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        Our object is to prove some new convolution identities for the  
 
Bernoulli and Euler polynomials and numbers, and unify these with  
 
others that are not new but are not well known.  
 
        Nörlund [8, Chap. 6] defines generalized Bernoulli and Euler  
 
polynomials by the generating functions 
 

                        ∑
n=0

∞
 t

n
n!  B

(z)
n (x)   =   tzext

 (et - 1)z 
   ,     |t| < 2π,        (1) 

and 

                        ∑
n=0

∞
 t

n
n!  E

(z)
n (x)   =   2zext

 (et + 1)z 
   ,     |t| < 2π,        (2) 

These are actually special cases of more general functions he  
 
studies. 
 
        By the simple device of multiplying these generating functions 
 
together in different ways we may prove the following convolution 
 
identities 

               B(z+w)
n (x + y)   = ∑

k=0

n
 


n

k  B(z)
k (x) B(w)

n-k(y) ,                          (3) 

Nörlund [8, pp. 133, 139] 
which follows by equating coefficients of  tn   in the identity 
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                  t
z+we(x+y)t

 (et - 1)z+w 
    =   tzext

 (et - 1)z 
   tweyt

 (et - 1)w 
   , 

 

           E(z+w)
n (x + y)   = ∑

k=0

n
 


n

k  E(z)
k (x) E(w)

n-k(y) ,                              (4) 

[Nörlund, p. 138] from the similar identity 
 
              2

z+we(x+y)t
 (et + 1)z+w 

    =    2zext
 (et + 1)z 

   2weyt
 (et + 1)w 

   
       
and the new relations 

          2n  B(z)
n (x + y)  = ∑

k=0

n
 


n

k  B(z)
k (x) E(z)

n-k(y)  ,                              (5) 

from the identity 
 
               (2t)ze(x+y)t

 (e2t - 1)z 
    =  tzext

 (et - 1)z 
   2zeyt

 (et + 1)z 
   , 

 

    ∑
k=0

n
 


n

k   zn-k  B(2z)
k (x - y)   =   ∑

k=0

n
 (-1)n-k




n

k  B(z)
k (x) B(z)

n-k(y)  ,     (6) 

 
from the identity 
 
            etz   t2ze(x-y)t

 (et - 1)2z 
    =  tzext

 (et - 1)z 
   (-t)ze-yt

 (e-t - 1)z 
  , 

 
and 
 

        ∑
k=0

n
 


n

k    E(2z)
k (x - y)   =   ∑

k=0

n
 (-1)n-k




n

k  E(z)
k (x) E(z)

n-k(y)  ,       (7)  

 
from the identity 
 
            etz   22ze(x-y)t

 (et + 1)2z 
    =  2zext

 (et + 1)z 
   2ze-yt

 (e-t + 1)z 
  . 
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        The familiar Bernoulli polynomials are given by  Bn(x)  = B(1)

n (x) , 
 
and the ordinary Bernoulli numbers are given by  Bn  = Bn(0) . It is  
 
well known that  B1  = - 12   and  B2n+1  = 0  for  n = 1, 2, 3, . . . Some  
 
other values are  B0  = 1,  B2  =  16  ,  B4  =  - 1

30  ,  B6  = 1
42  ,  B8  = - 

1
30  ,  B10  = 5

66  ,  B12  = - 691
2730  ,  B14  = 76  . 

 
N. B.:  An explicit formula for the Bernoulli polynomials, discussed in  
 
[4] is 
 

        Bn(x)   = ∑
k=0

n
 1
 k + 1  ∑j=0

k
 (-1)j 



n

k  (x + j)n ,     n ≥ 0.              (8) 

 
        The familiar Euler numbers  En  , which occur in the Taylor  
 
series 

                  Sec t  =  ∑
n=0

∞
  t

n
n!  i

n  En    =  ∑
n=0

∞
 (-1)n t2n

(2n)!  E2n  , 

 
are given by  En   =  2n  E(1)

n (12) . Here  E2n+1  = 0 for all  n = 0, 1, 2, . . 
. , and a few other values are  E0  = 1,  E2  = -1,  E4  = 5,  E6  = -61,   
E8  = 1385,  E10  = -50521,  E12  = 2702765,  E14  = -1993609891. 
 
A corresponding formula for the Euler polynomials is  
 

             En(x)   = ∑
k=0

n
   2-k ∑

j=0

k
 (-1)j 



n

k  (x + j)n ,     n ≥ 0.             (9) 

 
        Nörlund [8, p. 145] also notes that by the simple device of 
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differentiating (1) and (2) with respect to  t,  we get the two  
 
difference equations (or three-term recurrence relations) 
 
       B(z+1)

n (x)   =  



1 - nz   B(z)

n (x)   +  (x - z) nz  B(z)
n-1(x)              (10)  

and 
 
       E(z+1)

n (x)   =  2z   E(z)
n (x)   -  2z (x - z)  E(z)

n-1(x)                       (11)  
 
        Letting  z = 1  in (3), (4) and (5) gives us 
 

               B(2)
n (x + y)   = ∑

k=0

n
 


n

k  Bk(x) Bn-k(y) ,                           (12) 

               E(2)
n (x + y)   = ∑

k=0

n
 


n

k  Ek(x) En-k(y) ,                            (13) 

 
and 
 

           2n  B(2)
n (x + y)   = ∑

k=0

n
 


n

k  Bk(x) En-k(y)                            (14)  

 
but from (10) and (11) with z = 1 we have the recurrences 
 
           B(2)

n (x)   =  (1 - n) Bn(x)  + n(x - 1)Bn-1(x)                      (15)  
and 
 
           E(2)

n (x)   =  2 En(x)  - 2(x - 1)En-1(x)                               (16)  
 
which we use to transform (12), (13) and (14) into convolution  
 
identities for the ordinary Bernoulli and Euler polynomials: 
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        ∑
k=0

n
 


n

k   Bk(x) Bn-k(y)   

                 = (1 - n)Bn(x + y)  + n(x + y - 1)Bn-1(x + y)  ,           (17) 
 
 

       ∑
k=0

n
 


n

k   Ek(x) En-k(y)    

              =  2 En(x + y)  - 2(x + y - 1)En-1(x + y)  ,                     (18) 
 
and 
 

          2-n
∑

k=0

n
 


n

k  Bk(x) En-k(y)   

                = (1 - n)Bn(x + y)  + n(x + y - 1)Bn-1(x + y)               (19)  
 
for the Bernoulli and Euler polynomials. 
 
        Formula (17) was the subject of a problem in the American 
 
Mathematical Monthly [9]. 
 
        By setting  x = y = 0  in (17) we get the convolution recurrence 
 

        ∑
k=0

n
 


n

k  Bk Bn-k   = (1 - n)Bn  - n Bn-1                                  (20)  

 
for the ordinary Bernoulli numbers. 
 
        Somewhat more complicated formulas follow from (18) and  
 
(19). This is because if we set  x =  y  =  12    in (18), we have to then  
 
find a way to express  En(1)  in the right hand side in terms of  En .  
 
And if we set  x = 0 and  y  =  12   in the left hand side of (19), we have  
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then to find a way  to express  Bn(12)   in the right hand side in terms  
 
of  Bn . We have found some formulas for these cases. We return to  
 
these later. If we were working with numbers defined by  En(0)   then  
 
the results are very simple, just as in the case of (20), but the  
 
numbers  En(0)   are not as useful as the more well known "Euler"  
 
numbers En   =  2n  E(1)

n (12)  = 2n  En(12)  . 
 
        The reader is cautioned not to confuse these standard "Euler"  
 
numbers with "Eulerian" numbers  Ak,n  which are given by 

         Ak,n  =  ∑
j=0

k
 (-1)j 



n+1

 j  (k - j)n  ,         0 ≤ k ≤ n .                 (21) 

 
These have the three term recurrence relation 
 
          Ak,n  =  n Ak-1,n +  (k - n + 1) Ak-1,n-1 .                         (22) 
 
With  n  as the row and  k  as the column numbers these form the  
 
array 
               1 
               0    1 
               0    1       1 
               0    1       4           1 
               0    1      11        11          1 
               0    1      26        66        26          1 
               0    1      57      302      302        57        1 
               0    1    120    1191    2416    1191    120     1 
                  .  .  .  . 
 
The rows sum to give  n!, i.e. 
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                             ∑
k=0

n
   Ak,n =  n!  .   

 
The Eulerian numbers arise in many ways, for example, 
 

          xn   =  ∑
k=0

n
 



x+k-1

  n   Ak,n ,     for all complex  x,                  (23) 

 
and 
 

      (1 - x)n+1 ∑
k=0

∞
   kn  xk   =  ∑

k=0

n
  Ak,n xk ,  valid for  |x| < 1.        (24) 

                       
There is a large literature about these numbers. In Gould [3] these  
 
were studied as special cases of the more general Worpitzky- 
 
Nielsen numbers which may be defined by 
 

                   Br,q
n      =  ∑

j=0

r
 (-1)j 



q

j  (r - j)n  .                                  (25) 

 
Then                  Ak,n =     Bk,n+1

n        , 
 
and. generalizing (23),  
 

      (-1)m+n  xn    =  ∑
k=0

m+1
  



x+k-1

  m   Bk,m+1
n         ,                                 (26) 

valid for  m ≥ n ≥ 0 . 
 
        Carlitz [1] observed that Euler [2] introduced the array of  
 
numbers  Ak,n  as far back as 1755, which accounts for their being  
 
called Eulerian. 
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        The numbers  En(0)  and Eulerian numbers are related, however,  
and there is the known interesting formula 
 

             En(0)   =  2-n ∑
j=0

n
 (-1)j   Aj,n ,                                          (27) 

 
which follows, of course, from (9) when  x = 0. 
 
        Returning to the Bernoulli-Euler convolutions, we next note  
 
that when z = 1  relation (6) yields 
 

        ∑
k=0

n
 (-1)n-k




n

k  Bk(x) Bn-k(y)   =   ∑
k=0

n
 


n

k   B(2)
k (x-y)   

              = ∑
k=0

n
 


n

k  




(1-k)Bk(x-y) + k(x-y-1)Bk-1(x-y)  ,              (28) 

 
which may be considered the dual to (17). In the same way that (17) 
 
simplified when  y = x, now (28) becomes 
 

         ∑
k=0

n
  (-1)n-k 



n

k   Bk(x) Bn-k(x)   = ∑
k=0

n
 




(1-k)Bk- kBk-1   

 

          = ∑
k=0

n
 


n

k   Bk  -  ∑
k=0

n
 


n

k   kBk  -  ∑
k=0

n
 


n

k   kBk-1   

 

          = ∑
k=0

n
 


n

k   Bk  -  ∑
k=0

n
 


n

k   kBk  -  ∑
k=0

n-1
 



 n

k+1  (k+1) Bk-1   

 

          = ∑
k=0

n
 


n

k   Bk  -  ∑
k=0

n
 









n

k k + 



 n

k+1 (k+1)  Bk  
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          = ∑
k=0

n
 


n

k   Bk  - n ∑
k=0

n
 


n

k   Bk   

          = (1 - n) ∑
k=0

n
 


n

k   Bk  =  (-1)n-1(n - 1) Bn  

 
because of the known linear recurrence 
 

       ∑
k=0

n
 


n

k   Bk   =  


(-1)n Bn  for all integers  n ≥ 0 

   Bn    for n ≥ 0 & n ≠ 1         (29)  

 
So we have the elegant formula 
 

        ∑
k=0

n
  (-1)k 



n

k   Bk(x) Bn-k(x)  =  (-1)n-1(n - 1) Bn  ,               (30) 

 
which of course gives us the convolution recurrence 
 

       ∑
k=0

n
  (-1)k 



n

k   Bk Bn-k   =  (-1)n-1(n-1) Bn                               (31)  

 
and this, in view of zero values of odd B's (except B1 ), reduces to 
 

        ∑
k=1

n-1
 



2n

2k   B2k B2n-2k   =  - (2n + 1) B2n ,    n ≥ 2.                  (32) 

 
Gould and Kerr [5, pp. 168-169] discuss some convolution  
 
recurrences for the Bernoulli numbers, and besides (28) the  
 
following two unusual forms are presented: 
 

      ∑
k=1

n-1
 



2n

2k  (22k - 1)(22n-2k - 1) B2k B2n-2k    

                         =  - (2n - 1)(2n + 22n ) B2n ,    n ≥ 2,                  (33) 
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and 

     ∑
k=1

n-1
 



2n

2k   22k B2k B2n-2k   =  - (2n + 22n ) B2n ,    n ≥ 2.           (34) 

 
As is noted in [5], (34) follows from combining (32) and (33). And all  
 
recurrences for Bernoulli numbers that involve only even subscripts  
 
automatically give corresponding recurrences for Zeta functions of  
 
even argument since, of course 
 

                 ζ(2n)  =  (-1)n-1 2
2n-1π2n
(2n)!    B2n ,        n ≥ 1.              (35) 

 
        The Bernoulli numbers satisfy another linear recurrence  

         Bn   =  - ∑
k-0

n-1
  


n

k  1
 n-k+1   Bk  ,   for all   n ≥ 1 ,                    (36) 

 
found by Gould and Alsardary [6] that appears to be new. 
 
        Relation (30) is interesting from a different point of view. The 
 
sum turned out to be independent of  x, and this happens because the 
 
Bernoulli polynomials  Bn(x)   are binomial polynomials. A polynomial 
 
Pn(x)   is called binomial if  Dx  Pn(x)  = n Pn-1(x)  . An old theorem  
 
about such polynomials is that the function 
 

          Sn(x)   =   ∑
k=0

n
  (-1)n-k 



n

k   Pk(x) Pn-k(x)                              (37)  

 
satisfies     Dx  Sn(x)  = 0 for all  n = 0, 1, 2, . . .  and so  Sn(x)   is  
 
independent of the value of  x.  
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        Now the Euler polynomials  En(x)   are also binomial polynomials, so 
we know that the alternating convolution of these is  
 
independent  of the value of  x. But in fact from relation (7) with   
 
y = x  we get 
 

     ∑
k=0

n
  (-1)n-k 



n

k   Ek(x) En-k(x)   =      ∑
k=0

n
 


n

k    Ek(0)  

                                 =   ∑
k=0

n
 


n

k   2-n ∑
j=0

k
 (-1)j   Aj,k ,                   (38) 

 
by using relation (27) to express the En(0)  in terms of Eulerian  
 
numbers. The formula does not appear to simplify much more than  
 
this. 
 
        Some further corollaries of our work may be indicated. Since 
       ∑

0 ≤ k ≤ n

 
       f(k)   + ∑

0 ≤ k ≤ n

 
   (-1)k f(k)  =  2 ∑

0 ≤ k ≤ n/2

 
       f(2k)  

 
with a similar formula for subtraction yielding a sum over odd  
 
indices,then formulas (3), (6), (4), and (7) yield convolution  
 
recurrences, where, in the convolution part, only even or only odd  
 
indices appear. For the ordinary Bernoulli polynomials we find then 
 
       2 ∑

0 ≤ k ≤ n/2

 
         



 n

2k   B2k(x)  Bn-2k(y)    

 

                      =  B(2)
 n (x + y)   +  ∑

k=0

n
 


n

k   B(2)
 k (x - y)                      (39)  

and, of course, relation (15) may be used to rewrite the right hand 
 
side in terms of the ordinary Bernoulli polynomials, but it is not 
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especially elegant. Similarly, for the Euler polynomials, 
 
       2 ∑

0 ≤ k ≤ n/2

 
         



 n

2k   B2k(x)  Bn-2k(y)    

 

                      =  E(2)
 n (x + y)   +  ∑

k=0

n
 


n

k   E(2)
 k (x - y)  .                   (40) 

        Relation (17) and similar formulas appear complicated because 
 
one has to use step-down formulas such as (15) and (16) to reduce 
 
polynomials of the form   P(2)

 n (x)  to ones of the form   P(1)
 n (x)   which 

 
may then be reduced to ordinary polynomials of some type. These 
 
step-down formulas necessarily exist in virtue of the fact that the 
 
basic convolutions (3) and (4) are addition theorems on the upper 
 
indices. In principle we may use iterations of the formulas to reduce 
 
any formula involving   P(r)

 n (x)   to one involving  P(1)
 n (x)  , but these 

iterated formulas are complicated and not expected to simplify far. 
 
Formula (3) gives us 
 

               B(3)
n (x + y)   = ∑

k=0

n
 


n

k   B(2)
k (x)  Bn-k(y) ,                          (41) 

and from this we can get 
 

         B(4)
n (x + y)   = ∑

k=0

n
 


n

k   Bn-k(y) ∑
j=0

k
 


k

j   B(2)
k (x)  Bk-j(y) ,         (42) 

and the process may be repeated continually, getting very  
 
complicated iterated summation identities expressing  B(r)

n (x)   in  
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terms of the ordinary Bernoulli polynomials.  
 
        Iteration of relations (10) and (11) affords another way to get 
 
B(r)

n (x)   in terms of the ordinary Bernoulli polynomials and  E(r)
n (x)  in 

 
terms of ordinary Euler polynomials. Nörlund [8, p.148] does just this 
 
and obtains such formulas which we will not take space to write out 
 
here. Nörlund's application of such formulas is to devise useful 
 
numerical quadrature formulas for work with finite differences. 
 
        We wish finally to return to examine the possible cases of our 
 
formulas that might lead to special cases of any interest. 
 
       From Nörlund [9] we have the following facts: 
 
      Bn(1 - x)  = (-1)n  Bn(x)  ,   so that   Bn(1)  = (-1)n  Bn  ;         (43) 
 
      En(1 - x)  = (-1)n  En(x)  ,   so that   En(1)  = (-1)n  En  ;         (44) 
 
Multiplication theorem: 
 

       Bn(rx)   =  rn-1 ∑
k = 0

r-1
    Bn(x + kr)  , for   r ≥ 1,  n ≥ 0.               (45) 

which gives us 
 

         Bn(12)   =  - (1 - 1 

2n-1 ) Bn  .                                                (46) 
 
A similar multiplication theorem is the source of the relation 
 
        En(12)   =  E(1)

n (12)   =  2-n  En  .                                            (47) 
 
        The formulas (43), (44), (46) and (48) suggest that we  
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investigate the special formulas arising from relations (17), (18),  
 
(19), (30) and (38) more closely. The following cases are suggested  
 
as interesting: 
 
Relation  (17)  with   x = 0,  y = 0  yields (20).     
 
Relation  (17)  with  x = 0,  y = 1  yields  (31). 
 
Relation  (17)  with  x = 0,  y  = 1/2  yields 
 

           ∑
k=0

n
 


n

k  Bk Bn-k(1/2)   = (1 - n)Bn(1/2)  - (n/2)Bn-1(1/2)  , 

 
whence 
 

    ∑
k=0

n
 


n

k (1 - 21-k)  Bk Bn-k  = (1 - n)Bn  -  n2 (1 - 22-n)  Bn-1  ,  (48) 

 
Relation  (17)  with  x = 1/2,  y = 1/2  yields 
 

           ∑
k=0

n
 


n

k  Bk(1/2) Bn-k(1/2)   = (1 - n)Bn(1)  , 

 
whence 
 

   ∑
k=0

n
 


n

k  (2k-1 - 1)(2n-k-1 - 1) Bk Bn-k   =  (-1)n-1 2n(n - 1) Bn  . (49) 

 
Relation (18) with    x = 0,  y = 0  yields 
 

        ∑
k=0

n
 


n

k  Ek(0) En-k(0)   =  2 En(0)  + 2 En-1(0)  .                  (50) 

 
Relation (18) with    x = 0,  y = 1/2  yields 
 



 15 

         ∑
k=0

n
 


n

k   Ek(0) En-k(1/2)   =  2 En(1/2)   + 2 En-1(1/2)  , 

 
whence 
 

           ∑
k=0

n
 


n

k   2k Ek(0) En-k   =  2 En   + 2 En-1  .                      (51) 

 
Relation (18) with  x = 1/2,  y = 1/2  yields 
 

    ∑
k=0

n
 


n

k  Ek(1/2) En-k(1/2)  =  2 En(1)   =  2 (-1)n En(0)  =  0, for odd  

n. 
 
whence 
 

      ∑
k=0

n
 


n

k  Ek En-k   = ∑
j=0

n
 (-1)n-j   Aj,n   =  0 , for all odd  n.        (52) 

 
Relation  (19) with    x = 0,  y = 1/2  yields 
 

       2-n
∑

k=0

n
 


n

k  Bk En-k(1/2)   = (1 - n)Bn(1/2)   - n2  Bn-1(1/2) , 

 
whence 

 2-2n
∑

k=0

n
 


n

k  Bk 2k En-k  = (n- 1)(1 - 21-n )Bn  + n2 (1 - 22-n) Bn-1  .(53) 

 
Relation  (19) with    x = 1/2,  y = 0  yields 
 

        2-n ∑
k=0

n
 


n

k  Bk(1/2) En-k(0)   = (1 - n)Bn(1/2)  -  n2  Bn-1(1/2)  

 
whence 
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       2-n ∑
k=0

n
 


n

k (1 -  21-k) Bk En-k(0)                       

                             = (1 - n)(1 - 2-n )Bn  -  n2 (1 - 21-n) Bn-1          (54)  
 
 
Relation  (19) with    x = 1/2,  y = 1/2  yields 
 

    2-n ∑
k=0

n
 


n

k  Bk(1/2) En-k(1/2)   =  (1 - n) Bn(1)  , 

 
whence 
 

       2-2n ∑
k=0

n
 


n

k (1 - 21-k)  Bk En-k   =  (-1)n(n - 1)  Bn  .             (55) 

 
Relation (30) with    x = 0  gave us (31). 
 
Relation (30) with    x = 1  yields (31) again. 
 
Relation (38) with   x = 1/2  yields 
 

             ∑
k=0

n
  (-1)n-k 



n

k   Ek(1/2) En-k(1/2)   =    ∑
k=0

n
 


n

k    Ek(0)  , 

 
whence 
 

        ∑
k=0

n
  (-1)n-k 



n

k   Ek En-k   =  2n   ∑
k=0

n
 


n

k    Ek(0)  ,                 (56) 

 
 
Relation (38) with   x = 1  yields 
 

             ∑
k=0

n
  (-1)n-k 



n

k   Ek(1) En-k(1)   =    ∑
k=0

n
 


n

k    Ek(0)  , 

 
whence 
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      ∑
k=0

n
  (-1)k 



n

k   Ek(0) En-k(0)   =   ∑
k=0

n
 


n

k    Ek(0)  .                  (57) 

 
       Remarks. The simple formula (8) for Bernoulli polynomials  
 
(which gives a corresponding simple formula for Bernoulli numbers  
 
when x = 0) has never been widely known. For some remarks about  
 
this, see my review [12] of a book on series by Stanaitis. Also, G. T.  
 
Williams [13] did not know about this formula. Williams obtained  
 
formula (32) by manipulations with the generating function for  
 
Bernoulli numbers. 
 
 
 
 

REFERENCES 
 

  1. L. Carlitz, Note on a paper of Shanks, Amer. Math. Monthly,  
 
      69(1952), 239-241. 
 
  2. L. Euler, Institutiones calculi differentialis, Petrograd, 1755. 
 
  3. H. W. Gould, The Stirling numbers and generalized difference 
 
      expansions, Master's Thesis, University of Virginia, 1956.  
 
  4. H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. 
 
      Monthly, 79(1972), 44-51. 
 
  5. H. W. Gould and W. Y. Kerr, Characterization of polynomial  
 
      systems satisfying generalized convolution differential- 
 
      difference equations, Journal of Mathematical Research and  
 
      Exposition (Dalian, China), 9(1989), 159-172.  



 18 

 
  6. H. W.Gould and Salar Y. Alsardary, Special function inverse series 
 
      pairs, Kyungpook Math. Journal, to appear. 
 
  7. Niels Nielsen, Traité élémentaire de nombres de Bernoulli, Paris, 
 
      1923. 
 
  8. N. E. Nörlund, Vorlesungen über Differenzenrechnung, Grundlehren  
 
      der Mathematischen Wissenschaften, Bd. 13, Springer Verlag,  
 
      Berlin, 1924. Reprinted by Chelsea Publ. Co., N.Y., 1954. 
 
  9. Problem 10416, Posed by Kwang-Wu Chen, Amer. Math. Monthly, 
 
      101(1994), p. 912. 
 
10. John Riordan, An Introduction to Combinatorial Analysis, Wiley,  
 
      N.Y.,1958. 
 
11. Ludwig Saalschütz, Vorlesungen über die Bernoulli'schen Zahlen,  
 
      ihren Zusammenhang mit den Secanten-Coefficienten und ihre  
 
      wichtigeren Anwendungen, Springer, Berlin, 1893. Available  
 
      since 1964 in Xerographed form  from Univesity Microfilms, Ann  
 
      Arbor, Michigan, Order No. OP-17136. 
 
12. O. E. Stanaitis, An Introduction to Sequences, Series, and  
 
      Improper Integrals, Holden-Day, San Francisco, 1967. Reviewed  
 
      by H. W. Gould, Amer. Math. Monthly, 76(1969), 210-211. 
 
13. G. T. Williams, A new method of evaluating   ζ(2n), Amer. Math.  
 
      Monthly, 60(1953), 19-25. 
 
- - - - - - - - - - - - - 
 



 19 

AMS Classification Numbers:  11B68, 05A19,  
 
Keywords: Bernoulli polynomials, Euler polynomials, Zeta function. 
 
Revised: December 1994 and 19 April 2010 


