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The Bernoulli polynomials are generalized and some properties of the
resulting generalizations are presented.

1. Introduction
[t is well known that the Bernoulli numbers B, can be defined [1-3] as
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The Bernoulli polynomials B, (x) can be defined [1-3] by
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where we write B, = B,(0) for the Bernoulli numbers.
The usual definition of the generalized Bernoulli polynomials is
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For more information about Bernoulli numbers and Bernoulli polvnomials, see
[4, 5]. Many approaches to calculating Bernoulli numbers are presented in [1-3, 6].
Now we introduce a new function B,(a,b) for b > a > 0 by
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In this note, we give some relations between B,, B,(x) and B,(a,b), and some
properties of the function B,(a.b).

2. Relationships between B,,, B,,x and B, ab
It is clear that
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then we have

Moreover, since
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B,(t) = B,(e™", &™) (8)

thus

3. Some properties of the generalization of Bernoulli polynomials
For real numbers & > a > 0 and x € R, define
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Since (0" — a*)d(x; a,b) = x and g(x:a,b) x ¢(x;a,b) = 1, using the series ex-
pansions of a* and #* at x = 0 and formula (4), by standard arguments, we have
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Since B,(1 —v) = (=1)"B,(y), from formula (7), we have
B,(a.b) = —=B,(b,a) (12)




430 Classroom nates

From formula (7), it is easy to see that
B,(a",b*) = o" ' B,(a.b), aclR (13)

Using dB,(y)/dy = uB,_;(v) and by direct calculation, formula (7) leads to
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Further, differentiating formula (8) with respect to ¢ on both sides gives
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It is noted that many inequalities and properties of g(aja,b) have been
established and researched by the authors and others in [7]-[12].
The function g can be expressed in integral form as

b
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Mathieu's series defined in [13] can be expressed as
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Recently, some new results of Mathieu's series have appeared in [14].
By mathematical induction on n€ N, we obtain a recursion formula for
derivatives with respect to x of g as follows

(n+ g™ (x) + 2" V() = (Ind)"'0* = (Ina)"'a* (18)
Put b= e and a =1, then
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Note that the function g(x; 1, ¢) is absolutely monotonic increasing, see [7]-[10].
Since [g'(x: 1, e)]‘J = g(xi1,e) x g”(x;1,¢), by standard argument, we deduce
that ¢(x) is convex and 3((,‘)'(..\'))2 < o(x)p"(x).
Using the expression (16) for the function g, many new Steffensen pairs are
established in [8, 9, 15].
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In this note it is shown that the Moore-Penrose inverse of real 3 x 3
matrices can be expressed in terms of the vector product of their columns.
Moreover, a simple formula of a generalized inverse is presented, which also
involves the vector product.

1. Introduction
Given the 3 x 3 real matrix A = (a, b, ¢), where a,b and ¢ are its columns, it is
easily seen that the adjoint matrix of A is given by
Af = (bxec,exa,axh) (1-1)
Here ‘x’ denotes the vector product in R and prime means transpose. For a
nonsingular matrix A we have
1
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A _det(A)A (1.2)
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