# The Fibonacci Quarterly 1991 (29,2): 98-102 

## A NO'TE ON BERNOULLI POLYNOMIALS

## Dario Castellanos

Universidad de Carabobo, Valencia, Venezuela
Submitted January 1989)

## 1. Some General Remarks

Consider the function $x-[x]-\frac{1}{2}$ which is periodic with period 1 . In the interval [0, l] this function is simply $x-\frac{1}{2}$.

This function has the property that its integral in the interval [0, 1] is zero. Let us, then, with the same idea in mind define another function $\Phi_{2}(x)$, such that its derivative is $\Phi_{1}(x)=x-\frac{3}{2}$, and such that its integral in the interval [0, 1] is zero:

$$
\int_{0}^{1} \Phi_{2}(x) d x=0 .
$$

Similarly, $\Phi_{3}^{\prime}(x)=\Phi_{2}(x)$, and

$$
\int_{0}^{1} \Phi_{3}(x) d x=0
$$

In general, we seek a sequence of functions $\Phi_{n}(x), n=1,2,3, \ldots$, such that

$$
\Phi_{1}(x)=x-\frac{1}{2}, \Phi_{n}^{\prime}(x)=\Phi_{n-1}(x) \text { for } n>1,
$$

and

$$
\int_{0}^{1} \Phi_{n}(x) d x=0 \text { for all } n \geq 1
$$

The constant multiples of these functions $n!\Phi_{n}(x)=B_{n}(x)$ are called Bernoulli polynomials after their discoverer [2]. They obey the relation
(1.1) $B_{n}^{\prime}(x)=n B_{n-1}(x), n \geq 1, B_{0}(x)=1$.

The first few Bernoulli polynomials are

$$
\begin{aligned}
& B_{0}(x)=1, B_{1}(x)=x-1 / 2, B_{2}(x)=x^{2}-x+1 / 6, \\
& B_{3}(x)=x^{3}-(3 / 2) x^{2}+(1 / 2) x, B_{4}(x)=x^{4}-2 x^{3}+x^{2}-1 / 30, \text { etc. }
\end{aligned}
$$

It is clear from their construction that $B_{n}(x)$ is a polynomial of degree $n$. They are defined in the interval $0 \leq x \leq 1$. Their periodic continuation outside this interval are called Bernoulli functions.

The constant terms of the Bernoulli polynomials form a particularly interesting set of numbers. We set $B_{n}=B_{n}(0)$. It is obvious from the way the polynomials $B_{n}(x)$ are constructed that all the $B_{n}$ are rational numbers. It can be shown that $B_{2 n+1}=0$ for $n \geq 1$, and is alternately positive and negative for even $n$. The $B_{n}$ are called Bernoulli numbers, and the first few are

$$
\begin{aligned}
& B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{4}=-1 / 30, B_{6}=1 / 42, \\
& B_{8}=-1 / 30, B_{10}=5 / 66, B_{12}=-691 / 2730, B_{14}=7 / 6, \text { etc. }
\end{aligned}
$$

Bernoulli polynomials and numbers are intimately related to the sum of the powers of the natural numbers.

Bernoulli polynomials possess the following generating function [5, 3],

$$
\begin{equation*}
t e^{t x}\left(e^{t}-1\right)^{-1}=\sum_{n=0}^{\infty} B_{n}(x) t^{n} / n!, \tag{1.2}
\end{equation*}
$$

from which we find, on replacing $x$ by $x+1$ and then subtracting (1.2) from the resulting expression:
(1.3) $\sum_{n=0}^{\infty}\left[B_{n}(x+1)-B_{n}(x)\right] t^{n} / n!=t e^{t x}$.

Using the Maclaurin expansion on the right-hand side and comparing powers of $t$, we find
(1.4) $\quad B_{n}(x+1)-B_{n}(x)=n x^{n-1}, n=2,3, \ldots$.

From (1.1) and (1.4) there follows
(1.5) $\quad \int_{x}^{x+1} B_{n}(s) d s=x^{n}$,
from which we find [4]
(1.6) $\sum_{k=0}^{r} k^{n}=\sum_{k=0}^{r} \int_{k}^{k+1} B_{n}(s) d s$

$$
=\int_{0}^{r+1} B_{n}(s) d s=\frac{B_{n+1}(r+1)-B_{n+1}}{n+1}, n=2,3,4, \ldots .
$$

In the next section we will make use of the following property of Bernoulli polynomials [8]:
(1.7) $\int_{0}^{1} B_{n}(s) B_{m}(s) d s=(-1)^{n-1} \frac{m!n!}{(m+n)!} B_{n+m}$,

Formula (1.7) is only apparently unsymmetrical in $m$ and $n$. The reader can convince him- or herself of the symmetry of it by trying the different combinations of even and odd values of $m$ and $n$.

## 2. An Expansion for Products of Bernoulli Polynomials

We wish to expand a product of two Bernoulli polynomials in series of Bernoulli polynomials [7]. It will simplify matters if we use the functions $\Phi_{n}(x)$ defined at the beginning of Section 1 . We want, then, an expression of the form

$$
\begin{equation*}
\Phi_{n}(x) \Phi_{m}(x)=\sum_{k=0}^{n+m} a_{k} \Phi_{k}(x), \tag{2.1}
\end{equation*}
$$

where the $\Phi_{n}$ 's are, we recall, Bernoulli polynomials divided by $n$ !.
We will make use of the properties
(2.2) $\int_{0}^{1} \Phi_{n}(s) d s=0$ for $n \geq 1$,
and (1.7), which now appears in the guise
(2.3) $\quad \int_{0}^{1} \Phi_{n}(s) \Phi_{m}(s) d s=(-1)^{n-1} b_{n+m}, n, m=1,2, \ldots$,
where the $b_{n}$ 's are Bernoulli numbers divided by $n$ !.
Also
(2.4) $D \Phi_{n}(x)=\Phi_{n}^{\prime}=\Phi_{n-1}$ 。

Using Leibniz's theorem for the derivative of a product [1], we find from (2.1)
(2.5) $\quad D^{s}\left[\Phi_{n}(x) \Phi_{m}(x)\right]=\sum_{j=0}^{s}\binom{s}{j} D^{j} \Phi_{n}(x) D^{s-j} \Phi_{m}(x)=\sum_{k=0}^{n+m} a_{k} D^{s} \Phi_{k}(x)$.

That is,

$$
\begin{equation*}
\sum_{k=s}^{n+m} a_{k} \Phi_{k-s}(x)=\sum_{k=0}^{n+m-s} a_{k+s} \Phi_{k}(x)=\sum\binom{s}{j} \Phi_{n-j}(x) \Phi_{m-s+j}(x) \tag{2.6}
\end{equation*}
$$

with the restrictions that $n-j \geq 0$ and $m-s+j \geq 0$, i.e., $j \leq n, j \geq s-m$. Since the sum in (2.5) starts at $j=0$ and ends at $j=s$, we must write (2.6) in the form

$$
\begin{equation*}
\sum_{j=\max (0, s-m)}^{\min (s, n)}\binom{s}{j} \Phi_{n-j}(x) \Phi_{m-s+j}(x)=\sum_{k=0}^{n+m-s} a_{k+s} \Phi_{k}(x) \tag{2.7}
\end{equation*}
$$

We now wish to integrate both sides of (2.7) from $x=0$ to $x=1$ and to apply properties (2.2) and (2.3). To do so, we must separate from the first sum in (2.7) the terms corresponding to $j=n$ and to $j=s-m$, since in both of these cases the corresponding index is zero and formula (2.3) does not apply.

This gives

$$
\begin{equation*}
a_{s}=b_{n+m-s}(-1)^{n-1} \sum_{j=\max (0, s-m+1)}^{\min (s, n-1)}\binom{s}{j}(-1)^{j}, s<m+n-1 \tag{2.8}
\end{equation*}
$$

If $s=m+n$, the first sum in (2.5) will contain only one term and we have

$$
\begin{equation*}
a_{n+m}=\binom{n+m}{n} \tag{2.9}
\end{equation*}
$$

Similarly, if $s=m+n-1$, then the sum will contain only two terms with nonzero index, both of which will integrate to zero and we have
(2.10) $a_{n+m-1}=0$.

Expressing these results in terms of ordinary Bernoulii polynomials, we find, after dividing $a_{s}$ by $s!$, the expressions
(2.11) $\quad B_{n}(x) B_{m}(x)=\sum_{k=0}^{n+m} \alpha_{k} B_{k}(x)$,
(2.12) $\quad \alpha_{k}=\frac{n!m!B_{n+m-k}}{(n+m-k)!}(-1)^{n-1} \sum_{j=\max (0, k-m+1)}^{\min (k, n-1)} \frac{(-1)^{j}}{(k-j)!j!}, k<n+m-1, ~ m=1,2, \ldots$,
(2.13) $\alpha_{n+m-1}=0$,
(2.14) $\quad \alpha_{n+m}=1$.

Equations (2.11)-(2.14) are the desired results. The reader may wish to look at reference [6] to see alternate ways of expressing these coefficients.

Since Bernoulli numbers of odd index greater than one are zero, we see that if $n$ and $m$ are of the same parity, then expansion (2.11) will only involve Bernoulli polynomials of even index. If $n$ and $m$ are of opposite parity, then expansion (2.11) will only involve Bernoulli polynomials of odd index.

If we define

$$
\begin{equation*}
S_{n}\left(r^{p}\right)=\sum_{k=1}^{\infty} k^{n} \tag{2.15}
\end{equation*}
$$

and make use of (1.6), we can express (2.11) in terms of the $S_{r 2}$ 's:

$$
\begin{aligned}
(n+1)(m+1) S_{n}(r) S_{m}(r)= & \sum_{k=1}^{n+m+2} k \alpha_{k} S_{k-1}(r)-(n+1) B_{m+1} S_{n}(r) \\
& -(m+1) B_{n+1} S_{m}(r)-B_{m+1} B_{n+1}+\sum_{k=0}^{n+m+2} \alpha_{k} B_{k}
\end{aligned}
$$

Observe now that in the equation above $-B_{m+1} B_{n+1}$ cancels $\sum_{k=0}^{n+m+2} \alpha_{k} B_{k}$, since these expressions are the left-- and right-hand sides of (2.11) with $x=0$ and $n$ and $m$ replaced by $n+1$ and $m+1$, respectively.

The equation then takes the form

$$
\begin{align*}
(n+1)(m+1) S_{n}(r) S_{m}(r)=\sum_{k=2}^{n+m+2} k \alpha_{k} S_{k-1}(r) & -(n+1) B_{m+1} S_{n}(r)  \tag{2.16}\\
& -(m+1) B_{n+1} S_{m}(r)
\end{align*}
$$

where the $\alpha_{k}$ 's must now be written
(2.17) $\quad \alpha_{k}=\frac{(n+1)!(m+1)!B_{n+m+2-k}}{(n+m+2-k)!} \sum_{j=\max (0, k-m)}^{\min (k, n)} \frac{(-1)^{j}}{(k-j)!j!}$,
$k<n+m+1$,
(2.18) $\alpha_{n+m+1}=0$,
(2.19) $\quad \alpha_{n+m+2}=1$,
and we have observed that $\alpha_{1}=0$.
Note now that the product of $S_{n}(r)$ and $S_{m}(r)$ will involve $S_{k}(r)^{\prime} s$ with odd index only if $n$ and $m$ are of the same parity, and $S_{k}(r)$ 's with even index only if $n$ and $m$ are of opposite parity.

## 3. Some Examples

(3.1) $S_{1}(r) S_{2}(r)=\frac{5}{6} S_{4}(r)+\frac{1}{6} S_{2}(r)$,
(3.2) $\quad S_{1}(r) S_{3}(r)=\frac{3}{4} S_{5}(r)+\frac{1}{4} S_{3}(r)$,
(3.3) $S_{2}(r) S_{3}(r)=\frac{7}{12} S_{6}(r)+\frac{5}{12} S_{4}(r)$,
(3.4) $\quad S_{2}(r) S_{4}(r)=\frac{8}{15} S_{7}(r)+\frac{1}{2} S_{5}(r)-\frac{1}{30} S_{3}(r)$,
(3.5) $\quad S_{3}(r) S_{5}(r)=\frac{5}{12} S_{9}(r)+\frac{2}{3} S_{7}(r)-\frac{1}{12} S_{5}(r)$,
(3.6) $\quad S_{3}(r) S_{7}(r)=\frac{7}{24} S_{13}(r)+S_{11}(r)-\frac{3}{8} S_{9}(r)+\frac{1}{12} S_{7}(r)$,
$S_{1}(r) S_{3}(r) S_{5}(r)=\frac{1}{4} S_{11}+\frac{35}{48} S_{9}(r)+\frac{1}{24} S_{7}(r)-\frac{1}{48} S_{5}(r)$.
Especially appealing are the formulas for powers of the $S_{k}(n)^{\prime} s$. We obtain, for instance, the expressions
(3.8) $S_{1}(r)^{2}=S_{3}(r)$,
(3.9) $\quad S_{2}(x)^{2}=\frac{2}{3} S_{5}(x)+\frac{1}{3} S_{3}\left(x^{2}\right)$,
(3.10) $\quad S_{3}(r)^{2}=\frac{1}{2} S_{7}(r)+\frac{1}{2} S_{5}(r)$,
(3.11) $S_{4}(r)^{2}=\frac{2}{5} S_{9}(r)+\frac{2}{3} S_{7}(r)-\frac{1}{15} S_{5}(r)$,
(3.12) $S_{5}(p)^{2}=\frac{1}{3} S_{11}(p)+\frac{5}{6} S_{9}(p)-\frac{1}{6} S_{7}(p)$,
(3.13) $S_{1}(r)^{3}=\frac{3}{4} S_{5}(r)+\frac{1}{4} S_{3}(r)$,
(3.14) $\quad S_{2}(r)^{3}=\frac{1}{3} S_{8}(r)+\frac{7}{12} S_{6}(r)+\frac{1}{12} S_{4}(r)$,
(3.15) $S_{3}(r)^{3}=\frac{3}{16} S_{11}(r)+\frac{5}{8} S_{9}(r)+\frac{3}{16} S_{7}(r)$,
etc.
Formulas (3.8) through (3.11) have been known for a very long time. Formula (3.10) is attributed to Jacobi [9].

To the best of our knowledge, the only special case of (2.11) that is known is [10]
(3.16) $\quad B_{4}(x)-B_{4}=\left(B_{2}(x)-B_{2}\right)^{2}$,
and accounts for (3.8).

## References

1. M. Abramowitz \& I. Stegun, eds. Handbook of Mathematical Functions. Applied Mathematics Series 55. Washington, D.C.: National Bureau of Standards, 1964, p. 12.
2. J. Bernoulli. Ars conjectandi ... Basel, 1713, p. 97 (published posthumously).
3. D. Castellanos. "The Ubiquitous $\pi$, Part I." Mathematics Magazine 61.2 (1988):70-71.
4. Erdélyi, Magnus, Oberhettinger, \& Tricomi. Highex Transcendental Functions. Bateman Manuscript Project. New York: McGraw-Hill, 1953, Vo1. 1, pp. 35-39.
5. L. Euler. "Methodus generalis summandi progressiones." Coment. Academ. Aci. Petrop. 6 (1738):68-97.
6. H. W. Gould. Combinatorial Identities. Morgantown, 1972. See esp. Eq. (1.4).
7. C. Jordan. Calculus of Finite Differences. 2nd ed. (1950), Section 84, p. 248.
8. Magnus, Oberhettinger, \& Soni. Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd ed. Springer-Verlag, 1966, p. 27.
9. A. Palacio Gros. "Lecciones de Análisis Matemático." Universidad Central de Venezuela, Caracas, 1951, p. 63.
10. H. Rademacher. Topics in Analytic Number Theory. Springer-Verlag, 1973, p. 9 .
