoulli polynomials B, (x, q) are defined by

2" z

g;g“%qkm@n:<1—@@fz_1f““* @1

where lim,_ 1 B, (x,q) = By(x), By, (x) are the ordinary Bernoulli polynomials.

Proposition 1.

DyBu(z,q) = [n],By-1(x,q). (2.2)
Proof.
DyB(z,q)7m—— = z eq(z1)
nz::l q ( (q;q)n (1_Q)(€Tq—1)1—q q(
z ad Zn
= Bn :E,
1_q2; ( q%mq%
1 & n
= T B, 1(x,q) ————
l—q= .
(o] Zn
fry n Bn7 :L" .
g;[h u q%mq%
[ |

Proposition 2. For g-commuting variables x and y such that xy = qyx, we have

n

Bu(z+y,q9) =Y (P)gy™ 'Bi(x,q). s
i=0
Proof.
nz:%[)’n(l“ +9,q) (¢;9)n N (1- q)(equ ) eq(z(x +v))
- - E eq(zy)eq(zz)

(1 —g)(era 1)

- o on)

o

- eq(zy) ;Bn(m7 Q)m

Also,

> <?>qy“6i<x,q>(2" -y y g

n=0 i=0 (q7 q)l(q7 Q)nfi

o n

)l BiZL', i
_ Zz(y) (,9)

n=0 i=0 (q7 Q)nfi (q7 q)’L
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oo o0

=22

= i:(]( ’
z

= eq(zy) nz:% Bn($> Q) (q; Q)n .

as desired [ |

(z)" Bi(w.q) ,
01 (4,9)i

n

In equation (2.3), if we take the limit as ¢ — 1. Then we get

n

Bu(z +y) =Y (")y" 'Bi(),

=0

where B,,(z) are the ordinary Bernoulli polynomials. And this relation satisfied for the
ordinary Bernoulli polynomials [1].

3 ¢—Bernoulli numbers

Definition 2. For n > 0, b, (q) = B,(0,q) are called g—Bernoulli numbers.

Lemma 1.

b (49
b,(q) = ————, .1
(@) = — d—qr (3.1)
where limg_,1 byp(q) = by, by, are the ordinary Bernoulli numbers .

Proof. Putting = 0 in equation (2.1), we get

oo Zn
= (@ 0)n
and replace z by (1 — ¢)z, then

- (1=g2)" =z
nz:%bn(Q) ( =

¢ Qn e —1

(1—q)(eT™7 —1)

But the ordinary Bernoulli numbers b,, satisfy

ib z -

n— = —.
| z _

= n! e 1

Then by (0:0)
_ W (@ 9)n
bn(q) - n! (1 _ q)n'
Also,
b (6 9)n
lim b, = —_——
Jm bala) = lim Zr
bn,

where (a),, is the Pochhammer-symbol. |
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The knowledge of the Bernoulli numbers and the lemma (3.1) allows us to determine the
q—Bernoulli numbers. The first five of them are:

1 2l

bo(q) =1, bilg)=—5, balg) = =, [2]4[3l4[4q

720
By using the properties of the ordinary Bernoulli numbers b, [6], we can prove that
1- b,(¢) =0V nodd and n > 3,

n—1 n 1—q)7
2— Ej:é By ((q;qq))j b;(q) =0,

- o (1)t .
3= Zj:ll(_l)] P ((q;qq))j+1 bj+1(q) = m

b3(q) =0, bu(q) =—

Proposition 3. For anyn > 1

n—1 . ‘(1 —q)j 2 B n! o
jz_:o i (¢9); Bjlw.0) = n—1]," (3.2)

Proof. The case where n = 1 is obvious. If we assume that the relation is true for some
k > 1, we have

"2 g, = ey T

k—1 ,
_ kp (1—q)
a (kﬂ)g ey

B (k1!

o ()

k .
1 p (L —q) (o :(k‘+1)!$k c
2 gy B = T e

Bj($7q)

<

Then

Put x = 0, then

k .
k+1 ‘(1 —q)’ (a) = ¢
jz_; 5 (¢;9); bjlg) =e

Using the second property of b;(q), we get ¢ = 0. Hence, by induction, relation is true for
any positive integer. |

Proposition 4.

n

Bu(w.q) = Y _()gbilg)a" . (3.3)

=0
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Proof. Let

n

Fo(z,q) = Z(?)qbi(q)mn%.

i=0
It suffices to show that (i) F},(0,q) = by (q) for n > 0 and (ii) DyFy(z,q) = [n|¢Fn—1(z,q)
for any n > 1, since these two properties uniquely characterize B, (z, ¢). The first property
is obvious. As for the second property,

n—1

1 n n—i n—i
DyFo(z,q) = —Z(i Jabi(g)z"™ (1 = q"")
1—-q)z =
~1
— bZ n—
1 - :L' lz; q q n i—1 (q)m
- I § bi(q)2"
—-1) & i(¢; q)n i1
n—1 )
= [nlg p_("i"gbi(g)2"
i=0
= [nfoFn-1(z:9),
as desired. m

The knowledge of g—Bernoulli numbers allow us to determine the g—Bernoulli polyno-
mials. The five of them are listed below:

Bo(z,q) =1 ,

Bi(z,q) = z- %

By(z.q) = a%- %x + 2[(2:]))"1),
Biw.g) = o' iy [22%?)]‘1

Lemma 2. The g—Bernoulli polynomials have the following symmetry property
(=1)"B(~z,q) = Bu(z,9) + [n]gz™ Y, V> 1.

Proof. The case where n = 1 is obvious. If we assume that relation is true for some
k> 1, we get

D, (-1 Brss(—2.9))

(—=1)*[k + 1]4Br(=, )
= [k+1gBi(z,q) + [k + 1](1[1‘5](11"671
= Dq (Bk+1(l', q) =+ [k =+ 1]q$k> y

then
(D' Bepa (=, q) = Brya(,q) + [k + 1ga* + c.
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Put x = 0, then
(=1 =1) brsafe) = ¢

but ((—=1)*1 —1) = 0 if k is an odd number and by41(¢g) = 0 if k is an even number.

Then ¢ = 0 and hence, by induction, relation is true Vn > 1.

Lemma 3.

v Bii1(z,q) — Bpyi(a,q)
B, (t,q)d,t = .
/a (ta) I [n+ 1]q

Proof. By using DB, (t,q) = [n]¢Bn-1(t,q), then we get

/ Bn(t,q)dqt = m / Dan+1(t,Q)dqt
1 @
= —[n+ 1] Bn-l—l(taq) |a

q

Bn+1($7 Q) - Bn+1(a7 Q)
n+1],

4 A g—Euler-Maclaurin formulas

(3.4)

Let the function P(x) = By(z — [z],¢), in which [z] means the greatest integer < z. The

function P(z) is periodic P(z + 1) = P(x). Also,

1 t+1
/ P(z)dyx = / P(x)d,z =0 Vt>0.
0 t

We employed P(z) in obtaining a g—analogy of the Euler-Maclaurin formulas [13].

Theorem 1.

n
o

where f(x) is differentiable.

Proof. First write

> s = LD 4 [ payde+ [ P@Df )y,

n n k
| @Dy - > | P@Dse)se

Now

-1
and we integrate by parts to obtain

k
/k P(2)Dyf(@)dgw = (x = k+1/2) f(2) [y —

—1 k—1

k

k k
/ P()Dy f(x)dye = / (¢ — k+1/2)Dy f(2)dye
k k—1

fqz) Dy P(x)dg
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then . .
k)+ f(k—1
/ P(x)D,f(x)dyx = % - f(gz)dyx
k—1 k—1
hence
[ e, qx—Zf T IO " fan)ae
which is a simply rearrangement of the result in the theorem. u

Also, by induction we can get the following lemma

Lemma 4. Let f(z) be a differentiable function. Then Vr =2,3,4, ...

n r—1, =L, =2 qyitr ) )
> sy = L ) Sl = f(a )

+ /n f(q"x)dgx + %/n B, (x — [z],q) Dy f(z)dg.

m [T q! m

5 A relation between B,(z,q) and I';(z)
The g—gamma function [5]-[2]

(¢ @)oo
(4% 9)oo

was introduced by Thomae [1869] and later by Jackson [1904].
By using the definition of e, we can see that

Ly(z) = (1-¢)' " 0<g<1,

To(@+1) = (¢ @)oo (1 — @) "eq(¢" ).

Also, if we replace x by ¢* and z by ¢ in equation (2.1), then we have

0o T q" . Q/(l — q) ol
nz:;)Bn(q 4) (q;CI)n T eq/(1—q) — 1e¢1(q ).

Then we get the following relation between By (x,q) and I'q(x)

Loz +1) = (/09 = 1)(g;q)oo(1 = 9)" ‘”ZB 7.a)q

q)

and then g—gamma function is a generating function of the ¢g—Bernoulli polynomials.
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