Journal of Integer Sequences, Vol. 17 (2014), Article 14.2.2

Bernoulli Numbers and a New Binomial Transform Identity

H. W. Gould
Department of Mathematics
West Virginia University
Morgantown, WV 26506
USA
gould@math.wvu.edu
Jocelyn Quaintance
Department of Mathematics
Rutgers University
Piscataway, NJ 08854
USA
quaintan@math.rutgers.edu

Abstract

Let $\left(b_{n}\right)_{n \geq 0}$ be the binomial transform of $\left(a_{n}\right)_{n \geq 0}$. We show how a binomial transformation identity of Chen proves a symmetrical Bernoulli number identity attributed to Carlitz. We then modify Chen's identity to prove a new binomial transformation identity.

Carlitz [1] posed as a problem the remarkable symmetric Bernoulli number identity

$$
\begin{equation*}
(-1)^{m} \sum_{k=0}^{m}\binom{m}{k} B_{n+k}=(-1)^{n} \sum_{k=0}^{n}\binom{n}{k} B_{m+k} \tag{1}
\end{equation*}
$$

valid for arbitrary $m, n \geq 0$. The published solution by Shannon [2] used mathematical induction on m and n. The identity was rediscovered recently by Vassilev and VassilevMissana [10], but stated in the form

$$
\begin{equation*}
(-1)^{m} \sum_{k=0}^{m-1}\binom{m}{k} B_{n+k}=(-1)^{n} \sum_{k=0}^{n-1}\binom{n}{k} B_{m+k} \tag{2}
\end{equation*}
$$

valid for arbitrary positive integers m and n. Identity (2) is equivalent to Identity (1) since $\left[(-1)^{m}-(-1)^{n}\right] B_{m+n}=0$. Their proof used the symmetry of a function $f_{k}(x, y)$ involving Bernoulli numbers introduced in a separate paper [9]. They give no reference to Carlitz's or to Shannon's proof.

An alternative proof of Equation (1) is derived through an application of a binomial transformation identity discovered by Chen [3]. Let $\left(a_{n}\right)$ be any sequence of numbers, and define the binomial transform of $\left(a_{n}\right)$ to be the sequence $\left(b_{n}\right)$, where $b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k}$. A corollary of [3, Thm. 2.1] is

$$
\begin{equation*}
\sum_{k=0}^{m}\binom{m}{k} a_{n+k}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} b_{m+k} \tag{3}
\end{equation*}
$$

The Bernoulli numbers satisfy the recurrence $\sum_{k=0}^{n}\binom{n}{k} B_{k}=(-1)^{n} B_{n}$ for $n \geq 0$. Setting $a_{k}=B_{k}$, we then have $b_{n}=(-1)^{n} B_{n}$, so that Equation (3) becomes

$$
\sum_{k=0}^{m}\binom{m}{k} B_{n+k}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}(-1)^{m+k} B_{m+k}
$$

which is precisely Identity (1) of Carlitz.
Chen's proof of Equation (3) relies on certain properties of Seidel matrices. We present a direct proof which relies on the hypergeometric identity

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\binom{x+k}{r}=(-1)^{m}\binom{x}{r-m} \tag{4}
\end{equation*}
$$

see [6, Identity 3.47, p. 27]. In Equation (4) we require that m and r be nonnegative integers and x be a complex number.

Since the binomial transform inverts to give $a_{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} b_{k}$ we find that

$$
\begin{aligned}
\sum_{k=0}^{m}\binom{m}{k} a_{n+k} & =\sum_{k=0}^{m}\binom{m}{k} \sum_{j=0}^{n+k}(-1)^{n+k-j}\binom{n+k}{j} b_{j} \\
& =\sum_{j=0}^{n+m}(-1)^{-j} b_{j} \sum_{k=j-n}^{m}(-1)^{n+k}\binom{m}{k}\binom{n+k}{j} \\
& =\sum_{j=0}^{n+m}(-1)^{-j} b_{j} \sum_{k=0}^{m}(-1)^{n+k}\binom{m}{k}\binom{n+k}{j} \\
& =\sum_{j=0}^{n+m}(-1)^{n+m-j}\binom{n}{j-m} b_{j}=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} b_{j+m}
\end{aligned}
$$

A careful analysis of this preceding proof yields a short proof of [3, Thm. 3.2], where Chen relies on lengthy induction arguments. We will instead use Equation (4).

Theorem 1. [3, Thm. 3.2] Let b_{n} be the binomial transform of a_{n}. Then

$$
\begin{equation*}
\sum_{k=0}^{m}\binom{m}{k}\binom{n+k}{s} a_{n+k-s}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}\binom{m+k}{s} b_{m+k-s} \tag{5}
\end{equation*}
$$

for arbitrary nonnegative m, n, and s.
Proof. By definition $b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k}$. This implies that $a_{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} b_{k}$. Hence

$$
\begin{aligned}
\sum_{k=0}^{m}\binom{m}{k}\binom{n+k}{s} a_{n+k-s} & =\sum_{k=0}^{m}\binom{m}{k}\binom{n+k}{s} \sum_{j=0}^{n+k-s}(-1)^{n+k-s-j}\binom{n+k-s}{j} b_{j} \\
& =\sum_{j=0}^{n+m-s}(-1)^{n-s-j} b_{j} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\binom{n+k}{s}\binom{n+k-s}{j} \\
& =\sum_{j=0}^{n+m-s}(-1)^{n-s-j}\binom{s+j}{s} b_{j} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\binom{n+k}{s+j} \\
& =\sum_{j=m-s}^{n+m-s}(-1)^{m+n-j-s}\binom{s+j}{s}\binom{n}{j+s-m} b_{j} \\
& =\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}\binom{m+j}{s} b_{m+j-s},
\end{aligned}
$$

where the fourth equality follows by Equation (4).
Equation (5) allows us to establish a generalization of the curious formula

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{n} x^{k}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}\binom{n+k}{n}(1+x)^{k} \tag{6}
\end{equation*}
$$

discovered by Simons [8]. A quick proof of this was given by Gould [7] using elementary properties of Legendre polynomials. Instead, choose $a_{n}=x^{n}$ for all $n \geq 0$. Then $b_{n}=(1+x)^{n}$ and Identity (5) tells us that

$$
\sum_{k=0}^{m}\binom{m}{k}\binom{n+k}{s} x^{n+k-s}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}\binom{m+k}{s}(1+x)^{m+k-s}
$$

Letting $m=s=n$ recovers Identity (6).
Through an induction argument Chen proves
Theorem 2. [3, Thm. 3.1] Let b_{n} be the binomial transform of a_{n}. Then

$$
\begin{align*}
\sum_{k=0}^{m} \frac{\binom{m}{k}}{\binom{n+k+s}{s}} a_{n+k+s} & =\sum_{k=0}^{n}(-1)^{n-k} \frac{\binom{n}{k}}{\binom{m+k+s}{s}} b_{m+k+s} \\
& +\sum_{j=0}^{s-1} \sum_{i=0}^{s-1-j}\binom{s-1-j}{i}\binom{s-1}{j} \frac{(-1)^{n+1+i} s a_{j}}{(m+n+1+i)\binom{m+n+i}{n}}, \tag{7}
\end{align*}
$$

where m, n, and s are nonnegative integers.

If we use Equation (4) and the following hypergeometric identity attributed to Frisch [4], [5, p. 337],

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{1}{\binom{b+k}{c}}=\frac{c}{n+c} \frac{1}{\binom{n+b}{b-c}}, \quad b \geq c>0 \tag{8}
\end{equation*}
$$

[6, Identity 4.2, p. 46], we are able to prove the following new binomial transformation identity.

Theorem 3. Let b_{n} be the binomial transform of a_{n}. Let m, n, and s be nonnegative integers. Then

$$
\begin{equation*}
\sum_{j=0}^{s} \frac{\binom{s}{j} a_{j}}{(m+n+s+1-j)\binom{m+n+s-j}{m}}=\sum_{j=0}^{s} \frac{(-1)^{s-j}\binom{s}{j} b_{j}}{(m+n+s+1-j)\binom{m+n+s-j}{n}} \tag{9}
\end{equation*}
$$

Proof. By definition $b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k}$. Hence $a_{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} b_{k}$ and

$$
\begin{aligned}
& \sum_{k=0}^{m} \frac{\binom{m}{k}}{\binom{n+k+s}{s}} a_{n+k+s}=\sum_{k=0}^{m} \frac{\binom{m}{k}}{\binom{n+k+s}{s}} \sum_{j=0}^{n+k+s}(-1)^{n+k+s-j}\binom{n+k+s}{j} b_{j} \\
& =\sum_{j=0}^{m+n+s}(-1)^{n+s-j} b_{j} \sum_{k=0}^{m}(-1)^{k} \frac{\binom{m}{k}}{\binom{n+k+s}{s}}\binom{n+k+s}{j} \\
& =\sum_{j=s}^{m+n+s}(-1)^{n+s-j} \frac{b_{j}}{\binom{j}{s}} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\binom{n+k}{j-s}+\sum_{j=0}^{s-1}(-1)^{n+s-j} b_{j} \sum_{k=0}^{m}(-1)^{k} \frac{\binom{m}{k}}{\binom{n+k+s)}{s}}\left(\begin{array}{c}
n+k+s \\
j \\
j
\end{array}\right) \\
& =\sum_{j=s+m}^{m+n+s}(-1)^{m+n+s-j} \frac{\binom{n}{j-s-m}}{\binom{j}{s}} b_{j}+\sum_{j=0}^{s-1}(-1)^{n+s-j} b_{j} \sum_{k=0}^{m}(-1)^{k} \frac{\binom{m}{k}}{\binom{n+k+s}{s}}\binom{n+k+s}{j} \\
& =\sum_{j=0}^{n}(-1)^{n-j} \frac{\binom{n}{j}}{\binom{m+j+s}{s}} b_{m+j+s}+\sum_{j=0}^{s-1}(-1)^{n+s-j} b_{j} \sum_{k=0}^{m}(-1)^{k} \frac{\binom{m}{k}}{\binom{n+k+s}{s}}\binom{n+k+s}{j} \\
& =\sum_{j=0}^{n}(-1)^{n-j} \frac{\binom{n}{j}}{\binom{m+j+s}{s}} b_{m+j+s}+\sum_{j=0}^{s-1}(-1)^{n+s-j}\binom{s}{j} b_{j} \sum_{k=0}^{m}(-1)^{k} \frac{\binom{m}{k}}{\binom{n+k+s-j}{s-j}} \\
& =\sum_{j=0}^{n}(-1)^{n-j} \frac{\binom{n}{j}}{\binom{m+j+s}{s}} b_{m+j+s}+\sum_{j=0}^{s-1}(-1)^{n+s-j} \frac{(s-j)\binom{s}{j}}{(m+s-j)\binom{m+n+s-j}{n}} b_{j} \\
& =\sum_{j=0}^{n}(-1)^{n-j} \frac{\binom{n}{j}}{\binom{m+j+s}{s}} b_{m+j+s}+\sum_{j=0}^{s-1}(-1)^{n+s-j} \frac{s\binom{s-1}{j}}{(m+n+s-j)\binom{m+n+s-j-1}{n}} b_{j} .
\end{aligned}
$$

The fourth line follows from Equation (4) while the seventh follows from Equation (8).
In summary, we have shown that

$$
\begin{equation*}
\sum_{k=0}^{m} \frac{\binom{m}{k}}{\binom{n+k+s}{s}} a_{n+k+s}=\sum_{j=0}^{n} \frac{(-1)^{n-j}\binom{n}{j}}{\binom{m+j+s}{s}} b_{m+j+s}+\sum_{j=0}^{s-1} \frac{(-1)^{n+s-j} s\binom{s-1}{j}}{(m+n+s-j)\binom{m+n+s-j-1}{n}} b_{j}, \tag{10}
\end{equation*}
$$

If we compare Identity (7) to Identity (10), we conclude that

$$
\begin{align*}
& \sum_{j=0}^{s-1} \frac{(-1)^{n+s-j} s\binom{s-1}{j}}{(m+n+s-j)\binom{m+n+s-j-1}{n}} b_{j} \\
& \quad=\sum_{j=0}^{s-1} \sum_{i=0}^{s-1-j}\binom{s-1-j}{i}\binom{s-1}{j} \frac{(-1)^{n+1+i} s a_{j}}{(m+n+1+i)\binom{m+n+i}{n}} . \tag{11}
\end{align*}
$$

Equation (11) can be furthered simplified by applying Equation (8). In particular,

$$
\begin{aligned}
\sum_{j=0}^{s-1} \sum_{i=0}^{s-1-j}\binom{s-1-j}{i} & \binom{s-1}{j} \frac{(-1)^{n+1+i} s a_{j}}{(m+n+1+i)\binom{m+n+i}{n}} \\
& =\sum_{j=0}^{s-1}(-1)^{n+1} \frac{s}{n+1}\binom{s-1}{j} a_{j} \sum_{i=0}^{s-1-j}(-1)^{i} \frac{\binom{s-1-j}{i}}{\binom{m+n+1+i}{n+1}} \\
& =\sum_{j=0}^{s-1}(-1)^{n+1} \frac{s}{n+1}\binom{s-1}{j} a_{j} \frac{n+1}{n+s-j} \frac{1}{\binom{m+n+s-j}{m}} \\
& =(-1)^{n+1} \sum_{j=0}^{s-1} \frac{s\binom{s-1}{j}}{(n+s-j)\binom{m+n+s-j}{m}} a_{j} .
\end{aligned}
$$

These calculations show that Equation (11) is equivalent to

$$
\begin{equation*}
-\sum_{j=0}^{s-1} \frac{\binom{s-1}{j}}{(n+s-j)\binom{m+n+s-j}{m}} a_{j}=\sum_{j=0}^{s-1}(-1)^{s-j} \frac{\binom{s-1}{j}}{(m+n+s-j)\binom{m+n+s-j-1}{n}} b_{j} . \tag{12}
\end{equation*}
$$

Set $s \rightarrow s+1$ to obtain

$$
\begin{equation*}
\sum_{j=0}^{s} \frac{\binom{s}{j} a_{j}}{(n+s+1-j)\binom{m+n+s+1-j}{m}}=\sum_{j=0}^{s} \frac{(-1)^{s-j}\binom{s}{j} b_{j}}{(m+n+s+1-j)\binom{m+n+s-j}{n}} \tag{13}
\end{equation*}
$$

Since $(n+s+1-j)\binom{m+n+s+1-j}{m}=(m+n+s+1-j)\binom{m+n+s-j}{m}$, we see that Equation (13) is equivalent to Equation (9).

References

[1] L. Carlitz, Problem 795, Math. Mag. 44 (1971), 107.
[2] A. G. Shannon, Solution of Problem 795, Math. Mag. 45 (1972), 55-56.
[3] K. W. Chen, Identities from the binomial transform, J. Number Theory 124 (2007), 142-150.
[4] R. Frisch, Sur les semi-invariants et moments employés dans l'étude des distributions statistiques, Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo, II. HistoriskFilosofisk Klasse, 1926, No. 3, 87 pp.
[5] Eugen Netto, Lehrbuch der Combinatorik, 2nd edition, 1927. Reprinted by Chelsea, 1958.
[6] H. W. Gould, Combinatorial Identities, A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, revised edition. Published by the author, Morgantown, WV, 1972.
[7] H. W. Gould, A curious identity which is not so curious. Math. Gaz. 88 (2004), 87.
[8] S. Simons, A curious identity, Math. Gaz. 85 (2001), 296-298.
[9] P. Vassilev and M. Vassilev-Missana, On the sum of equal powers of the first n terms of an arbitrary arithmetic progression, Notes on Number Theory and Discrete Mathematics 11 (2005), 15-21.
[10] P. Vassilev and M. Vassilev-Missana, On one remarkable identity involving Bernoulli numbers, Notes on Number Theory and Discrete Mathematics 11 (2005), 22-24.

2010 Mathematics Subject Classification: Primary 11B68; Secondary 05A10, 11B65.
Keywords: Bernoulli number, binomial transform.
(Concerned with sequences A027641 and A027642.)

Received October 2 2013; revised version received January 3 2014. Published in Journal of Integer Sequences, January 32014.

Return to Journal of Integer Sequences home page.

