Journal of Integer Sequences, Vol. 11 (2008), Article 08.2.5

A Generalized Recurrence for Bell Numbers

Michael Z. Spivey
Department of Mathematics and Computer Science
University of Puget Sound
Tacoma, Washington 98416-1043
USA
mspivey@ups.edu

Abstract

We show that the two most well-known expressions for Bell numbers, $\varpi_{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\}$ and $\varpi_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \varpi_{k}$, are both special cases of a third expression for the Bell numbers, and we give a combinatorial proof of the latter.

1 Introduction

In previous work [2] we derived formulas that have as special cases expressions for the sums $\sum_{j=0}^{n} j^{m}\binom{n}{j}$ and $\sum_{j=0}^{n} j^{m}\left[\begin{array}{l}n \\ j\end{array}\right]$, where $\binom{n}{j}$ is a binomial coefficient ($\left.\underline{\text { A007318 }}\right)$ and $\left[\begin{array}{l}n \\ j\end{array}\right]$ is a Stirling cycle number (or Stirling number of the first kind, A008275). However, our approach does not work for the corresponding sum $\sum_{j=0}^{n} j^{m}\left\{\begin{array}{c}n \\ j\end{array}\right\}$ involving Stirling subset numbers $\left\{\begin{array}{l}n \\ j\end{array}\right\}$ (or Stirling numbers of the second kind, A008277). By modifying our approach, though, we realized that $\sum_{j=0}^{n} j^{m}\left\{\begin{array}{c}n \\ j\end{array}\right\}$ can be expressed as a linear combination of Bell numbers (A000110). After some algebraic manipulation we found ourselves with a new expression for the Bell number ϖ_{m+n}, one that generalizes the two most common expressions for Bell numbers. The purpose of this short note is to give a simple combinatorial proof of that generalization.

2 Main Result

The Bell number ϖ_{m} is the number of ways to partition a set of m objects. For example, $\varpi_{3}=5$ because there are five ways to partition the set $\{1,2,3\}$:

$$
\{1,2,3\} ;\{1,2\} \cup\{3\} ;\{1,3\} \cup\{2\} ;\{2,3\} \cup\{1\} ;\{1\} \cup\{2\} \cup\{3\} .
$$

There is no known simple closed-form expression for ϖ_{m}. The two most well-known expressions for the Bell numbers are the following [1, pp. 373, 566]:

$$
\varpi_{m}=\sum_{j=0}^{m}\left\{\begin{array}{c}
m \tag{1}\\
j
\end{array}\right\}
$$

and

$$
\begin{equation*}
\varpi_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \varpi_{k} . \tag{2}
\end{equation*}
$$

The following generalizes both (1) and (2):

$$
\varpi_{n+m}=\sum_{k=0}^{n} \sum_{j=0}^{m} j^{n-k}\left\{\begin{array}{c}
m \tag{3}\\
j
\end{array}\right\}\binom{n}{k} \varpi_{k}
$$

(We take 0^{0} to be 1.) Equations (1) and (2) are the special cases $n=0$ and $m=1$, respectively.

Proof. Given a set of m objects and a set of n objects, one can count the number of ways to partition these $m+n$ objects in the following manner. Partition the set of size m into exactly j subsets; there are $\left\{\begin{array}{c}m \\ j\end{array}\right\}$ ways to do this. Choose k of the objects from the set of size n to be partitioned into new subsets, and distribute the remaining $n-k$ objects among the j subsets formed from the set of size m. There are $\binom{n}{k}$ ways to choose the k objects, ϖ_{k} ways to partition them into new subsets, and j^{n-k} ways to distribute the remaining $n-k$ objects among the j subsets. Thus there are $j^{n-k}\left\{\begin{array}{c}m \\ j\end{array}\right\}\binom{n}{k} \varpi_{k}$ partitions if the set of size m is partitioned into j subsets and k objects from the set of size n are chosen to form new subsets. Summing over all possible values of j and k yields all ways to partition the $m+n$ objects.

References

[1] Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994.
[2] Michael Z. Spivey, Counting functions and finite differences, Discrete Math. 307 (2007), 3130-3146.

2000 Mathematics Subject Classification: Primary 11B73.

Keywords: Bell number, Stirling number.

Received January 11 2008; revised version received May 27 2008. Published in Journal of Integer Sequences, June 232008.

Return to Journal of Integer Sequences home page.

