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BERNOULLI NUMBERS*
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1. INTRODUCTION

The purpose of this paper is to discuss some of the properties of the
‘Bernoulli and relatednumbers and to indicate the relationshipof these numbers

to cyclotomic fields, We shall use the notation of N&riund {25].

The Bernoulli numbers may be defined by meang of

e
n
X X

(1.1) = E Bn o7 (Ix} < 24
e -1 :

n=0

This is equivalent to

(1.2) Z (‘;) B, =B, m>1),

together with By = 1.
It is convenient to write (1.2) in the following symbolic form:

(1.3) @+ = B @=1

where it is understood that after expansion of the left member we replace Bk

by Bk‘
We next define the Bernoulli polynomial Bn(a) by means of

[0.0]
ax
xe _ %
(L.4) p = Z B @ o

It follows that
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n
(1.5) B () = Z(?> B a' "

r=0
or symbolically
(1.6) B () = (B+a) .

Moreover, we have from (1.4)

1.7 B () = B ,
(1.8) B (a+1)-B () = na!,
(.9) B!(2) = nB__ (a) .

The polynomial Rn(a) ig uniquely determined by means of (1.7) and (1. 8).

Additional properties of interest are
1.10) B.(l1 - a) = (-)"B_(a)
(1. a ( ¢

and the multiplication theorem.,

k-1

_ b1 s
(1.11) Bn(ka) = K Z Bn'<a + k)

S=0

valid for all integral k = 1, Nielsen [24] has obsecrved that if a polynomial

fn(a) satisfies

k-1

oy - -1 s
£ (ka) = k £ (a + k)
s=0

for some k > 1 then we have
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f@ =¢C - B @,

where Cn is independent of a,
It is not difficult to show that

(1.12) ‘ Bop+r = 0 (> 0)
and that

-1
(1.13) 1" By > 0 (= 0).

The Euler numbers En may be defined by means of

® n
(1.14) ;;{—itx— = % F_ fr ,
which is equivalent to
(1.15) @+ @ - = {3 8 - 8;
It follows that
(1.16) Foptt = 0 @m= 0)
while
(1.17) DBy > 0 (m=1);

the E,, are odd integers.

The Fuler polynomial En(a) is defined by means of

©

o]
8

=]

2e _ - pd
(1.18) = Z]:n @ ir

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

73



74 BERNOULLI NUMBERS ‘ [June

It follows that

(1.19) E, = 2"E_(1/2)
Clearly
(1.20) E (a+1)+E (@) = 2"

Corresponding to (1.10) and (1.11) we have

(1.21) E(1-2) = (DE @ ,
k-1
(1.22) E (x) = &' D <-1)SEn<a+§) k odd) ,
S5=0
" k-1
(1.23) E () = 2 S 0%, (a+§) (k even)
5=0

2. THE STAUDT-CLAUSEN THEOREM

The Bn are rational numbers, as is evident from the definition. The
denominator of By, is determined by the following remarkable theorem.

Theorem 1, We have, for n>= 1,

! 1
(2.9) Bon = Gon - Z o

p—1|2n

where G, is an integer and the summation on the right is over all primes p
(including 2) such that p ~1 divides 2n,

For example, we have

-1, _1_1 =1 _ 1 1 1
Bp=g1-3-3 + Ba=g5=1-5-3-37>
= 1 - 1_1_1
B¢ =33 =1-3-35-7
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We shall sketch a proof of Theorem 1. It follows from (1,1) that

_ 1 s fk n
(2.2 By = 2 EwiL D <s> s

Now it is familiar that

k

1 k- k

E e ()
80

is an integer (Stirling number of the second kind), Thus (2,2) becomes

n

U R
By =2 wv1 omb
k=g

where c¢(n,k) is an integer. In the next place if a= 2, b= 2, ab> 4, we
can easily verify that (ab ~ 1)!/ab is integral. Hence in the right member of

(2.2) it is only necessary to consider k = 4 and k equal to a prime p. Since

p-i p-t
S [p-1)n _ n
SN GRS

=0 : 5=0

_ {*1 modp) (p-1ln, n=>0)
“ 0 (modp) (p-1un,
(2.2) reduces to

; I s {3
b= e 3 e3> (f)

where Gy, is an integer, But
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3

L:(—l)s (3> @ = .3 -8 = 0 (mod 4)

S
8=0

so that (2.3) reduces to (2.1).

Hurwitz [12} hag proved the following elegantanalog of the Staudt-Clausen

theorem. Let {(uw be the lemniscate function defined by means of
(2.4) {%u) = 40%w) - 4L .

We may put

2R
_ 1 N R
(2.5) (W= +§ = @ =2)
i

(The En in (2.5) shouldnotbe confused with the Euler number defined by (1.14).)

Corresponding to (2.1) we have

2.6 S S - i )
) 2

n n p

where Gn is an integer and the sum onthe right is over allprimes p = 1 (mod
4) such that p - 1 divides 4n; moreover, a is uniquely determined by means
of

p = a2+b? a=bhb+1(mod4),

Hurwitz's proof makes use of the complex multiplication of the function
{(u). However the present writer [7] has proved the following generalized
Staudt-Clausen theorem in an elementary manner,

Put

(2.7 fix) = Zanxn /al (@ = 1),

n=1
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where the a, are arbitrary rational integers and assume that the inverse
function is of the type

oo
(2.8) AR = Z cnxn/n (e = 1),
n=1

where the c, are integers, Note that the denominator in (2.8) is n, not n!,

Now put

o0
S LU
(2.9) ) Z Byx /n
0
Then we have

- 1 _n/(p-1)
(2.10) By = Gn - Z D cp s
p-tjn

where Gn is integral and the summation is over all primes p such that p - 1
divides n.
When f(x) = ™ - 1, A =log (1 +x), (2.10) reduces fo (2.1).

3. KUMMER'S CONGRUENCES

Kummer obtained certain congruences for both the Bernoulli and Euler
numbers that are of considerable importance in applications, We state first
the result for Euler numbers,

Theorem 2, Let r = 1, n = v and let p denote an arbitraryoddprime,
Then

T

s r _
(3.1) Z (-1) <S> Epagpey = 0 (mod p").

5=0
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A more general result is contained in Theorem 3, Let r= 1, e =1,

n= re and put w = pe_1 (p -~ 1), where p is an odd prime, Then
r
¢ 8 -
(3.2) STy <s> E o =0 (modp™®).

For the Bernoulli numbers we have Theorem 4, Let r=1, e= 1,

n>re andput w = pe_1 {p - 1), where p is a prime such that p - 1* n,
Then

3 8§ f{r Brr!-sw re
(3.3) E -1 s) i 0 (mod p 7).

g=0

For proof of these theorems see Nielsen [24, Ch. 14] or Bachmann [ 26].
Note that p = 2 is excluded in Theorems 2 and 3. TFrobenius [9] has proved
a result for the case p = 2, There is a fallacious proof in Bachmann's book,
Vandiver [19] obtained a result like (3.3) without the denominator n +

sw but under more restrictive hypotheses. He proved that

r

(3.4) Z -1)° (:) Begypog = 0 (MO Y,

80
where
a=0, r>0, a+tr=<p-1,

For move general results in this direction see [3].

The quotient Bn /n occurring in (3,3) is integral (mod p) provided p -
1 -}n. More precisely we state

Theorem 5. If p is primeand p-1 -l- 2n, prln then the numerator of
By, is divisible by p'.

The case p ~ 1|2n is covered by the following supplementary theorem,
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Theorem 6, Let pr (p - Djn. Then pr divides the numerator of

For proof of Theorem 6, see [3].

4, RECURRENCES

In addition to the fundamental recurrence (1.2), the Bn satisfy many
more recurrences, Many are derived in Nielsen's book, The following two
occur in a paper by D, H. Lehmer [13].

(4.1) n+3) g = an w1,
6r (3
=0
n
N (6n+5 1
(4.2) E (6r N 2) Bgrsz = 5 (60 +5)
=0 .

In all the known recurrences the number of terms is of order An, where

A is a positive constant, Thus it is of interest to ask whether Bn can satisfy
a relation of the form

Z Ar(n)Bn—r = A ,

where the Aj (n) and A(n) satisty certain restrietions and k is independent
of n,

We may state

Theorem 7, The equation

k
(4,3) Z Ar(n)Bn_I_ = Am) > No)
=0
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where Ay(n) is a polynomial in n with integral coefficients, A;(n), - - ,Ak(n),
AMm) are arbitrary integral-valued fimetions of n and k is independentof n,
is impossible,

Theorem 8. The equation

k
4.4) 2_4 Ar(n)En—r = A(m) (n >No),
=0

where Ap(n), Aqn), ---, Ap(n), A(n) are polynomials in n with integral co-
efficients and k is independent of n, is impossible.

Theorem 7 is proved by means of the Staudt-Clausen Theorem; Theorem
8 by means of Kummer's Congruences. For these and more general results,
see {5], [6].

5. IRREGULAR PRIMES

A prime p is said to be regular if it does not divide the numerator of

any of the numbers

(5.1) By, By *oty Bpog.
The prime p is irregular if it does divide the numerator of at least one of the
numbers (5,1), The motivation for these definitions will appear presently.

The first few irregular primes are
37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293.

It might appear that the irregular primes are relatively rare. Actually,
it is not known whether infinitely many regular primes exist. In the opposite
direction we have

Thoorcm 9. The number of irrcgular primes is infinite.

This theorem is due o Jensen; for the proof see [23, p. 82]. A simpler
proof is given in [2] Jensen proved a slightly stronger result, namely that
there exist infinitely many irregular primes congruent to 5 (mod 6). This re-

sult has very recently been improved by Montgomery [14].
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Theorem 10. Let T be a fixed integer >2, Then there exist infinitely
many irregular primes that are not congruent to 1 (mod T),

Paralleling the above definition, we may say that a prime p is irregu-
lar relative to the Euler numbers provided it divides at least one of the Euler

numbers

(5. 2) E2s E4: % Ep_g .

Theorem 1i. There exist inifinitely many primes that are irregular
relative to the Euler numbers,

For proof see [2] . Here again nothing is known about the number of reg-
ular primes velative to the Fuler numbers, Alsgo it is not known how the two

kinds of regular primes are related,

6. CONNECTION WITH CLASS NUMBERS AND FERMAT'S LAST THEOREM

Let p denote a fixed odd prime and put { = exi/p. Let h = h({) de-

note the class number of the cyclotomic field Q({). It is customary to put
(6.1) h = AB;

A is called the first factor of the class number and B is called the second
factor, The number B appears as the guotient of two determinants involving
logarithms of units; it is equal to the class number of the real field Q({ + {~1).

It is of considerable interest to know when h is divisible by p. Wehave
the following criterion,

Theorem 12, The class nuraber of Q({) is divisible by p if and only
if p is irregular.

It can be proved that if p divides B then nccessarily p divides A,
This yields

Theorem 13. plhespiA.

Vandiver | 18] has proved

Theorem 14, Let n= 1. Then A satisfies

(6.2) A

It

2—1/2(13-3)p ns (mod p") ,

g spH
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where the productisover s =1, 3, 5, «++, p -~ 2.

When n = 1, (6.2) reduces to

(mod p) .

= o-1/2(p-3
A= e ® )prspﬂ

Now by Theorem 4 with r = 1 we have

Bepst _ Pon

sp+1  s+1 (modp) (1 <s<p-2)

for s = p - 2 we have by the Staudt-Clausen Theorem

pB = pB,_y2 = -1 (modyp)

p(p-2)+t

Thus (6,2) reduces to

-4 1/2(p-3)
(6.3) A= (—]72—(]3—::);7')—, Srzll Bog (mod p).

Kummer has proved the following result concerning Fermat's last theorem.

Theorem 15, If p is regular the equation
(6.4) aP 5 P+ vp =0 (o, B, v € QU

hag only the trivial solution ¢ = 8 = v = Q,
Nicol, Selfridge and Vandiver [16] have proved that Fermat's last theo-
rem holds for prime exponents less than 4002,

The equation (in rational integers)
(6.5) Loy -0 ol

is known as the first case of Fermat's last theorem.

It has been proved that if (6.5) is satisfied then

(6.6) 2P = 2 (mod p?
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and
(6.7 3P = 3 (mod p?)

Indeed considerably more is known in this direction.
It has also been proved that if (6.5) holds then

(6.8) Bp—s = Bp—s = BP—T = Bp—g z 0 (mod pj .

Finally we state some criteria involving the Euler numbers, Vandiver

{ZO] has proved that if (6.5) is satisfied then

(6.9) Epn3 = 0 {(mod p).

M. Gut [10] has proved that if

i

(6.10) P+ y® = 22 (p [ xyz)

is satisfied, thcn

(6.11) Ep_3 = Ep_5 = Ep_7 = Ep_5 = Ep_11 = 0 (modp).

7. CONCLUDING REMARKS

The references that follow include mainly papers that havebeen referred
to above. Vandiver inhis expository paper [22] remarks that some 1500 papers
on Bernoulli numbers have been published!

For Fermat's last theorem, the reader is referred to Vandiver's expos-
itory paper [21] as well asDickson [8], Hilbert [11] and Vandiver -Wahlin [23].

For the FEuler numbers and related matters see Salie [17].

We coneclude with some remarks about real guadratic fields. Let p be a
prime =1 (mod 4) andlet E = 1/2(t + uv/p) > 1 denote the fundamental unit
of Q(+/p). Ankeny, Artin andChowla [1] have conjectured that u # 0 (mod p);
Mordell [15] has proved the following resultfs:

(1) If p is regular then u # ¢ (mod p).
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2 I p=5 {(mods then u=0 (modp) ifandonlyif B
(mod p). Chowla had proved (2) for all p = 1 (mod 4),

(p-l)/z =0
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The first use of the Q-matrix to generate the Fibonacci Numbers
appears in an abstréct of a paper by Frofessor J. L. Brenner by the
title Lucas' Matrixy This abstract appeared in the March, 1051
American Mathematical Monthly on pages 221 and 222. The basic
explolitation of the G-matix appeared in 1960 intthe San Jose State
College Master's thesls of Charles H. King with the title 'Some
Further Properties of the Fibonacci Numbers. Further utilizaticn
of the Y-matrix appears in the Fibonacci Primer sequence parts I-V.
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