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Abstract—1In this paper, we obtain a simple property of the Bernoulli polynomials Bn(x) and the
Euler polynomials E,(z). As a consequence, the relationship between two polynomials is obtained
from

B(@) = 3 (§)BrO)Bns(a).
bty
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We begin our study with classical two polynomials, Bernoulli polynomials B,(z) and Euler
polynomials E,,(z) having the following exponential generating functions:

tert > " 2%t > tn
" =n§=%Bn(x)H and - = ;)En(:t);t—!.

Thus, the first four such polynomials, respectively, are

1 1
Bo() =1, Bi@)=v-3, Bie)=z-s+3, Balx)=1- —Z—z2+%x,
1 3 1
Ep(z) =1, Ey(x) =zT- 3 Ez(:l:)=.’122—.1‘, Es(z) = 3—§£2+Z.

It is known (see [1,2]) that there are explicit formulas for B,(z) and E,(z), respectively,

Bn(z) = go (:) Bia™*, (1)
ntl

= e (71 s »
k

=1

where By := Bg(0) is the Bernoulli number for each &k = 0,1,...,n.
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These two polynomials have many similar properties (see {1,2]). One of these properties is

Bn(x + 1) - Bn(m) = nzn—l, (3)
E.(z+ 1)+ E,(z) = 2z™. 4)
The purpose of this paper is to obtain interesting properties of the Bernoulli and Euler poly-

nomials, and the relationship between such polynomials. This has probably not been realised
before.

First, we need the following identity:

(5= (%) o

THEOREM 1. For any integer n > 0, we have

(2) Br(z +1) = i () Br(z);
(b) En(z +1) = ko (;) Ex(z).

ProoOF. Applying (1) and (5),

B,(z+1)

i ( )Bk(z + 1)"""

zf:’:<>< o

Z n ] +k z
= itk k
Expanding the last expression gives

@ 1()ze} + () {()ze ()i} -
(@ (o (o)

(0% ()Be

) (}) o,

which proves (a). By similar arguments, we can prove (b) easily. 1
From (3),(4) and Theorem 1, we obtain for any integer n > 0,

zﬂ: (n + 1) =(n+1)z", (6)

k=0

Y Z) Ei(z) + Ep(z) = 22" (7)
k=0

b

1
:l (¥
a- o

M+ I

bl
[

In many contexts (see [3-5]), a number of interesting and useful identities for combinatorial
numbers are obtained from a matrix representation of a particular counting sequence, for example,
the Pascal numbers and the Stirling numbers, etc. Such a matrix representation provides a
powerful computational tool for deriving identities and an explicit formula for a given sequence.
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Let B(z), E(z), and X(z) be the (n + 1) x 1 matrices defined by

By(x) Ep(x) 1
Bw=|" Ewm= |, xw-| 7|
B.(2) Ba(a) 2

and let P,y and Qp41 be the (n + 1) x (n 4+ 1) lower triangular matrices defined by

(i—1> ifi>j
[Patiliy = { ji—-1) -
0,

otherwise,

l( ¢ ) ifi>y
[@ntilij=1¢ i\i—-1)" -

0, otherwise.

Then (6) and (7) can be represented as matrix systems of equations for each n = 0,1,. ..,
respectively,

Qn+lB(m) = X(.’E), (8)
2 (Pas + Tni1) El@) = X () (9)

where I,y is the identity matrix of order n + 1.
Noticing (8) and (9), the Bernoulli and Euler polynomials can be obtained simply from the
following matrix equations, respectively:

B(I) = Q;—}—lx(x)v
E(z) = 2(Pr1 + Ins1) ' X (2),

and moreover, two matrices obtained from both
1
Qne1[BO) B() - B(m)] and 5 (Pan+In)[EO) EQ) - E(m)].

by deleting the first row and first column, represent the Vandermonde matrix

12 22 n2
A

This suggests that the sum of powers of the first n positive integers can be expressed in terms
of the Bernoulli and Euler polynomials, respectively.

Now, we obtain some relationships between the Bernoulli and Euler polynomials.

Let Q, be the n x n matrix obtained from Q;! by replacing its (2,1),(3,2),...,(n.n ~ 1)
entries with zeros.

LEMMA 2.
1 A .
‘2‘(Pn + In) = QnQn~ (10)
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PROOF. First, note that from (1) the (3, j)-entry of Q! is (;:})B,-_ ; for integers i and j with
t > j. Applying identity (5) gives

azen s 1l =2 (173) G 22) e (23) e

t=j

1 -_1 _1 .
= 3 (D) (Ta)mera(G20) e
t=g1 NV TN T J -
: z—l)(—j) i1
= .Bht+2(. )BP, (11)
t=j+1(‘7—1 t=J J-1

Substituting x = 0 in (6) obtains
iif(%dyhz{Bmi“=j+L
pusrd k 0, ifi#j+1.
From (11), we have
_ j(Bo+2B1) =0, ifi=j+1,
(@ P+ 1], = { 005 o
7 2(]-_1)31']', lf’l,-';é]'i‘l.

It implies that
[Q‘I_LI(P" + I’n)]” =2 [Qn] R

y
which completes the proof. ’ ]
From (8)-(10), we have
B(z) = Qn1B(z). (12)
The following theorem is an immediate consequence of (12).

THEOREM 3. The Bernoulli polynomials can be expressed by the Euler polynomials as

Bu@) = 3 () Bunesa). (13)
k=0
k#1

Comparing (1) with (13), perhaps more interesting is the fact that the Bernoulli polynomi-
als B,(z) are the same as the polynomials obtained by replacing z* in B,(z) with the Euler
polynomials Ex(z) for each k = 0,1,...,n (k # n — 1), and by replacing z"~! with 0.

For example,

3 1
Bs(z)=1=z 5% +29:

= By(0) ~ 30" + 5 Eu(2)

(332 V1L
—(x 2m+4)+2(x 2).
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