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Abstract 

Starting with divided differences of binomial coefficients, a class of multivalued polynomials 
(three parameters), which includes Bernoulli and Stirling polynomials and various generaliz- 
ations, is developed. These carry a natural and convenient combinatorial interpretation. 
Calculation of particular values of the polynomials yields some binomial identities. Properties 
of the polynomials are established and several factorization results are proven and conjectured. 

1. Introduction 

Our study began with a binomial identity involving an alternating sum of vector 
space dimensions, which arose in the course of proving Bezout's Theorem. The 
identity led to consideration of a class of polynomials, which are best understood as 
higher-order divided differences of binomial coefficients. These polynomials are 
closely related to many of the standard polynomials of combinatorial  analysis, in 
particular to the Stirling polynomials, which determine their coefficients. Although it 

was not possible to find a closed form in general, which was the original intention, 
calculation of particular values gave some new binomial identities and some new 
derivations of old ones. Consideration of ' symmetry '  properties of the polynomials 
led to some interesting factorization questions, resulting in several theorems and 

conjectures. 
Since writing the original version of this paper, it was called to our attention that 

our polynomials are closely related to arbitrary-order Bernoulli polynomials. Carlitz 
[4],  in particular, defined the degenerate Bernoulli and Stirling polynomials, which 
can be brought into conformity with ours by a modification of the parameters, which 
we will provide in Section 7. His approach,  which starts with generating functions, is 
quite different from ours. Our  approach ends with generating functions, which are 
mainly used for computation. It has a more combinatorial  flavor and shows consider- 
ably more of the landscape along the way. 
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It is clear that these polynomials and their relatives play an important role in many 
combinatorial situations where inclusion-exclusion is involved [cf. 5, 11, 13]. The 
connection with Bernoulli polynomials caused us to shift our emphasis from binomial 
identities to investigating the algebraic and arithmetic properties of the polynomials 
themselves. Some strong factorization results are proven in Section 9, which was 
added to an earlier version of the paper. Further arithmetic results can be found 
in [1, 2]. 

2. Difference operators and the polynomials 

Let k be a field of characteristic 0 and let Ay:k[x,y]-- ,k[x,y] by 
Ay ( f  (x, y) )=f  (x + y, y ) - f ( x ,  y) be the difference with increment y. 

Clearly Ay is linear over k[y], k [ y ] _ k e r ( d y ) ,  and Im(Ay)~(y)  since 
A , ( f  (x, 0)) = f  (x + O, O)--f (x, O) = O. 

Let Vy: k [x, y] --* k [x, y] be the divided difference, defined by 

V,(f(x,  y))=Ay(f(x, y)) .f(x + y, y ) - f ( x ,  Y)~k[x, y]. 
Y Y 

(2.1) 

If F(x, Y)=~Z=o ( -  1)'-k(~,)P(x+ky) and A(x,y)=F(x,y)/y ~, then 

F(x,y)=d~(P(x)) and A(x,y)=V~(P(x)). (2.2) 

(It is crucial that Ay(P(x)) = P (x +y) - -P (x )  and Vy(P(x)) =(P(x  + y ) -  P(x))/y.) 
If ce k, A c (P(x)) = P(x + c ) -  P (x) and Vc (P(x)) = (P(x + c ) -  P(x))/c establishes con- 

formity with the standard difference and divided difference with increment c, but we 
are particularly interested in polynomial algebra. 

Thus AI=A is the standard forward difference operator, and F(x, 1)=A(x, 1)= 
d~(P(x))=Vs(P(x)) is the sth forward difference of P(x). 

Similarly A _ 1 (P(x)) = P(x -- 1) -- P(x) and V_ 1 (P(x)) = P ( x ) -  P ( x -  1) is the back- 
ward difference, so A (x, - 1 ) =  V L 1 (P(x))= sth backward difference of P(x). 

Vo(P(x)), which is obtained by setting y = 0  in the polynomial Vy(f(x,y)), can be 
written as (P (x + 0 ) -  P (x))/0, and is just P'(x); similarly, A (x, 0) = PtS)(x). 

These are polynomial derivatives, so they do not necessarily involve limits. Since 
the characteristic is 0, deg(P(x)) = r ~ deg(Pt~)(x)) = r -  s, so deg(A (x, y)) = r -  s and 
deg(F(x, y))=r if r >~s, while A(x, y)= F(x,y)=O if r <s. 

The remainder of this paper is devoted to the special case P(x)= (,~)= (x),/r!. 

Remark 2.1. The polynomial 

k=O \ k  l \  r ] 
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has an important combinatorial interpretation: Let a set S be partitioned into a subset 
X and subset Y1 . . . . .  Y~ with [XI = x  and I Yil =Y for each i, including the possibilities 
x = 0 or y = 0. Then F (x, y) is the number of r-subsets of S which meet each of the Yi. 
The proof is an immediate application of the inclusion-exclusion principle, where 
subsets are classified by how many of the Yi that they meet. 

Let 

for n, s=0 ,1 ,2  . . . . .  

(A. , ,=0  for n =  --l ,  - 2 ,  ... is consistent with the preceding analysis.) 
Then A.,s(x, y) is a polynomial of degree n. 
Since ,tx+ll, ,-,,,tx~=(,_~l) is well known, 

and 

Let 

Then 

_ $ X - -  X A.,$(x, 1)-A (s+.)--( ,) ,  

and 

B,,,(Y)=A,.,(O,Y)=(k~=o (--1)'- '(~)(s~n))/YS" 

..,(o>=(, ° y " ( .  
n/ =ks+nix=o" 

Finally, 

I ,  

,_i>. ,(;)(;):i, 
k=O 

A.,o(X,y)=(x) and B.,o(y)=6.o. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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3. Formulas related to the Vandermonde convolution 

The Vandermonde Convolution formula is 

r / /  1 = 0  

This is equivalent to the equations 

V x ,-1 / Y \ ~  ,-1 x y - 1  
' ( Y ) = t _ _ ~ o ( / ) ( r  l)/y=Z(l)(r-l-l)/(r-l," 

\ - -  / /  1 = 0  

Iterating this last formula gives 

" / l = O  

over all nl . . . . .  ns > 0 such that ~ n k = r - I .  

We can then deduce the following theorem. 

Theorem 3.1. 

B,,.,(y)=Z(~,)...(,,~ ) ~-, . ( r -~) . . .  , -1  
¢i) 

y '  ~ nl . . .n,  z-~ (ml + 1) ... (m,+ 1 ) ' 

where nk > 0, ~. nk = s + n and mk = n~ - 1, ~ m~ = n, mk ~ O. 

(ii) A. . . ( x ,  y ) =  l B._,,.(y). 
l = O  

summed over all ti >>-0 where Z iti = n and ~ ti = s. 

(iv, B, , (y)=  Z ( r ~ ) ( : :  ) . . .  ( r , _ , ) ( ~ _ _ 1 ) "  . . . ( y - n y "  
' r. \ n + l ]  ' 

summed over all rl >~ r2 >1 "'" >1 r, >~ 0 where ~ r i = n. 

Proof. (i) and (ii) restate the preceding formula with r = s + n. Their combinatorial 
meaning is clear from Remark 2.1, after multiplying by yL (iii) follows from (i) by 
collecting the terms where (Y~,l)/(m+l) occurs tm times. (iv) follows from (i) by 
factoring f f ~ i ) / ( m +  1 ) = ( ( y - 1 ) / 2 ) ( ( y - 2 ) / 3 ) . . .  and then collecting terms. [] 
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Corollary 3.2. (i) The highest coefficient of Bn, s(y) is 

1 ~-~ l~ -=E(s  ~(rlx~'"(rn-1)2"l (n 1)" '  f----'~=~n~! \ r , / \ ~ /  \ rn "" + 

where the indices are as above. 
(ii) The constant term of Bn, s(y) is 

= \ ~ - i j  • \ rn J \ 2 }  

Note  3.3. Fo rmula  (Theorem 3.1(iv)) is particularly important ,  since it shows that  
B~.,(y)=Bn(y,s) is a polynomial  of degree n in s, with highest coefficient 
(1/n!)((y- 1)/2) n, as is An. ~(x, y ) =  An(x, y, s), with the same highest coefficient. This will 
be exploited later, where it will be impor tan t  to treat  x, y and s as variables. 

The following special cases can be easily derived from the preceding theorem. 

( s=  1): 

(n~l)  (y;1) 
Bn, ,  ( y ) =  = y n + l  

and 

(7)( , )/ An, 1 (x, y ) =  , - ,  (3.l) 
t = o  n - l +  l Y=  n - l +  l" 1=0 

(n = 1): 

B L ~ ( y ) = s ( ~ -  ) and AL~(x,y)=x+S(Y21). (3.2) 

If m is a positive integer, then 

Bn.s(m , E ( s ") ( r' / \r2 / " " " k(r"- ' "~ (m - l J \--2-- J ( 1 )  . . . .  "-'7 = ... where ,...r,=n. (3.3) 
i=1 

We can deduce the following (with n, s = 0 ,  1,2 . . . .  ): 

B~. , (1)=0 if n~>l. (3.4) 

(In fact y = 1 is a simple zero of B~,,(y) since it is a simple zero of the term where all 
ri = 1 and a multiple zero of all o ther  terms.) 

Bn.~(y) > 0 if y > n and s > 0 ;  Bn.~(n) > 0 if n >  1 and s >  1, and the sign of 

Bn, s(y) is ( - 1 )  n if y <  1, so in part icular  if s > 0  then B,.~(y) 

has no zeros y < 1. (3.5) 

If m is a positive integer then Bn.~(m)>10 and Bn.~(m)=0 iff s ~< ~ . (3.6) 
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(Since s/> rl /> ... i> r,._ 1 and ~ rk = n, there is a nonzero term iff ( m -  1) s/> n.) 

S n 

(This says =-k = 2k = =-, F~(-1) (k)(=+.)=(.)2 , which is well known (cf. [8, 15]); apparently 
there is no simple formula for A..=(x, 2).) 

B . . . ( 3 ) = E  ( : ) ( n r r ) 3  ' - "  . (3.8) 

(This says Y.(-1)s-k(1)(sa+k,)=3 s-n [ ,  (~,)(,-',)Y, which may be new.) 

4. The coefficients 

Recall the definition of the Stirling numbers: 

(x)n = F. $1 (n, k)x k defines the Stirling numbers of the first kind, 

x"=F~ S2(n, k)(X)k defines the Stirling numbers of the second kind. 

Obviously the triangular unit diagonal matrices ($1 (n, k)) and ($2 (n, k)) are inverse 
to each other. 

Clearly Sl (n ,k )=( -  1)"-k F.rl --. r . -k where 0 < r l  < --. < r . _ k < n .  It is well known 
and easy to establish that S2(n, k)=(1/k!)F.i(-1)k-i(k)i ". 

Let A..=(x,y)=Zi+j<,.a~yix ~ where aij=aij.(s), and B.,=(y)=~7=ob~y i where 
bi = bi. (s). 

Theorem 4.1. ai~=(s!/(s+n)!)(=+j+J)S2(s+i,s)Sl(s+n,s+i+j). 

Proof. 

k k 

" ~ ( -  1 ) ' - t ' ( ; )  ~ S'  ( r " )  +~=. ( ; )  x '(k,)~ 

j + 2  ~ 
= s , ~ S , ( r , j + ~ . ) (  j )S2(~.,s)y x' .  

Now divide by r!y ~ where s = r - n  and set i = 2 - s .  [] 

Corollary 4.2. aoj = Sl (s + n, s + j ) / j !  (s + n)._j .  
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Since we have previously noted that aoj is a polynomial in s, it follows that 
S l ( s + n , s + j )  is a polynomial in s, divisible by (s+n)._j,  which we will return to 
shortly in our discussion of Stifling polynomials. 

Corollary 4.3. b~ = $2 (s + i, s) $1 (s + n, s + i)/(s + n).. 

In particular, the highest coefficient is b. = $2 (s + n, s)/(s + n)., so we now see that 
$2 (s + n, s) is a polynomial in s, divisible by (s + n).. 

Hence by Corollary 3.2 

s 1 (4.1) 

Finally, the constant coefficients bo =$1 (s + n, s)/(s + n). so 

(4.2) 
Now, recall the definitions of the Stirlin9 polynomials mentioned above (el. [7, 12]) 

f . ( s )=S , ( s+n , s )  and O.(s )=( -1 )"S l ( s , s -n ) .  (4.3) 

It follows from the preceding discussion that f.(s) is a polynomial of degree 2n 
divisible by (s + n). and that O.(s) is a polynomial of degree 2n divisible by (s).. Since 
B..o(y)=O if n>0 ,  s[a.owhence s[f.(s) and slaoo whence s -n[o . ( s )  for n>0.  

The standard difference equations, d fk(n ) = (n + 1)J~ _ a (n + 1) and A9~ (n) = ngk- 1 (n) 
are easy to establish. These, with the initial conditions fo(n)=Oo(n)=l and 
f.(O) = o.(O)= 6.o, determine the Stifling polynomials. They imply the duality relation 
o.(-s)=L(s). 

Write A. ,s (x ,y)=yaO.(s)y ix  J and B.,s(y)=~bi.(s)y i to exhibit explicitly depend- 
ence on the parameters. We can restate Theorem 4.1 and its corollaries as 

b , . ( s )=( -  1) "-i A(s)o.- ,(s  + n) (s + n). = b,(s) bo, . -  ~(s + i), (4.4) 

since 

g.(s + n) (4.5) b""(s)='f'(S)~s+n,, and bo . (S)=( -1)"  (s+n)----~ 

Similarly, 

./s+(+j~ 

j! 

The following corollary generalizes the duality of the Stifling polynomials. 

(4.6) 

Corollary 4.4. sb,. ( - (s + n)) = (s + n) b ._  l.. (s). 
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Proof. The le•hand side equals 

s(-1)"-i  f i ( - ( s  + n))o._i(- s) 
(-s). 

which is the right-hand side. [] 
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(s + n)( -  1)i Oi(s + n) f._i(s) 
(s+n). 

Translating the preceding corollary in terms of our original polynomials yields the 
following. 

Corollary 4.5. (s + n) B.( ~, s) y ~ = sB.(y, - ( s  + n)). 

This remarkable corollary deserves a prominent place on the list of symmetries that 
will be given later. As an important special case, s = 1 gives 

( X n l ) /  (1 - y ) (1 -2y ) . . . ( 1 -ny )  (4.7) B.(y, --(n+ l))=(n+ l)y" y ( n + l ) =  n! 

The standard proofs of this corollary use Lagrange inversion (cf. [6]). This formula 
will be generalized in Section 5. 

There is an interesting skew-symmetry that occurs in B.. ~ (y) when s = -n /2 .  In this 
ease, s + n = - s ,  so Corollary 4.4 gives 

b . - i , , ( s )= -b i . ( s )  if s =  -n/2.  (4.8) 

In particular, if n is even, then the middle coefficient 

b./2.. ( -  n/2) = O. 

As an example, calculated with Macsyma, 

Bs (y, - 4 ) = ( -  1/725 760)(199y s + 792y 7 - 4862y 6 - 13608y 5 

+ 13608y 3 + 4862y 2 - 792y-  199). 

5. Symmetries 

The following properties of the polynomials are useful and easy to verify. 

Theorem 5.1. 
(Si) A.,~(x + y,y)=A.,s(x,y)+ yA.-a,s+l(x,y), 

(Sii) A.,s (x, y) = A. ,~ (x + sy ,  - y), 
(Siii) A. ,~(x ,  y ) = ( -  1)"A.,~(-x + s + n -  1, - y) ,  

(Siv) , x' A.,,(x+x, Y)= E~( ~ )A.-t,s(x, y), 
(Sv) B.(y,s+t)=YaBz(y,s)B.-i(y,t), 

(Svi) (s+n)A.(x, y , s )=xA. - i  ( x -  1,y,s)+sA.(x + y -  1 ,y , s -  1). 
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Proof. 
t , - -  $ X (Si) It says that Vy(A. ~)=A._~ s+l which is true since A.,s-Vy(,+.). 

(Sii) It is true since the right-hand side equals 

~-~( -1)  ( 1 ) (  s+nlY)/(-y)'=t(- 
l = o  k=o / \  s+n / /  

where k=s- l .  

(Siii) It is true since 

( _ l ) . ( - x + s + n - l - k y ) /  ( x + k y ~ /  
s+n (-Y)" Y~" = \  s+n } /  

(Siv) It comes from the Vandermonde convolution. 
(Sv) It follows from (i) of Theorem 3.1. 

(Svi) It is true since the left-hand side equals 

(s+n)~k (--1)s-k(~)(x++knY)/YS=~k (--1)s-k(~)(x++kYnJll)(x+ky)/YS 

1.~ kYS~Yx+ky--l'~ / 

÷sZ(_,).-.(;-1 
which is the right-hand side. [] 

Remark 5.2. All but (Sii) and (Siii) have combinatorial interpretations along the lines 
of Remark 2.1. To illustrate this, multiply symmetry (Svi) by y~. The left-hand side then 
counts the number of (s+n)-subsets of S in which an element of each subset is 
distinguished, while the two terms of the right-hand side give the count where the 
distinguished element is or is not in X respectively. 

Many other useful properties may be deduced by judicious substitutions, e.g., put 
x = 0 and x = - y  in (Si) respectively to get 

(Svii) An,~(y,y)=n.,~(y)+yB.-l,~+~(y) and 
(Sviii) 

Put 
(Six) 
(Sx) 
Put 

(Sxi) 
Put 

B.,s(Y)=A.,,(-Y,Y)+ YA.-,.s+ ,(-Y, y). 
x = 0 in (Sii) and (Siii) respectively to get 
B.,~(y) = An.~(sy, - y) and 
B.,~(y)=(--1)~An,~(s+n--1, -y). 
s = --n in (Svi) to get 
xA._ l ( x -  l, y, --n)--nA.(x + y-- l, y, --n--  1)=0. 
x = 0 ,  1, and 1 - y  into (Svi) and (Sxi), respectively to get 
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(Sxii) (a) (s+n)B,(y ,s )=sA,(y-  1 ,y , s -  1) and A , ( y -  l,y, - n -  1)=0 if n >0, 
(b) B,-l(y,s)=(s+n)An(1,y,s)-sAn(y,y,s-1)  

and Bn- 1 (Y, - n) = nA,(y, y, - n - 1), 
(c) snn(y , s -1 )=(s+n)A , (1 -y , y , s ) - (1 -y )An_ t ( - y , y , s )  

and nBn(y, - n -  1)=(1 - Y)An-1 ( -  Y, Y, -n).  
For completeness, we include the symmetry noted in Section 4, the duality formula 
(Sxiii) (s + n) ynB, (~, s) = sBn (y, - (s + n)). 
We can then deduce from (Sxii(a)) and (Sxiii) 
(Sxiv) Bn(y, - (s+n))=y'An(( l /y) -  1, 1/y ,s-  1). 
Finally, we can generalize Corollary 4.5 to give 
(Sxv) A.(x, y, --(s+n))=y'An((x+ 1) /y) -  1, l/y, s -  1). 

Proof. Since (Sxiv) is the special case x = 0, it suffices to assume true for x and deduce 
for x + 1. But 

An(x+ 1,y, -(s+n))=An(x,y,  - (s+n))+ An_l(x,y,-(s+n)) by (Siv) 

nA [ x + l - l , ~ , s - l ) + y ' - l A n  l ( X ;  ! 1,~ ,s )  =Y n~ y - - 

( x + 2 - 1 , l '  ) =y"An s-- 1 by (Si). 
k Y Y 

[] 

Corollary 5.3. I f  s is a positive inte#er, then 

k s + n - 1  ]" 

As a special case of this corollary, take s = 1 to get the following corollary. 

Corollary 5.4. 

A,(x,y, _ n _  l ) = ( _ y ) , ( n - ( l  + x)/y ) _ (l + x--y)(l + x - 2 y ) . . . ( l  + 

6. Further consideration of the coefficients and some factoring results 

Lemma 6.1. I f  n is odd then Bn.s((s+n-1)/s)=B,.s((s+n)/(s+ 1))=0. 

Proof. If sy = s + n -  1, then by symmetries (Six) and (Sx) 

B,.s(y)= An.s(sy, -- y)= An.s(s + n-- 1, - -y )= ( - -  1)n Bn.s(y)= -- Bn.s(y), 
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which implies that B.,s(y)= O. Similarly, if (s + 1)y = s + n, use symmetries (Sxii a), (Sii), 

and (Siii) as well to get 

s 
B.,s(y)=~--~ A.,~- x (Y -  I, Y) 

s 
=s+nA.,s_l((s - 1 ) y + y -  1, - y )  

s 
=s+n A. , s_ l ( s+n-2  +(1 -y),  - y )  

= ( -  1)"s--~A., ,-I(Y- 1 , y ) = ( -  1)" B.,,(y), 

which again implies that B..s(y)=0. [] 

But B.,s(y)=B.(y,s) is a polynomial in s and y and slB.,s(y) if n>0,  so ifn is odd, 
sy-(s+n-1) lB. , , (y)  and if n is odd > 1, then (s+ 1)y-(s+n)l B.,s(y) whence 

s (y -  1)(sy-(s + n -  1))((s + 1)y-(s  + n))lB,,s(y) if n is odd > 1. (6.1) 

Thus if n is odd > 1, then 

s2(s+ 1)lb..(s) (6.2) 

and 

s(s + n -  1)(s + n) l bo.(S). (6.3) 

Since b.. (s) =f~ (s)/(s + n)., this says that s = - 1 and s -  0 are at least double roots of 
f~(s) for odd n >  1; similarly bo.(S)---(-1)"g.(s+n)/(s+n).,  so s =  1 and s = 0  are 
multiple roots of g.(s) for odd n > 1, which is clearly an equivalent statement. 

Furthermore, since bi.(s) = b, (s)bo..- t(s + i) and f .  ( -  n) = 0 = g. (n) for n > 0, we get 

the following list of factoring rules. 

Theorem 6.2. Let bi = bi. (s) as usual. 
(i) I f  n>O, then slb~. 

(ii) l f  i<n, then s+ilbi. 
(iii) I f  i is odd > 1, then s2(s+ 1)lbi (while if i= 1 and n> 1, only s(s+ 1)lbi). 

(iv) I f  n - i  is odd >1, then (s+n-1)(s+n)lb~. 
(v) 3s + 11 b2 and 3s + 3 n -  1 lb._ 2. 

Proof. The first four results follow from (4.4) and Corollary 4.4. For (v), observe that 
b22(s) = ~s(3s + 1) and bo2(s) = ~s(3s + 5), by direct calculation. [] 
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Linear factors of the b.'s correspond to rational roots of the "normalized' Stirling 
polynomials f . ( s ) / ( s+n) . .  We have used Macsyma to calculate and factor these 
polynomials up to n =  16. Up to that point the above factoring rules and obvious 
manipulations account for all rational factoring. It is tempting to conjecture that this 
is always the case, i.e., that the only rational roots of the normalized Stirling 
polynomials are s = 0 for n > 0, s = - 1 for n odd > 1, s-- 0 double for n odd > 1, and 
s=  - I  when n--2, and that dividing by the first degree factors leaves an irreducible 
polynomials over the rationals. 

Observe that sy + 2x - (s + n - 1)1A. (x, y, s) for n odd. This follows from symmetries 
(Sii) and (Siii) with sy = s + n - 1 - 2x. 

A useful theorem concerning rational factorization is the following. 

Theorem 6.3. Let n + 1 be an odd prime p. Then the following rational polynomials are 

irreducible: 

(i) b..  (s)/s =f~ (s)/(s + n). + 1 and bo. (s)/s = ( - 1)" 0. (s + n)/(s + n). + 1, 
(ii) B , ( y , s ) / s ( y - 1 )  and B.(a,s) /s  if  acT /and  pla,  

(iii) A . ( x , y , s )  and A . ( x , a , b )  if a, beT/ and pla and pXb ,  

(iv) A . ( -  1 ,O,s) / (s+n+ 1). 

Proof. Use Eisenstein's criterion with p = n +  1, concentrating on the single term 
s ( y - 1 ) - . .  ( y - n ) / ( n  + 1)! in each part. For  (i) and (ii), recall the formulas for B. . , (y)  

and b..(s) given in Theorem 3.1(iv) and in Corollary 3.2. Observe that s" occurs only in 

the term where rl = n and p occurs only in the term where rl = 1. Hence if we clear 
denominators we get, in each case, a polynomial whose top coefficient is divisible by 
p but not by p2, bottom coefficient is prime to p, and all other coefficients are divisible 
by p. Hence b.,(s)/s and B.(y,  s ) / s ( y -  1) are p-Eisenstein. (Observe for the latter that 
the coefficients, which are in Z [y],  are relatively prime, since the top coefficient is 
a power of y - 1  whereas the constant coefficient is prime to y - 1 . )  For  (iii), use 
Theorem 3.1(ii). Observe that x ~ occurs only when l=  n and that p occurs only when 
l = 0. Hence if we clear denominators, the resulting polynomial in x with coefficients in 
Z [s, y]  is again p=Eisenstein. For the special values y = a and s =b,  the assumptions 
guarantee that p , ~ b ( a - 1 ) . . . ( a - n ) ,  so again p-Eisenstein considerations apply. 
Similarly for (iv), A . ( - 1 , 0 ,  s) is divisible by s+  n + 1 by Corollary 5.4 and has an 

irreducible factor of degree >1 n -  1. [] 

Carlitz has a proof of a variant of (iv) in [3]. His method, which relies on the 
Clausen-Staudt Theorem, appears to be less elementary than ours. An analysis of 
p-Eisenstein occurrences of the polynomials A.(x ,  O, b) will be found in [1]. 

Remark 6.4. The preceding theorem refers to rational irreducibility. We have recently 
discovered proofs of the absolute irreducibility of some multi-variable polynomials 
related to A.(x ,  y, s). See Section 9. 
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7.  T h e  g e n e r a t i a g  f u n c t i o n s  

The various product representations that have appeared in formulas for A~.,(x,y) 
and B,,~(y) indicate that there is a generating function which is power function. That is 
ijideed the case: 

/ L e t  B,(y;t)=~=oB,.,(y)t ~ be the generating function for B,.~(y) and let 
' A,(x,y; t ) = ~ = o  A~.,(x, y)t ~ be the generating function for An,,(x, y), each with re- 

spect to n. Then we have the following theorem. 

Theorem 7.1. 
(i) [Bs(y; t ) = ( ~ ) ' , ]  

(ii) [A~(x, y; t)=(1 + t ) x ( ~ ) ' = ( 1  + t)XB~(y; t).] 

Proof. 

( l + t ~ ' - - I  ro~ ty~t ~ =z..=o~,~ - 1  (,~- 1) 
ty ty y n=O 

t , =  X~ ( ' ;  1 ) 
,~=on+ l t" 

Hence the assertions are true if s is a nonnegative integer by Theorem 3.1, and since we 
are dealing with polynomial functions of s, they remain true in general. [] 

The generating function is particularly useful for negative integer and fractional 
values of s. The results established thus far which are of polynomial character in 
s remain true if s is a variable by the principle of 'prolonging algebraic identities'. 

Almost without exception, the properties and computations done to this point can 
be handled at least as easily using generating functions. 

Consider some sample calculations and derivations. For example, when y =  0 we 
have 

oo - 1 )  ~ ~ t ~ s I n ( l +  

and the generating function 

A,(x, O; t )=(l + t)x(ln(~-+ t) ) ", (7.2) 

the latter being particularly important for the study of arbitrary-order Bernoulli 
polynomials. 

As another example, y = - 1 gives 

B,(_ l;t)=((l +t)-~-[l-1)'=(l +t)-, ' 

which implies that B,.,( - 1) = (~') and A,(x, - 1; t) = (1 + t) x- ' ,  which in turn implies 
that A,.,(x, -- 1)=(x~').  
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Symmetries: To drive symmetry (Svi), use logarithmic differentiation of the generat- 
ing function to obtain 

dAs(x, y; t) 
t~t xAs(x-l,y;t)+~[As_~(x+y-l,y;t)-As(x,y;t)].  

Equating coefficients of t"- I yields 

nA.(x,y,s)=xA._l(x-l ,y ,s)+s[A~(x+y-l ,y ,s-1)-A.(x,y,s)] .  [] 

W e  can also use the generating functions to find new symmetries. For example, 
continuing the numbering of Theorem 5.1 we get the following formula for 
An, s(x,y+ 1) if s is a nonnegative integer: 

(Sxvi) (y+ 1)SAn.s(x,y+ 1)=Y.~=o(7)y:A.,l(x+l,y). 
In order to prove this, consider 

( l+ t )Y+l -1  =Y(l+t)((l+t--~" - - l )  yt 

Raise this equation to the sth power and multiply by (1 +t)  ~ to get a generating 
function identity. Now equate coefficients of t". 

Properties of the coefficient polynomials can also be rederived. For example, it is 
easy to show that 

B- t (Y; t ) -BL- ' (Y) t=(  (1 + t)Y- 1)) - ' + t y  (Y21)t 

is an even function ofy. Thus ifn :~ 1, then B., _l(y) is even and s+ 11 bi.(s) for i odd. 

Remark 7.2. We can now place our polynomials in the literature. In [4, Section 6], 
Carlitz defines degenerate Bernoulli polynomials of arbiterary order by 

(oJ) L__ _ _ 
. = o f l n  (2,X)nt- ( l+2 t )u_  1 ( l+2t )  "~ where 2#=1. 

Using (Sxv) we get 

(7.3) 

Carlitz then defines degenerate Stirling numbers of the first and second kinds 
$1 (n, k I A) and $2 (n, k l2) respectively, which specialize to the ordinary Stifling num- 
bers for 2=0, and expresses them as values of certain degenerate Bernoulli 
polynomials (formulas (6.15) and (6.16) of [4]). 
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Howard [10, Section 1] defines weighted degenerate Stirlino numbers $1 (n, k, 210) 
and $2 (n, k, 210) which generalize the above, by his power series expansions (1.1) and 
(1.2). He makes use of the binomial theorem to get formulas which translate to 

$1 (n, k, 2[ 0 ) = ( -  1)"-k(n)n-k An-k(O--2, O, k) (7.4) 
and 

IO)-(n). kO"-kA, k{ '~!'~,--~, (7.5) S (n,k,2 - _ 

He then gives combinatorial interpretations of his numbers, which are precisely 
special cases of our combinatorial interpretations for the polynomials A.(x, y, s). 

Put 2 = 0  in flt.'°)(2,x) to get the arbitrary-order Bernoulli polynomials 
B~.'~)(x) =flt.~')(0, x), with tn = 1 giving the first-order Bernoulli polynomials B.(x). 

The exponential generating function for Bt~')(x) is (el. [ 14, 16]) 

(,)° - -  

n 

Put 2 = 0  in (7.3) to get 

a.(x,O, s)=(1/n!)B~ + 1 +')(x + 1). (7.7) 

Thus the arbitrary-order Bernoulli polynomials are expressible in terms of our 
polynomials, and vice versa, with first order (classical) given by 

a .  (x, 0, - n) = (l/n!) B. (x + 1). (7.8) 

From symmetry (Siii), if n is odd then 2x - (s + n - 1) ] A. (x, 0, s), which is equivalent 
to 2x-tolB~'°)(x) if n is odd. 

8. Additional computations 

In this section we continue to look for rational roots of B.(y, s) and B. (1/y, s) where 
y is a positive integer, primarily y = 2 or 3. 

First observe that since it has been shown that 

B.(2 ,s)= n ' 

it follows by (Sxiii) that 

( 1 )  s -(s+n)) B. ~,s =2-'s+nB.(2, 

=(--1)"4-" s--~---(s+2n--1)s+nk, n 

(8.2) 
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From this formula, we can derive two interesting binomial identities that are to be 
found in Gould's collection [8, 3.163 and 3.164]. 

This first, attributed to Carlitz, can be written 

' s k/2 . 1 2"- '  2 n - 1  2n-l-s~ ) (( -s)_( ._, JJ (8.3) 
To prove this one, observe that if s is a nonnegative integer 

$ 

((l+t)'/2-1)-*=2-'((l+t)'/2+l)'=2-'~yo(:)(k:2)t",~ ' = 

that is, 

s k /2  , 1 _ s ~ .  [ ]  

The other identity, attributable to Gray-Rosenstock-Riordan, can be written as 

(--1)k(2)( ksi2n)=(--1)'+"(l"~'+z"((s+2n--l'~--( s+2n-i (8.5) 
k=O \ 2 J  \ \  n ) \ n--1 / / "  

To prove this one, observe that the left-hand side equals (-½YB.(½, s). 
Next, recall that by (3.6), B.(m, s )=0  if s=0 ,  1 . . . . .  [ ( n -  1)/(m- 1)], so 

B.(m,s)= ah k ' 
k=r~l 

where all ak>O, a.=((m- I)/2) ~ and if m- I In then 

-m-~_ l l = \ - ~  l . (8.6b) 

It follows from symmetry (Sxiii) that 

(:) [._l] 
B. ,s = 0  ifs=-(n+j) where j =  l, 2, .. . , ~ . (8.7) 

Thus 

/1 -m V  B.(1,s)= ~, ¢,(s+nk['n-~- ] ) w h e r e c . = ~ - ~ - m ) ,  (8.8, 
k=[.'~- ] 

and 

q,._,)/,.,t),=B.( 1, -n). (8.9, 

For the remainder of this section take m = 3. We are looking for rational roots of 
B.(3,s) and B.(~, s). The following proposition gives such roots. 
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Proposition 8.1. Rational roots (linear factors) occur as follows: 
(i) s21B.(3, s) if and only if n = 3(rood6). 
(i)' s21B.(a x, - n ) = 0  if and only/fn=3(mod 6). 

(ii) B . ( 3 , -  1 )=0  if and only i f n = 5 ( m o d 6 ) .  
(ii)' B. (xa, - (n - 1)) = 0 / f  and only if n =- 5(mod 6). 
(iii) 3 s - n +  1JB.(3,s) if and only if3Xn. 
(iii)' 3 s + 4 n - 1 1 B . ( ~ , s )  if and only if3Xn. 

Proof. Observe that  the equivalence of each pair of formulas follows immediately 
from the duali ty symmetry (Sxiii). 

(i) Since ( s+n)B . ( y , s )=sA . (y - l , y , s -1 )  by (Sxii), we must show that  
s lA. (2, 3, s - 1), i.e., that  A. (2, 3, - 1) = 0, iff n - 3(rood 6). 

The generating function here is 

(1 + t ) 2 ( 1  + t )3 - -  1 ) - 1  3 ( t+2)  
3t = 3  3 + 3 t + t  2. 

Consider the partial fraction decomposit ion 

3( t+2)  a b 
3 +3t+t2=t- - t l  +t--t----~2' 

where tl and t2 are the roots of t 2 + 3 t + 3 = 0 .  It follows that  a=tl  and b=t2, and 
since qt2 =-3, that  - A . ( 2 ,  3, - 1)=(t]  + t ] ) / 3 "  for n>0 .  

But an easy computa t ion  gives t 3t = - t 2,a whence tl" -- -t2" iff n = 3(mod 6), so that  
A. (2, 3, -- 1) = 0 iff n = 3(rood 6). 

(ii) The generating function for B . ( 3 , -  1) is 

3 a b 
3+ 3t +t2 =t_t~+t_t---~2 ' 

where q,t2 are as above but now a = - i , f 3  and b=iv/3. Hence the generating 
function is 

x / J (  1 1 ) = i v / ~ E t ~ + x - - t ] + x  
i tx t t2--t 3.+1 t". 

But as noted above, t a = _ t2a, so t]  +1 = t ]  +1 iff n---5(mod 6), from which the result 
follows immediately. 

Before proving (iii), we prove a lemma. 

Lemnm 8.2. B. (3, s - 1) = (1/n) ((s - n) B. _ 1 (3, s - 1) + ((2s -- n)/3) B._ 2 (3, s - 1)) if n > 0. 

Proof. F rom (Sv) and (3.1) we have 

(2-,) 1 
B.(3,s) = E Bj(3,s-  1) = B . ( 3 , s -  1 )+B._  1 ( 3 , s -  1)+ ~-B._2 ( 3 , s -  1), 

z n- - l+l  J 
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while from (Sxii) and Theorem 3.l(ii) we have 

Eliminating B,(3,s) gives the desired result. 0 

We now return to the proof of Proposition 8.1. 
(iii) If n = 1 (mod 3) then the result follows immediately from (3.6), since s = (n - 1)/3 

is an integer <(n - 1)/2. Thus only the cases n = 2(mod 3) and n = O(mod 3) need work. 
Applying the recursion of the preceding lemma twice to the right-hand side of the 

equation 

for n> -2 we get 

B,+3(3,s+1)= 
s+l 

3(n+3)(n+2) 
((3s-n+l)B,+1(3,~)+(2s-n)B,(3,s)). (8.10) 

It follows that if s=(n- 1)/3 and n > -2, then 

B,+3(3,s+l)= - (n+2) 
27(n + 3) 

B, (3, s). (11) 

The result now follows immediately by induction on n (with B2(3, 4) =0 from 
n = - 1 or by direct verification). 0 

Note 8.3. Using (3.8) we can restate (ii) and (iii) of the proposition as binomial 
identities, namely 

(ii) gives 

T( .-:>( yk)3*=o 
if and only if n = S(mod 6), and 

(iii) gives 

if and only if 3 ,j’ n. 
Similarly (8.11) yields, for nonnegative integers 1, an interesting binomial identity 

(31-1)/3 

31-k 
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9. Addendum - -  Further factorization results 

We have recently found proofs for the absolute factorization (over C) of the An 
polynomials. For ease of application, we will give alternate formulations of the 
statements, but for convenience we will use Bernoulli notations for the proofs so as to 
use standard formulas, all of which follow readily from our symmetries. 

If An(x,s)=n! An(x, O, s) and B~'~)=B~'°~(0) is the Bernoulli number of order 09 and 
deg tee n, we have seen that An (x, s ) = B ~ + n + 1~ (x + 1), so that B ~'~) = An ( - 1, 09 - n - 1), 
which is a degree n rational polynomial in 09, called the N6rlund polynomial. (Bn = B{~ ) 
is an ordinary Bernoulli number.) Regard B~°'~(x) as a polynomial in variables o9 and x. 

Theorem 9.1. 

(i) I f  n is even >0, then A,(x, y, s), An(x, s) and B~'°)(x) are absolutely irreducible. 
(ii) I f  n is odd > I, then A,(x, y, s)/(sy + 2x - ( s  + n -  1)), An(x, s)/(2x - ( s  + n -  1)), and 

B~'°)(x)/(2x--09) are absolutely irreducible. 

Proof. It is easy to show (from symmetry (Siii)) that 

( 2 ) "  / 09 \ , -2  / 0 9 \ , - 2 :  
+ .  , 

where f =  In/2] and where 091ci(09) for all i (from Corollary 5.4). 
Thus applying the Eisenstein criterion over the unique factorization domain C [09] 

with prime element to, it will suffice to show that 092 Xc¢(09). Thus the following lemma 
will conclude the proof. 

L e m m a  9.2. 

(i) Let n be even >0. Then 09=0 is a simple root of B~ '°~. 
(ii) Let n be odd > 1. Then 09=0 is a double root of B{~ '°). 

Proof. Since 

t tO 

differentiation gives 

t ~o t 

and 

t o~ t 2 

~D2(B~°))t"/n!=(e-i~-~ ) (ln(e-rZ-~_l)) • 
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Now put o9=0. The first series shows oglB ~,o) if n>0 .  Since 

t 1 =t{l_t_e__;_L~_l'~,~ ,] D'l/ln{e-7-~-l'~Xi=t k, / /  c-e' 1 1 t (,) 

it is readily established that 

( ) 1 .  t --~t+ E a~t2k' In ~ = k=t 

where ( -  1)kay>0. 

The second series now shows that o9 = 0  is a simple root if n is even > 0  and 
a multiple root if n is odd > 1, while the third series shows that the multiple roots are 
double. [] 

Remark 9.3. Sincef.(og)= (~'.+")B~. -°'~ and 0 . (o 9 )= ( -  1)" (*'~ x) B~.'°) express the Stirling 
polynomials in terms of the Bernoulli numbers, an equivalent formulation is that 
o9 = 0 is a simple root of the Stirling polynomials of even positive order and a double 
root of the Stirling polynomials of odd order > 1 (where n is the order of the 
polynomial). 

We conclude with a final lemma, which is clearly relevant to factorization of the 
B.(y, s) polynomials, and which has some independent interest. Its proof is similar to 
that of Lemma 9.2, and so is omitted. 

Lemma 9.4. If  n is odd > 1, then o9 = 1 is a simple root of B~ '°~. 

Remark 9.5. Since it is well known that B. # 0 for n even (and follows immediately 
from (.)), the preceding lemma may be restated in terms of Stirling polynomials: co = 1 

and 09 = - 1 are roots of #.(oJ) and f .  (o9) respectively, which are simple for even n > 0 
and double for odd n > 1. 
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