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Abstract. In this paper, we show that the r-Stirling numbers of both kinds, the r-Whitney numbers
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1 Introduction

The exponential partial Bell polynomials Bn,k (x1, x2, . . .) := Bn,k (xj) in an infinite number of vari-
ables xj , (j ≥ 1) , introduced by Bell [1], as a mathematical tool for representing the n-th derivative
of composite function. These polynomials are often used in combinatorics, statistics and also mathe-
matical applications. They are defined by their generating function

∑

n≥k

Bn,k (xj)
tn

n!
=

1

k!




∑

m≥1

xm
tm

m!





k

,

and are given explicitly by the formula

Bn,k (a1, a2, . . .) =
∑

π(n,k)

n!

k1! · · · kn!

(a1

1!

)k1
(a2

2!

)k2
· · ·
(an

n!

)kn
, (1)

where

π (n, k) = {k =(k1, . . . , kn) ∈ N
n : k1 + k2 + · · ·+ kn = k, k1 + 2k2 + · · ·+ nkn = n} .

It is well-known that for appropriate choices of the variables xj, the exponential partial Bell polyno-
mials reduce to some special combinatorial sequences. We mention the following special cases:

[
n

k

]

= Bn,k (0!, 1!, 2!, · · · ) , unsigned Stirling numbers of the first kind,

{
n

k

}

= Bn,k (1, 1, 1, . . .) , Stirling numbers of the second kind,

⌊
n

k

⌋

= Bn,k (1!, 2!, 3!, · · · ) , Lah numbers,

(
n

k

)

kn−k = Bn,k (1, 2, 3, · · · ) , idempotent numbers.
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For more details on these numbers, one can see [1, 4, 7, 8, 10].

In 1984, Broder [2] generalized the Stirling numbers of both kinds to the so-called r-Stirling numbers.
In this paper, after recalling the partition polynomials, we give a unified method for obtaining a class
of special combinatorial sequences, called the exponential partial r-Bell polynomials for which the
r-Stirling numbers and other known numbers appear as special cases. In addition, these polynomials
generalize the exponential partial Bell polynomials and posses some combinatorial interpretations in
terms of set partitions.

2 The partial r-Bell polynomials

First of all, to introduce the partial r-Bell polynomials, we may give some combinatorial interpretations
of the partial Bell polynomials. Below, for Bn,k (a1, a2, a3, . . .) , we use Bn,k (al) and sometimes we

use Bn,k (a1, a2, a3, . . .) and for B
(r)
n,k (a1, a2, . . . ; b1, b2, . . .) , we use B

(r)
n,k (al; bl) and sometimes we use

B
(r)
n,k (a1, a2, . . . ; b1, b2, . . .) .

Theorem 1 Let (an;n ≥ 1) be a sequence of nonnegative integers. Then, we have

• the number Bn,k (al) counts the number of partitions of a n-set into k blocks such that the blocks
of the same cardinality i can be colored with ai colors,

• the number Bn,k ((l − 1)!al) counts the number of permutations of a n-set into k cycles such that
any cycle of length i can be colored with ai colors, and,

• the number Bn,k (l!al) counts the number of partitions of a n-set into k ordered blocks such that
the blocks of cardinality i can be colored with ai colors.

Proof. For a partition of a finite n-set that is decomposed into k blocks, let ki be the number of
blocks of the same cardinality i, i = 1, . . . , n. Then, the number to choice such partition is

n!

k1! (1!)
k1 k2! (2!)

k2 · · · kn! (n!)
kn

, k =(k1, . . . , kn) ∈ π (n, k) ,

and, the number to choice such partition for which the blocks of the same cardinality i can be colored
with ai colors is

n!

k1! (1!)
k1 k2! (2!)

k2 · · · kn! (n!)
kn

(a1)
k1 (a2)

k2 · · · (an)
kn , k =(k1, . . . , kn) ∈ π (n, k) ,

Then, the number of partitions of a n-set into k blocks of cardinalities k1, k2, . . . , kn such that the
blocks of the same length i can be colored with ai colors is

∑

k∈π(n,k)

n!

k1! (1)
k1 · · · kn! (n)

kn
(a1)

k1 (a2)
k2 · · · (an)

kn = Bn,k (al) .

For the combinatorial interpretations of Bn,k ((l − 1)!al) and Bn,k (l!al) , we can proceed similarly as
above. �

Definition 2 Let (an;n ≥ 1) and (bn;n ≥ 1) be two sequences of nonnegative integers. The number

B
(r)
n+r,k+r (al; bl) counts the number of partitions of a (n+ r)-set into (k + r) blocks such that:
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• the r first elements are in different blocks,

• any block of the length i with no elements of the r first elements, can be colored with ai colors,

• any block of the length i with one element of the r first elements, can be colored with bi colors.
We assume that any block with 0 color does not appear in partitions.

On using this definition, the following theorem gives an interesting relation which help us to find a
family of polynomials generalize the above numbers.

On using combinatorial arguments, the partial r-Bell polynomials admit the following expression.

Theorem 3 For n ≥ k ≥ r ≥ 1, the partial r-Bell polynomials can be written as

B
(r)
n,k (a1, a2, . . . ; b1, b2, . . .) =

(n− r)!

(k − r)!

∑

n1+···+nk=n+r−k

bn1+1 · · · bnr+1

n1! · · · nr!

anr+1+1 · · · ank+1

(nr+1 + 1)! · · · (nk + 1)!
.

Proof. Consider the (n+ r)-set as union of two sets R which contains the r first elements and N

which contains the n last elements. To partition a (n+ r)-set into k+ r blocks B1, . . . , Bk+r given as
in Definition 2, let the elements of R be in different r blocks B1, . . . , Br.

There is 1
k!

(
n

n1,...,nk+r

)
bn1+1 · · · bnr+1anr+1

· · · anr+k
ways to choose n1, . . . , nk+r in N on using colors,

such that
- n1 ≥ 0, . . . , nr ≥ 0 : n1, . . . , nr to be, respectively, in B1, . . . , Br with bn1+1 · · · bnr+1 ways to color
these blocks,
- nr+1 ≥ 1, . . . , nk+r ≥ 1 : nr+1, . . . , nk+r to be, respectively, in Br+1, . . . , Bk+r with 1

k!anr+1
· · · anr+k

ways to color these blocks.

Then, the total number of colored partitions is

B
(r)
n+r,k+r (a1, a2, . . . ; b1, b2, . . .) =

1

k!

∑

(n1,...,nk+r)∈Mn+r,k+r

(
n

n1, . . . , nk+r

)

bn1+1 · · · bnr+1anr+1
· · · anr+k

,

where Mn,k =
{
(n1, . . . , nk) : n1 + · · ·+ nk = n, (n1, . . . , nr, nr+1 − 1, . . . , nk − 1) ∈ N

k
}
. �

On using Theorem 3, we may state that:

Corollary 4 We have

∑

n≥k

B
(r)
n+r,k+r (al; bl)

tn

n!
=

1

k!




∑

j≥1

aj
tj

j!





k


∑

j≥0

bj+1
tj

j!





r

. (2)

Proof. From Theorem 3 we get

∑

n≥k

B
(r)
n+r,k+r (al; bl)

tn

n!

=
∑

n≥k




1

k!

∑

n1+···+nr+k=n+r−k

bn1+1 · · · bnr+1

n1! · · ·nr!

anr+1+1 · · · anr+k+1

(nr+1 + 1)! · · · (nr+k + 1)!



 tn

=
1

k!

∑

n1≥0,...,nr≥0, nr+1≥1,...,nr+k≥1

bn1+1 · · · bnr+1

n1! · · · nr!

anr+1
· · · anr+k

nr+1! · · · nr+k!
tt

n1+···+nr+k

=
1

k!




∑

j≥1

aj
tj

j!





k


∑

j≥0

bj+1
tj

j!





r

.
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To give an explicit expression of the number B
(r)
n+r,k+r (al; bl) generalizing the formula (1), we use the

Touchard polynomials defined in [3] as follows. Let (xi; i ≥ 1) and (yi; i ≥ 1) be two sequences of
indeterminates, the Touchard polynomials

Tn,k (xj , yj) ≡ Tn,k (x1, . . . , xn; y1, . . . , yn) , n = k, k + 1, · · · ,

are defined by T0,0 = 1 and the sum

Tn,k (x1, x2, . . . ; y1, y2, . . .) =
∑

Λ(n,k)

[
n!

k1!k2! · · ·

(x1

1!

)k1
(x2

2!

)k2
· · ·

] [
1

r1!r2! · · ·

(y1

1!

)r1
(y2

2!

)r2
· · ·

]

,

where

Λ (n, k) =






k =(k1, k2, . . .) : ki ∈ N, i ≥ 1,

∑

i≥1

ki = k,
∑

i≥1

i (ki + ri) = n






,

and admits a vertical generating function given by

∞∑

n=k

Tn,k (x1, x2, . . . ; y1, y2, . . .)
tn

n!
=

1

k!




∑

i≥1

xi
ti

i!





k

exp




∑

i≥1

yi
ti

i!



 , k = 0, 1, . . . . (3)

Theorem 5 We have

B
(r)
n+r,k+r (al; bl) =

∑

Λ(n,k,r)

[
n!

k1!k2! · · ·

(a1

1!

)k1
(a2

2!

)k2
· · ·

] [
r!

r0!r1! · · ·

(
b1

0!

)r0
(
b2

1!

)r1

· · ·

]

,

where

Λ (n, k, r) =







(k, r) = ((ki : i ≥ 1) ; (ri : i ≥ 0)) :

ki ∈ N, ri ∈ N,
∑

i≥1
ki = k,

∑

i≥0
ri = r,

∑

i≥1
i (ki + ri) = n







.

Proof. Setting

π (n, k, j) =

{

k =(k1, . . . , kn; r1, . . . , rn) :

n∑

i=1

ki = k,

n∑

i=1

ri = j,

n∑

i=1

i (ki + ri) = n

}

,

Π(n, k, r) =

{

k =(k1, . . . , kn; r0, . . . , rn) :

n∑

i=1

ki = k,

n∑

i=0

ri = r,

n∑

i=1

i (ki + ri) = n

}

,

Tn,k,s (al; bl+1) =
∑

π(n,k,s)

n!

k1! · · · kn!r1! · · · rn!

(a1

1!

)k1
· · ·
(an

n!

)kn
(
b2

1!

)r1

· · ·

(
bn+1

n!

)rn

.

On using Corollary 4, we obtain

∑

n≥k



exp (−b1u)
∑

r≥0

B
(r)
n+r,k+r (al; bl)

ur

r!




tn

n!
=

1

k!




∑

j≥1

aj
tj

j!





k

exp



u
∑

j≥1

bj+1
tj

j!



 .
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Upon using (3), the last expression shows that

exp (−b1u)
∑

r≥0

B
(r)
n+r,k+r (al; bl)

ur

r!

= Tn,k (a1, . . . , an;ub2, . . . , ubn+1)

=
∑

π(n,k)

n!

k1! · · · kn!r1! · · · rn!

(a1

1!

)k1
· · ·
(an

n!

)kn
(
b2

1!

)r1

· · ·

(
bn+1

n!

)rn

ur1+···+rn

=
∑

s≥0

us
∑

π(n,k,s)

n!s!

k1! · · · kn!r1! · · · rn!

(a1

1!

)k1
· · ·
(an

n!

)kn
(
b2

1!

)r1

· · ·

(
bn+1

n!

)rn

=
∑

s≥0

s!Tn,k,s (al; bl+1)
us

s!
.

So, we obtain

∑

r≥0

B
(r)
n+r,k+r (al; bl)

ur

r!
= exp (b1u)

∑

r≥0

s!Tn,k,s (al; bl+1)
us

s!

=
∑

r≥0

ur

r!

r∑

j=0

(
r

j

)

j!br−j
1 Tn,k,j (al; bl+1) .

Then

B
(r)
n+r,k+r (al; bl)

=

r∑

j=0

(
r

j

)

b
r−j
1 j!Tn,k,j (al; bl+1)

=

r∑

r0=0

br01
r0!

∑

π(n,k,r0−j)

n!r!

k1! · · · kn!r1! · · · rn!

(a1

1!

)k1
· · ·
(an

n!

)kn
(
b2

1!

)r1

· · ·

(
bn+1

n!

)rn

=
∑

Π(n,k,r)

n!r!

k1! · · · kn!r0!r1! · · · rn!

(a1

1!

)k1
· · ·
(an

n!

)kn
(
b1

0!

)r0
(
b2

1!

)r1

· · ·

(
bn+1

n!

)rn

.

The elements of Λ (n, k, r) can be reduced to those of Π (n, k, r) because we get necessarily kj = rj+1 =

0 for j ≥ n+ 1. Thus, the expression of B
(r)
n+r,k+r (al; bl) results. �

3 Some properties of the partial r-Bell polynomials

Other combinatorial processes give the following identity.

Proposition 6 We have

B
(r)
n+r,k+r (a1, a2, . . . ; b1, b2, . . .) =

r∑

i=0

k∑

j=0

(
r

i

)(
n

j

)

bi1a
j
1B

(r−i)
n−j+r−i,k−j+r−i (0, a2, a3, . . . ; 0, b2, b3, . . .) .

(4)

Proof. Consider the (n+ r)-set as union of two sets R which contains the r first elements and N

which contains the n last elements. Choice i elements inR and j elements in N to form i+j singletons.
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Because each singleton can be colored with b1 colors if it is in R and a1 colors if it is in N, then, the
number of the colored singletons is

(
r
i

)(
n
j

)
bi1a

j
1. The elements not really used is of number r− i+n− j

which can be partitioned into r−i+k−j colored partitions with non singletons (such that the r−i first

elements are in different blocks) in B
(r−i)
n−j+r−i,k−j+r−i (0, a2, a3, . . . ; 0, b2, b3, . . .) ways. Then, for a fixed

i and a fixed j, there are
(
r
i

)(
n
j

)
bi1a

j
1B

(r−i)
n−j+r−i,k−j+r−i (0, a2, a3, . . . ; 0, b2, b3, . . .) colored partitions. So,

the number of all colored partitions is

r∑

i=0

k∑

j=0

(
r

i

)(
n

j

)

bi1a
j
1B

(r−i)
n−j+r−i,k−j+r−i (0, a2, a3, . . . ; 0, b2, b3, . . .) = B

(r)
n+r,k+r (a1, a2, . . . ; b1, b2, . . .) .

�

On using Corollary 4 or Theorem 5, we can verity that

Proposition 7 We have

B
(r)
n+r,k+r (xal; ybl) = xkyrB

(r)
n+r,k+r (al; bl) , (5)

B
(r)
n+r,k+r

(

xlal;x
lbl

)

= xn+rB
(r)
n+r,k+r (al; bl) , (6)

B
(r)
n+r,k+r

(

xl−1al;x
l−1bl

)

= xn−kB
(r)
n+r,k+r (al; bl) . (7)

The relations of the following proposition generalize some of the known relations on partial Bell
polynomials.

Proposition 8 We have

n∑

j=1

(
n

j

)

ajB
(r)
n+r−j,k+r−1 (al; bl) = kB

(r)
n+r,k+r (al; bl) ,

n∑

j=1

(
n

j − 1

)

bjB
(r−1)
n−j+r−1,k+r−1 (al; bl) = rB

(r)
n+r,k+r (al; bl)

and
n∑

j=1

jaj

(
n

j

)

B
(r)
n+r−j,k+r−1 (al; bl) + r

n∑

j=1

jbj

(
n

j − 1

)

B
(r−1)
n−j+r−1,k+r−1 (al; bl) = (n+ r)B

(r)
n+r,k+r (al; bl) .

Proof. On using Corollary 4, we deduce that

∂

∂aj
B

(r)
n+r,k+r (al; bl) =

(
n

j

)

B
(r)
n−j+r,k−1+r (al; bl) ,

∂

∂bj
B

(r)
n+r,k+r (al; bl) =

(
n

j − 1

)

B
(r−1)
n−j+r−1,k+r−1 (al; bl) .

Then, by derivation the two sides of (5) in first time respect to x and in second time respect to y, we
obtain

n∑

j=1

(
n

j

)

ajB
(r)
n+r−j,k+r−1 (alx; ybl) = kxk−1yrB

(r)
n+r,k+r (al; bl) ,

n∑

j=1

(
n

j − 1

)

bjB
(r−1)
n−j+r−1,k+r−1 (alx; ybl) = rxkyr−1B

(r)
n+r,k+r (al; bl) ,
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and by derivation the two sides of (6) respect to x, we obtain

n∑

j=1

jxj−1aj

(
n

j

)

B
(r)
n+r−j,k+r−1

(

alx
l; bly

l
)

+ r

n∑

j=1

jxj−1bj

(
n

j − 1

)

B
(r−1)
n−j+r−1,k+r−1

(

alx
l; bly

l
)

= (n+ r)xn+r−1B
(r)
n+r,k+r (al; bl) .

The three relations of the proposition follow by taking x = y = 1. �

The partial r-Bell polynomials can be expressed by the partial bell polynomials as follows.

Proposition 9 We have

B
(r)
n+r,k+r (al; bl) =

(
n+ r

r

)−1 n∑

j=k

(
n+ r

j

)

Bj,k (al)Bn+r−j,r (lbl) .

Proof. This proposition follows from the expansion

tr
∑

n≥k

B
(r)
n+r,k+r (al; bl)

tn

n!
=

tr

k!




∑

j≥1

aj
tj

j!





k


∑

j≥0

bj+1
tj

j!





r

=
1

k!




∑

j≥1

aj
tj

j!





k


∑

j≥1

jbj
tj

j!





r

= r!




∑

i≥k

Bi,k (al)
ti

i!








∑

j≥r

Bj,r (lbl)
tj

j!



 .

�

Proposition 10 We have

(
n

r

)

B
(r)
n+k−r,k+r (lal; bl) =

(
n

k

)

B
(k)
n−k+r,k+r (lbl; al) , n ≥ 2max (k, r) .

Proof. From Corollary 4 we get

tr

r!

∑

n≥k

B
(r)
n+k,k+r (lal; bl)

tn

n!
=

1

k!r!




∑

j≥1

jaj
tj

j!





k


∑

j≥1

jbj
tj

j!





r

and by the symmetry respect to (k, (aj)) and (r, (bj)) in the last expression we get

tr

r!

∑

n≥k

B
(r)
n+k,k+r (lal; bl)

tn

n!
=

tk

k!

∑

n≥r

B
(k)
n+r,k+r (lbl; al)

tn

n!
.

So, we obtain the desired identity. �
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4 New combinatorial interpretations of the r-Whitney numbers

The r-Whitney numbers of both kinds wm,r (n, k) and Wm,r (n, k) are introduced by Mező [6] and the
r-Whitney-Lah numbers Lm,r (n, k) are introduced by Cheon and Jung [5, 9]. Some of the properties
of these numbers are given in [5]. In this paragraph we use the combinatorial interpretation of the
partial r-Bell polynomials given above to deduce a new combinatorial interpretations for the numbers
|wm,r (n, k)| , Wm,r (n, k) and Lm,r (n, k) .

The r-Whitney numbers of the first kind wm,r (n, k) are given by their generating function

∑

n≥k

wm,r (n, k)
tn

n!
=

1

k!
(ln (1 +mt))k

(

(1 +mt)−
1

m

)r

.

So that

wm,r (n, k) = (−1)n−k+r B
(r)
n+r,k+r

(

(l − 1)!ml−1; (m+ 1) (2m+ 1) · · · ((l − 1)m+ 1)
)

.

This means that the absolute r-Whitney number of the first kind |wm,r (n, k)| counts the number of
partitions of a n-set into k blocks such that
- the r first elements are in different blocks,
- any block of cardinality i and no contain an element of the r first elements can be colored with
(i− 1)!mi−1 colors, and,
- any block of cardinality i and contain one element of the r first elements can be colored with
(m+ 1) (2m+ 1) · · · ((i− 1)m+ 1) colors.

The r-Whitney numbers of the second kind Wm,r (n, k) are given by their generating function

∑

n≥k

Wm,r (n, k)
tn

n!
=

1

k!

(
exp (mt)− 1

m

)k

exp (rt) .

So that
Wm,r (n, k) = B

(r)
n+r,k+r

(

ml−1; 1
)

.

This means that the r-Whitney number of the second kind Wm,r (n, k) counts the number of partitions
of a n-set into k blocks such that
- the r first elements are in different blocks,
- any block of cardinality i and no contain any element of the r first elements can be colored with
mi−1 colors, and,
- any block of cardinality i and contain one element of the r first elements can be colored with one
color.

The r-Whitney-Lah numbers Lm,r (n, k) are given by their generating function

∑

n≥k

Lm,r (n, k)
tn

n!
=

1

k!

(

t (1−mt)−1
)k (

(1−mt)−
2

m

)r

.

So that
Lm,r (n, k) = B

(r)
n+r,k+r

(

l!ml−1; 2 (m+ 2) · · · ((l − 1)m+ 2)
)

.

This means that the r-Whitney number of the second kind Lm,r (n, k) counts the number of partitions
of a n-set into k blocks such that
- the r first elements are in different blocks,
- any block no contain an element of the r first elements and is of length i can be colored with i!mi−1

colors, and,
- any block of cardinality i and contain one element of the r first elements can be colored with
2 (m+ 2) · · · ((i− 1)m+ 2) colors.
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5 Application to the r-Stirling numbers of the second kind

From Definition 2 we may state that the number B
(r)
n,k (al) := B

(r)
n,k (al, al) counts the number of

partitions of n-set into k blocks such that the blocks of the same cardinality i can be colored with ai
colors (such cycles with ai = 0 does not exist) and the r first elements are in different blocks.

For an = 1, n ≥ 1, we get the know r-Stirling numbers of the second kind
{
n

k

}

r

= B
(r)
n,k (1, 1, · · · )

which counts the number of partitions of a n-set into k blocks such that the r first elements are in
different blocks.

For an = 1, n ≥ m and an = 0, n ≤ m− 1, we get the m-associated r-Stirling numbers of the second
kind

{
n

k

}m↑

r

= B
(r)
n,k





m−1
︷ ︸︸ ︷

0, · · · , 0, 1, 1, · · ·





which counts the number of partitions of a n-set into k blocks such that the cardinality of any block
is at least m elements and the r first elements are in different blocks.

For an = 0, n ≥ m+ 1 and an = 1, n ≤ m, we get the m-truncated r-Stirling numbers of the second
kind

{
n

k

}m↓

r

= B
(r)
n,k





m
︷ ︸︸ ︷

1, · · · , 1, 0, 0, · · ·





which counts the number of partitions of a n-set into k blocks such that the cardinality of any block
is ≤ m elements and the r first elements are in different blocks.

For a2n−1 = 0 and a2n = 1, n ≥ 1, we get the r-Stirling numbers of the second kind in even parts

{
n

k

}even

r

= B
(r)
n,k (0, 1, 0, 1, 0, · · · )

which counts the number of partitions of a n-set into k blocks such that the cardinality of any block
is even and the r first elements are in different blocks.

For a2n−1 = 1 and a2n = 0, n ≥ 1, we get the r-Stirling numbers of the second kind in odd parts

{
n

k

}odd

r

= B
(r)
n,k (1, 0, 1, 0, · · · )

which counts the number of partitions of a n-set into k blocks such that the cardinality of any block
is odd and the r first elements are in different blocks.

6 Application to the r-Stirling numbers of the first kind

We start this application by giving a second combinatorial interpretation of the partial r-Bell polyno-
mials.

Proposition 11 The number B
(r)
n,k ((l − 1)!al) := B

(r)
n,k ((l − 1)!al, (l − 1)!al) counts the number of per-

mutations of a n-set into k cycles such that the cycles of the same length i can be colored with ai colors
(such cycles with ai = 0 does not exist) and the r first elements are in different cycles.
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Proof. Let Πr,k be the set of partitions π of the set n-set into k blocks such that the blocks of the
same cardinality i posses (i− 1)!ai colors and the r first elements are in different blocks, and, Pr,k be
the set of permutations P of the elements of the set n-set into k cycles such that the cycles of the
same length i can be colored with ai colors the r first elements are in different cycles. The application
ϕ : Πr,k → Pr,k which associate any (colored) partition π of Πr,k, π = S1 ∪ · · · ∪ Sk, 1 ≤ k ≤ n, a
(colored) permutation P of Pr,k, P = C1 ∪ · · · ∪ Ck, such that the elements of Ci are exactly those of
Si. It is obvious that the application ϕ is bijective. �

For an = (n− 1)!, n ≥ 1, we get the known r-Stirling numbers of the first kind

[
n

k

]

r

= B
(r)
n,k (0!, 1!, 2!, · · · )

which counts the number of permutations of a n-set into k cycles such that the r first elements are in
different cycles.

For an = (n− 1)!, n ≥ m and an = 0, n ≤ m− 1, we get the m-associated r-Stirling numbers of the
first kind

[
n

k

]m↑

r

= B
(r)
n,k





m−1
︷ ︸︸ ︷

0, · · · , 0, (m− 1)!,m!, · · ·





which counts the number of permutations of a n-set into k cycles such that the length of any cycle is
equal at least m and the r first elements are in different cycles.

For an = (n− 1)!, n ≤ m and an = 0, n ≥ m + 1, we get the m-truncated r-Stirling numbers of the
first kind

[
n

k

]m↓

r

= B
(r)
n,k





m
︷ ︸︸ ︷

0!, · · · , (m− 1)!, 0, 0, · · ·





which counts the number of permutations of a n-set into k cycles such that the length of any cycle is
≤ m and the r first elements are in different cycles.

For a2n−1 = 0 and a2n = (2n− 1)!, n ≥ 1, we get the r-Stirling numbers of the first kind in cycles of
even lengths

[
n

k

]even

r

= B
(r)
n,k (0, 1!, 0, 3!, 0, 5!, 0, · · · )

which counts the number of permutations of a n-set into k cycles such that the length of any cycle is
even and the r first elements are in different cycles.

For a2n−1 = (2n− 2)! and a2n = 0, n ≥ 1, we get the r-Stirling numbers of the first kind in cycles of
odd lengths

[
n

k

]odd

r

= B
(r)
n,k (0!, 0, 2!, 0, 4!, 0, · · · )

which counts the number of permutations of a n-set into k cycles such that the length of any cycle is
odd and the r first elements are in different cycles.

7 Application to the r-Lah numbers

Then, similarly to the partial Bell polynomials, we establish the following (third) combinatorial inter-
pretation of the partial r-Bell polynomials.
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Proposition 12 The number B
(r)
n,k (l!al) := B

(r)
n,k (l!al, l!al) counts the number of partitions of a n-set

into k ordered blocks such that the blocks of the same cardinality i can be colored with ai colors (such
block with ai = 0 does not exist) and the r first elements are in different blocks.

Proof. Let Π′
r,k be the set of partitions π of the a n-set into k blocks such that the blocks of the same

cardinality i can be colored with i!ai colors and the r first elements are in different blocks, and, Πord
r,k

be the set of partitions πord of the a n-set into k ordered blocks such that the blocks of the same length
i can be colored with ai the r first elements are in different blocks. The application ϕ : Π′

r,k → Πord
r,k

which associate a (colored) partition π of Π′
r,k, π = S1 ∪ · · · ∪ Sk, 1 ≤ k ≤ n, a (colored) partition of

ordered blocks πord of Πord
r , πord = P1 ∪ · · · ∪Pk, such that the elements of Pi are exactly those of Si.

It is obvious that the application ϕ is bijective. �

For an = n!, n ≥ 1, we get the r-Lah numbers

⌊
n

k

⌋

r

= B
(r)
n,k (1!, 2!, 3!, · · · ) .

The r-Lah number
⌊
n
k

⌋

r
counts the number of partitions of a n-set into k ordered blocks such that

the r first elements are in different blocks.

For an = 0, n ≤ m− 1, and an = n!, n ≥ m, we get the m-degenerate r-Lah numbers

⌊
n

k

⌋m↑

r

= B
(r)
n,k





m−1
︷ ︸︸ ︷

0, · · · , 0,m!, (m+ 1)!, · · ·





which counts the number of partitions of a n-set into k ordered blocks such that the cardinality of any
block is ≥ m and the r first elements are in different blocks.

For an = n!, n ≤ m, and an = 0, n ≥ m+ 1, we get the m-truncated r-Lah numbers

⌊
n

k

⌋m↓

r

= B
(r)
n,k





m
︷ ︸︸ ︷

1!, · · · ,m!, 0, 0, · · ·





which counts the number of partitions of a n-set into k ordered blocks such that the cardinality of any
block is ≤ m and the r first elements are in different blocks.

For a2n−1 = 0 and a2n = (2n)!, n ≥ 1, we get the r-Lah numbers in blocks of even cardinalities

⌊
n

k

⌋even

r

= B
(r)
n,k (0, 2!, 0, 4!, 0, 6!, 0, · · · ) ,

which represents the number of partitions of a n-set into k ordered blocks such that the cardinality of
any block is even and the r first elements are in different blocks.

For a2n−1 = (2n− 1)! and a2n = 0, n ≥ 1, we get the r-Lah numbers in blocks of even cardinalities

⌊
n

k

⌋odd

r

= B
(r)
n,k (1!, 0, 3!, 0, 5!, 0, · · · )

which represents the number of partitions of a n-set into k ordered blocks such that the cardinality of
any block is odd and the r first elements are in different blocks.
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8 Application to sum of independent random variables

It is known that for a sequence of independent random variables {Xn} with all its moments exist and

are the same, µn = E(Xn) we have E
(
Sn
p

)
=
(
n+p
p

)−1
Bn+p,p (lµl−1) . The following theorem generalize

this result.

Theorem 13 Let {Xn} and {Yn} be two independent sequences of independent random variables with
all their moments exist and are the same, µn = E(Xn) , νn = E(Y n) and let

Sp,q = X1 + · · ·+Xp + Y1 + · · ·+ Yq.

Then we have

E
(
Sn
p,q

)
=

(
n+ p

p

)−1

B
(q)
n+p+q,p+q (lµl−1, νl−1) .

Proof. Let ϕX (t) be the common generating function of moments for Xn, n ≥ 1, ϕY (t) be the
common generating function of moments for Yn, n ≥ 1, and, ϕSp,q (t) be the generating function of
moments of Sp,q. Then, in first part, we get

tpϕSp,q (t) = E (tp exp (tSp,q))

= (E (t exp (tX1)))
p (E (exp (tY1)))

q

=




∑

j≥1

jµj−1
tj

j!





p


∑

j≥0

νj
tj

j!





q

= p!
∑

n≥p

B
(q)
n+q,p+q (lµl−1, νl−1)

tn

n!
,

and, in second part, we have

tpϕSp,q (t) =
∑

j≥0

E
(
Sj
p,q

) tj+p

j!
=
∑

n≥p

n!

(n− p)!
E
(
Sn−p
p,q

) tn

n!
.

�

For the choice q0 = 1 and qj = 0 if j ≥ 1 in the last theorem, we may state that:

Corollary 14 Let {Xn} be a sequence of independent random variables with all their moments exist
and are the same, µn = E(Xn) and

Sp,q = X1 + · · ·+Xp + q.

Then we have

E
(
Sn
p,q

)
=

(
n+ p

p

)−1

B
(q)
n+p+q,p+q (lµl−1, 1) .

Example 1 Let {Xn} be a sequence of independent random variables with the same law of probability
U (0, 1) .

Sp,q = X1 + · · · +Xp + r.

Then we have {
n+ p+ r

p+ r

}

r

=

(
n+ p

p

)

E
(
Sn
p,r

)
.
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It is also known that for a sequence of independent discrete random variables {Xn} with the same
law of probability pj := P (X1 = j) , j ≥ 0 we have P (Sp = n) = p!

(n+p)!Bn+p,p (l!pl−1) . The following
theorem generalize this result.

Theorem 15 Let {Xn} and {Yn} be two independent sequences of independent random variables with
pj := P (Xn = j) , qj := P (Yn = j) and let

Sp,q = X1 + · · ·+Xp + Y1 + · · ·+ Yq.

Then we have

P (Sp,q = n) =
p!

(n+ p)!
B

(q)
n+p+q,p+q (l!pl−1, (l − 1)!ql−1) .

Proof. It suffices to take in the last theorem q0 = 1 and qj = 0 if j ≥ 1.

∑

n≥p

P (Sp,q = n− p) tn = tp
∑

s≥0

P (Sp,q = s) ts

= tp E
(
tSp,q

)

=




∑

j≥1

pj−1t
j





p


∑

j≥0

qjt
j





q

= p!
∑

n≥p

B
(q)
n+q,p+q (l!pl−1, (l − 1)!ql−1)

tn

n!
.

This gives P (Sp,q = n) = p!
(n+p)!B

(q)
n+p+q,p+q (l!pl−1, (l − 1)!qj−1) . �

For the choice q0 = 1 and qj = 0 if j ≥ 1 in the last theorem, we may state that:

Corollary 16 Let {Xn} be a sequence of independent discrete random variables with the same law of
probability pj := P (X1 = j) and

Sp,q = X1 + · · ·+Xp + q.

Then we have

P (Sp,q = n) =
p!

(n+ p)!
Bn+p+q,p+q (l!pl−1, l!pl−1) .

9 Application on the successive derivatives of a function

Let F (x) =
∑

n≥0
fn

xn

n! ∈ C∞ (0) and G (x) =
∑

n≥1
gn

(x−a)n

n! ∈ C∞ (a) . It is shown in [4] that

dn

dxn
(F (G (x)))

∣
∣
∣
∣
x=a

=

n∑

k=0

fkBn,k (gj) .

The following theorem gives a similar result on using the partial r-Bell polynomials.

Theorem 17 Let F, G be as above and H (x) =
∑

n≥1
hn

(x−a)n

n! ∈ C∞ (a) . Then, we have

dn

dxn

((
d

dx
H (x)

)r

F (G (x))

)∣
∣
∣
∣
x=a

=
n∑

k=0

fkB
(r)
n+r,k+r (gj , hj) .
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Proof. This follows from

∑

n≥0

(
n∑

k=0

fkB
(r)
n+r,k+r (gj , hj)

)

(x− a)n

n!

=
∑

k≥0

fk
∑

n≥k

B
(r)
n+r,k+r (gj , hj)

(x− a)n

n!

=




∑

j≥0

hj+1
(x− a)j

j!





r
∑

k≥0

fk

k!




∑

j≥1

gj
(x− a)j

j!





k

=

(
d

dx
H (x)

)r

F (G (x)) .

�

For the choice F (x) = exp (x) , we obtain:

Corollary 18 For G,H ∈ C∞ (a) with G (0) = 0, we have

dn

dan

((
d

da
H (a)

)r

exp (G (a))

)

= exp (G (a))

n∑

k=0

B
(r)
n+r,k+r

(
dj

daj
G (a) ,

dj

daj
H (a)

)

.

Example 2 Let G (a) = exp(ma)−1
m

and H (a) = exp (a) . On using Corollary 18 and the generating
function of the numbers Wm,r (n, k) given above, we get

dn

dan

(

exp

(
exp (ma)

m
+ ra

))

= exp

(
exp (ma)

m
+ ra

) n∑

k=0

Wm,r (n, k) exp (mak) .
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