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1 Introduction

The exponential partial Bell polynomials By, j, (x1,22,...) := By (z;) in an infinite number of vari-
ables z;, (j > 1), introduced by Bell [I], as a mathematical tool for representing the n-th derivative
of composite function. These polynomials are often used in combinatorics, statistics and also mathe-
matical applications. They are defined by their generating function
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and are given explicitly by the formula

_ n! a1\ k1 /ag\ k2 an\ kn
Buj(ara,-) = 3 Tyl ke (F) <§> <W) ’ (1)
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where

m(n,k)={k=(k1,...,kn) EN" ki1 +ko+---+k,=k, ki+2ko+---+nk,=n}.

It is well-known that for appropriate choices of the variables x;, the exponential partial Bell polyno-
mials reduce to some special combinatorial sequences. We mention the following special cases:

[n] = B, (0!,11,2!,---), unsigned Stirling numbers of the first kind,
{n} =B, (1,1,1,...), Stirling numbers of the second kind,

n

L{:J = B, (11,2!,3!,---), Lah numbers,

n—k

<n) E"" =B, (1,2,3,---), idempotent numbers.
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For more details on these numbers, one can see [11, [4] [7, 8 [10].

In 1984, Broder [2] generalized the Stirling numbers of both kinds to the so-called r-Stirling numbers.
In this paper, after recalling the partition polynomials, we give a unified method for obtaining a class
of special combinatorial sequences, called the exponential partial r-Bell polynomials for which the
r-Stirling numbers and other known numbers appear as special cases. In addition, these polynomials
generalize the exponential partial Bell polynomials and posses some combinatorial interpretations in
terms of set partitions.

2 The partial r-Bell polynomials

First of all, to introduce the partial r-Bell polynomials, we may give some combinatorial interpretations
of the partial Bell polynomials. Below, for B, \ (a1, a2,as3,...), we use By, (a;) and sometimes we

use B, (a1,az,as,...) and for BT(LT/%C (a1,az2,...;b1,ba,...), we use B?S,T])g (az: ) and sometimes we use
Bf(f/)g (a1, a2,...:b1,02,...).

Theorem 1 Let (an;n > 1) be a sequence of nonnegative integers. Then, we have
o the number By, ), (a;) counts the number of partitions of a n-set into k blocks such that the blocks

of the same cardinality i can be colored with a; colors,

o the number By, (I — 1)la;) counts the number of permutations of a n-set into k cycles such that
any cycle of length i can be colored with a; colors, and,

o the number By, 1 (I!a;) counts the number of partitions of a n-set into k ordered blocks such that
the blocks of cardinality i can be colored with a; colors.

Proof. For a partition of a finite n-set that is decomposed into k blocks, let k; be the number of
blocks of the same cardinality ¢, ¢ = 1,...,n. Then, the number to choice such partition is

n!
key! (I kgl (2072 ket ()P

k:(kl,...,kn) S W(n,]{?),
and, the number to choice such partition for which the blocks of the same cardinality ¢ can be colored
with a; colors is

n!

k! (AR kot (202 - k! (n)

— (@) (a2)™ - ()", ke =(kn,... k) €7 (0, F),

Then, the number of partitions of a m-set into k blocks of cardinalities k1, ko, ..., k, such that the
blocks of the same length 7 can be colored with a; colors is

n!

k1 ko kn
3 i (@)™ (a2)™ -+ (an)™ = By (@) -
kemn(n,k) k! (1) b k! (TL)
For the combinatorial interpretations of By, i (({ — 1)!a;) and B, , (I!a;), we can proceed similarly as
above. O

Definition 2 Let (ay;n > 1) and (by;n > 1) be two sequences of nonnegative integers. The number

B(T)

ikt (@13 b) counts the number of partitions of a (n +1)-set into (k +r) blocks such that:



e the r first elements are in different blocks,
e any block of the length i with no elements of the r first elements, can be colored with a; colors,

e any block of the length i with one element of the r first elements, can be colored with b; colors.
We assume that any block with O color does not appear in partitions.

On using this definition, the following theorem gives an interesting relation which help us to find a
family of polynomials generalize the above numbers.

On using combinatorial arguments, the partial r-Bell polynomials admit the following expression.

Theorem 3 Forn >k >r > 1, the partial r-Bell polynomials can be written as

r (n - T)' bn1+1 ce bn +1 Qpypyq4+1 " Ang+1
BY) (ay,az,...5b1,by,..) = s > T -

" (k N 7n)!er---Jrnk=n+rfl<c !yl (n7"+1 + 1)! e (nk + 1)! .

Proof. Consider the (n + r)-set as union of two sets R which contains the r first elements and N

which contains the n last elements. To partition a (n + r)-set into k + r blocks By, ..., Bki, given as
in Definition 2 let the elements of R be in different » blocks By, ..., B;.

There is %(nl,..ﬁnkﬂ)bmﬂ “+bpat1Gn, - Qp,, Ways to choose nq,...,ngq, in N on using colors,
such that

-ny >0,...,n, > 0:ny,...,n, to be, respectively, in By,..., B, with by, 41 by, +1 ways to color
these blocks,

- Npp1 2> 1o gy > 10 Ny, .., Ny tO be, respectively, in Bygq, ..., Byy, with %amﬂ SOy

ways to color these blocks.
Then, the total number of colored partitions is
(r) : _ n
Bn—l—r,k—l—r(al’aQ"”’bl’b2"")_H Z (nl Tt bn1+1---bnr+1am+l---anr+k,
(nly"'7nk+1")eMn+7‘,k+T‘ ’ ’ "
where M, j, = {(nl,...,nk) i+ ng=n, (N, ey — 100 ng — 1) € Nk}. O

On using Theorem [B] we may state that:

Corollary 4 We have
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Proof. From Theorem [3] we get
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To give an explicit expression of the number Bn ket (ar; by) generalizing the formula (), we use the
Touchard polynomials defined in [3] as follows. Let (z;;4 > 1) and (y;;7 > 1) be two sequences of
indeterminates, the Touchard polynomials

Tn,k;(xjayj)ETn,k(xla---axn;yl"",yn),n:kak+1,"'a
are defined by Tpo = 1 and the sum
n! T\ k1 fzg\ ke 1 YL\ (Y2\"2
fatonan = 2 [ () ) [t () (3]
nk (T1 22,391,920 ) AZ [h!l@!--- 1 2! il 1) \91
(n,k)
where

A(n k) =Sk=(kn, ko, ) ki €N, i 21, > ki=k, Y i(ki+r)=np,

i>1 i>1
and admits a vertical generating function given by
k
= o1 £ £
ZTn,k (T1, 22,3 91,Y2,- ) ] Z%ﬁ exp Zyzﬁ ; k=0,1,.... (3)
— i>1 i>1

Theorem 5 We have
| a k1 as ko 7"'! bl 0 bQ 1
B0 ) — “7<_1> (_) U I D P2
nebr e (15 00) A(Zk : [kllkgl--- 1! 2! rolril--- \ 0! 1! ’

where

(kyr)=((k;:i>1);(r;:i>0)):

An,k,r)=
( ) /{?iEN, TZ'EN, Z/{?i:k, Z?“i:T, Zi(kﬁi—i-?”i):n

i>1 120 i>1

Proof. Setting
7 (n,k,j) = {k:(kl,...,kn;m,...,rn):Zki:k, > ri=4, Zi(/ﬁ—i—m):n},
=1 =1 =1
II(n,k,r)= {k:(kl,...,kn;ro,...,rn) : Zkl =k, Zm =, Zz(kl—i—n) :n},
=1 =0 =1
n! a1\ k1 an\kn (b \" b1\ "
T (i) = ) Tyl eyl <F> - <n') (F) < n! '

w(n,k,s)

On using Corollary E], we obtain
k
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Upon using (3], the last expression shows that
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So, we obtain
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The elements of A (n, k,7) can be reduced to those of II (n, k, r) because we get necessarily k; = 41 =

0 for j > n + 1. Thus, the expression of Bﬁu)—r psr (@13 by) Tesults. O

3 Some properties of the partial r-Bell polynomials
Other combinatorial processes give the following identity.
Proposition 6 We have
"7 (n
Bg:l)—r,k-l—r ((11,(12, S ;bla ba, .. ) = ZZ <Z> <]>b {Bﬁb jj—T’ ik —i (0 ag,as,...;0, b2, bs, .. ) .
(4)

Proof. Consider the (n + 7)-set as union of two sets R which contains the r first elements and N
which contains the n last elements. Choice i elements in R and j elements in N to form i+ j singletons.



Because each singleton can be colored with by colors if it is in R and a; colors if it is in IN, then, the
number of the colored singletons is (Z) ( )bla1 The elements not really used is of number r —i+n — j

which can be partitioned into r—i+k— 7 colored partitions with non singletons (such that the r—i first

(r—i)
n—j+r—ik—j+r—i

1 and a fixed j, there are (Z)( )b’ ]BS JZ)LT i ki (0,a2,as,...;0,ba,bs,...) colored partitions. So,

the number of all colored parmtlons is

ZZ( >< ) B1(1T _]Z<)Fr i,k—j+r— 2(0 a2,as, . - ;0,b2,b3,..-):B£2r7k+r(al,a2,...;bl,bQ,.--)-

i=075=0

elements are in different blocks) in B (0,a9,as,...;0,b2,bs,...) ways. Then, for a fixed

]
On using Corollary M or Theorem [B] we can verity that
Proposition 7 We have
B,(QMH (wag;yby) = x yrB,(Qr et (@3 07) (5)
Br(gr,mr <mlal? xlbl> nJrrBr(szr ke (@3 00) 5 (6)
BY) i <fﬂlilal; xl*lbl) = 2" *BY) (). (7)

The relations of the following proposition generalize some of the known relations on partial Bell
polynomials.

Proposition 8 We have

n

< ) ' n+r 7, k+r— 1(al’bl)_kB£H)_rk+r (al;bl)7
j=1

- n r—1
<j _ 1> bjBr(ijerfl,kJrrfl (a3 br) = V"BV(LJZT ktr (az;by)
j=1
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n r—1
Z]a]< ) n+r—yj,k+r— 1(al7bl +TZ]b (]— >B7(L ]—zr 1,k+r— 1(a’l;bl) (n+r)B£L4)—rk+r(al;bl)'

Proof. On using Corollary @l we deduce that

(r) N (T p) .
%an,kw (ar; br) = (J) By k1 (@sr),

0 n r—1
a_be(llr k+r (ai;by) = <j . 1> Br(z—j—zr—l,k—f—r‘—l (ar; br) -

Then, by derivation the two sides of (B]) in first time respect to # and in second time respect to y, we
obtain

n
n -1
E :<] _ 1) bjBr(Lr—j—zT‘—l,k-i—r—l (wz;yby) =1z Fyr= 137(;27» EHOR
i=1



and by derivation the two sides of () respect to x, we obtain

n n
.o n Y - n 1
Z]xj 1aj <j>B1(12rj,k+r1 <a’lxl; blyl) + TZ]%‘] 1bj <] _ >B1(1r jJZr 1Lk+r—1 <a’lxl; blyl)
j=1 j=1

= (n+r)a"t 1B,(Qrk+r (ay;br) .

The three relations of the proposition follow by taking r =y = 1.

The partial r-Bell polynomials can be expressed by the partial bell polynomials as follows.

Proposition 9 We have

(r) n-+r 12 /n +7r
B (3 br) = < . ) ( ; >Bj,k (ar) Bptr—jr (1by) -
=k

Proof. This proposition follows from the expansion

n>k >1 §>0
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Proposition 10 We have

r

n r
( >B£lk_r7k+r (tassbr) = @Bﬁ% e (i) > 2ma (k).

Proof. From Corollary [ we get

T
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and by the symmetry respect to (k, (a;)) and (r, (b;)) in the last expression we get
tr ot k) tn
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n>k n>r

So, we obtain the desired identity.



4 New combinatorial interpretations of the r-Whitney numbers

The r-Whitney numbers of both kinds wy, , (n, k) and Wy, , (n, k) are introduced by Mez6 [6] and the
r-Whitney-Lah numbers Ly, , (n, k) are introduced by Cheon and Jung [5, [9]. Some of the properties
of these numbers are given in [5]. In this paragraph we use the combinatorial interpretation of the
partial r-Bell polynomials given above to deduce a new combinatorial interpretations for the numbers

| Wi (0, k)|, Wi (n, k) and Ly, , (0, k) .
The r-Whitney numbers of the first kind wy, » (n, k) are given by their generating function

E:wmr7zk k(m(1+nnD (a+wno—%)7

n>k

So that
W (1K) = (—1)" 7 BY) (=) m 1) @m 1) (= D m+ 1))

This means that the absolute r-Whitney number of the first kind |wy, , (n, k)| counts the number of
partitions of a n-set into k£ blocks such that

- the r first elements are in different blocks,

- any block of cardinality ¢ and no contain an element of the r first elements can be colored with
(i — 1)!m*~! colors, and,

- any block of cardinality ¢ and contain one element of the r first elements can be colored with
(m+1)2m+1)---((i —1)m+ 1) colors.

The r-Whitney numbers of the second kind Wy, , (n, k) are given by their generating function

> Wiy (n k)z: ! <9§9£ﬁ§liil>kexp(ro.

k! m
n>k

So that
Wiy (n, k) = By(;:zr ket (mlil; 1) .

This means that the -Whitney number of the second kind W, , (n, k) counts the number of partitions
of a n-set into k blocks such that

- the r first elements are in different blocks,

- any block of cardinality ¢ and no contain any element of the r first elements can be colored with
m*~1 colors, and,

- any block of cardinality ¢ and contain one element of the r first elements can be colored with one

color.

The r-Whitney-Lah numbers Ly, , (n, k) are given by their generating function

Zm”nk! M(u—m))«ywm%y.
n>k

So that
Lo (1, 8) = BYL, oo (B! 52 m 4 2) - (1= ym +2)).

This means that the r-Whitney number of the second kind L, , (n, k) counts the number of partitions
of a m-set into k blocks such that

- the r first elements are in different blocks,

- any block no contain an element of the r first elements and is of length i can be colored with ilm*~!
colors, and,

- any block of cardinality ¢ and contain one element of the r first elements can be colored with
2(m+2)---((i — 1) m+ 2) colors.



5 Application to the r-Stirling numbers of the second kind

From Definition 2] we may state that the number Bg,)c (a) == Bg,)c (aj,a;) counts the number of

partitions of n-set into k blocks such that the blocks of the same cardinality ¢ can be colored with a;
colors (such cycles with a; = 0 does not exist) and the r first elements are in different blocks.

For a, =1, n > 1, we get the know r-Stirling numbers of the second kind

n T
{k}T:BT(L,]Z:(]"]‘?...)

which counts the number of partitions of a n-set into k blocks such that the r first elements are in
different blocks.

For a, =1, n > m and a, =0, n < m — 1, we get the m-associated r-Stirling numbers of the second

kind

n mT ") m

r

{k} =B 0,011,
r

which counts the number of partitions of a n-set into & blocks such that the cardinality of any block
is at least m elements and the r first elements are in different blocks.

For a, =0,n>m+ 1 and a, =1, n < m, we get the m-truncated r-Stirling numbers of the second

kind
n) ™ —_——
{k} :Br(:/)ﬁ 1,---,1,0,0,---

which counts the number of partitions of a n-set into k blocks such that the cardinality of any block
is < m elements and the r first elements are in different blocks.
For a9,,_1 =0 and as, = 1, n > 1, we get the r-Stirling numbers of the second kind in even parts
n even
= B")(0,1,0,1,0,--)
kJ, e

which counts the number of partitions of a n-set into k blocks such that the cardinality of any block
is even and the r first elements are in different blocks.

For as,,—1 =1 and as, = 0, n > 1, we get the r-Stirling numbers of the second kind in odd parts

n odd )
{k} =B") (1,0,1,0,)

T

which counts the number of partitions of a n-set into k blocks such that the cardinality of any block
is odd and the r first elements are in different blocks.

6 Application to the r-Stirling numbers of the first kind

We start this application by giving a second combinatorial interpretation of the partial r-Bell polyno-
mials.

Proposition 11 The number BT(LTI)C (1 —=Dlay) = BT(LTI)C ((l = Dlay, (I = Dlay) counts the number of per-
mutations of a n-set into k cycles such that the cycles of the same length i can be colored with a; colors
(such cycles with a; = 0 does not exist) and the r first elements are in different cycles.
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Proof. Let II, ; be the set of partitions 7 of the set n-set into £ blocks such that the blocks of the
same cardinality i posses (i — 1)!a; colors and the r first elements are in different blocks, and, P} be
the set of permutations P of the elements of the set n-set into k cycles such that the cycles of the
same length i can be colored with a; colors the r first elements are in different cycles. The application
¢ : I, = P, which associate any (colored) partition 7 of Il j, 7 = S U---US;, 1 <k <mn, a
(colored) permutation P of Py, P = Ci U---UC}, such that the elements of C; are exactly those of
S;. It is obvious that the application ¢ is bijective. O

For a, = (n—1)!, n > 1, we get the known r-Stirling numbers of the first kind

n r
[k] = BY) (0,11,2!,---)

which counts the number of permutations of a n-set into k cycles such that the r first elements are in
different cycles.

For ap, = (n—1)!, n > m and a,, = 0, n < m — 1, we get the m-associated r-Stirling numbers of the

first kind .

mt ——
m =B" 0,70, (m—1Dl,ml,---
T

which counts the number of permutations of a n-set into k£ cycles such that the length of any cycle is
equal at least m and the r first elements are in different cycles.

For a,, = (n—1)!, n <m and a, =0, n > m + 1, we get the m-truncated r-Stirling numbers of the
first kind

n]™ ,_‘m%
M =B |0, (m - 1)L0,0,- -
T

which counts the number of permutations of a n-set into k cycles such that the length of any cycle is
< m and the r first elements are in different cycles.

For as,—1 = 0 and ag, = (2n — 1)!, n > 1, we get the r-Stirling numbers of the first kind in cycles of
even lengths

n even
[ } — B") (0,11,0,31,0,5.,0,---)
k. ,

which counts the number of permutations of a n-set into k cycles such that the length of any cycle is
even and the r first elements are in different cycles.

For ag,—1 = (2n —2)! and ag, = 0, n > 1, we get the r-Stirling numbers of the first kind in cycles of
odd lengths

k ™

which counts the number of permutations of a n-set into k cycles such that the length of any cycle is
odd and the r first elements are in different cycles.

n odd
H = B (01,0,2!,0,4,0,---)

T

7 Application to the r-Lah numbers

Then, similarly to the partial Bell polynomials, we establish the following (third) combinatorial inter-
pretation of the partial r-Bell polynomials.
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Proposition 12 The number Br(:/,)C (llay) == Bf:,)ﬁ (llay,lla;) counts the number of partitions of a n-set
into k ordered blocks such that the blocks of the same cardinality i can be colored with a; colors (such
block with a; = 0 does not exist) and the r first elements are in different blocks.

Proof. Let H;Jg be the set of partitions 7 of the a n-set into & blocks such that the blocks of the same
cardinality 4 can be colored with ila; colors and the r first elements are in different blocks, and, H?f’kd
be the set of partitions 7" of the a n-set into k ordered blocks such that the blocks of the same length
i can be colored with a; the r first elements are in different blocks. The application ¢ : H;,k — H?de
which associate a (colored) partition m of H;,7k, T=5U---USk, 1 <k <n,a (colored) partition of
ordered blocks 74 of 1197, 7°r¢ = Py U---U Py, such that the elements of P; are exactly those of S;.
It is obvious that the application ¢ is bijective. O

For a,, = n!, n > 1, we get the r-Lah numbers
{ZJ — BU) (11,21,31,- ).
T

The r-Lah number LZJT counts the number of partitions of a n-set into k ordered blocks such that
the r first elements are in different blocks.

For a, =0, n <m — 1, and a,, = n!, n > m, we get the m-degenerate r-Lah numbers

m—1

mt ——
m =B [0, 0.ml, (m + 1)L,
T

which counts the number of partitions of a n-set into k ordered blocks such that the cardinality of any
block is > m and the r first elements are in different blocks.

For a, =n!, n <m, and a, =0, n > m + 1, we get the m-truncated r-Lah numbers

mJd mn
m =B") |1~ ml,0,0,---
k . nJg I I Yy My

which counts the number of partitions of a n-set into k ordered blocks such that the cardinality of any
block is < m and the r first elements are in different blocks.

For ag,—1 =0 and ag, = (2n)!, n > 1, we get the r-Lah numbers in blocks of even cardinalities

even

m = B") (0,21,0,41,0,61,0,--- ),

T

which represents the number of partitions of a n-set into k£ ordered blocks such that the cardinality of
any block is even and the r first elements are in different blocks.

For agn,—1 = (2n — 1)! and ag, = 0, n > 1, we get the r-Lah numbers in blocks of even cardinalities

odd

m = B") (11,0,3!,0,5.,0,---)

T

which represents the number of partitions of a n-set into k ordered blocks such that the cardinality of
any block is odd and the r first elements are in different blocks.
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8 Application to sum of independent random variables

It is known that for a sequence of independent random variables { X, } with all its moments exist and

are the same, 11, = E (X™) we have E (5') = (";p) _1Bn+p7p (lpi—1) - The following theorem generalize
this result.

Theorem 13 Let {X,,} and {Y,,} be two independent sequences of independent random variables with
all their moments exist and are the same, p, = E(X"™), v, =E((Y™) and let

Spg=X1+--+Xp+V1+--- 4+,

Then we have

-1
n n+p )
E (Sp,q) = < D ) Bg{rmq,pw (lp—1,v-1) -

Proof. Let px (t) be the common generating function of moments for X,,, n > 1, ¢y (¢) be the
common generating function of moments for Y,,, n > 1, and, pg,, (t) be the generating function of
moments of S}, ;. Then, in first part, we get

tpSDSp,q (t) =E (tp €xXp (tsp,q))
= (E (texp (tX1)))" (E (exp (t11)))*

NP N\ ¢
. tJ tJ
= Do | | vy
izt ) Gz P
oS B )
_p n—+q,p+q /’Ll717 -1 n!7
nzp
and, in second part, we have
. itp n! Tk
p _ VR P " n—p\) _
s, , (t) _ZE(Spvq) 4! - Z(n_p)!E(Sp,q ) nl’
Jj=0 nzp

For the choice go = 1 and ¢; = 0 if j > 1 in the last theorem, we may state that:

Corollary 14 Let {X,} be a sequence of independent random variables with all their moments exist
and are the same, pu, = E(X™) and

Spg=X1+--+Xp+q.

Then we have

-1
n n+p (a)
E(Spq) = ( p > By prapg (Mu-1,1).

Example 1 Let {X,} be a sequence of independent random variables with the same law of probability
U(0,1).
Spg=X1+-+X,+r.

n+p+r n+p
= E(S")).
{ p+r } ( p > (%)

Then we have
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It is also known that for a sequence of independent discrete random variables {X,,} with the same
law of probability p; := P (X1 =j), j > 0 we have P (S, =n) = (nﬁ—!p)!Bner,p (I'p;—1) . The following
theorem generalize this result.

Theorem 15 Let {X,} and {Y,} be two independent sequences of independent random variables with
pj =P (X, =j), ¢ :=P (Y, =7) and let

Sp,q:X1+"‘+Xp+Y1+“‘+n-
Then we have

p!
P (Sp#] = n) = (n _i_p)!Br(L(Qerq,erq (l!plfh (l - 1)!Ql71) .

Proof. It suffices to take in the last theorem go =1 and ¢; = 0 if j > 1.

ZP (Spg=n—p)th = thP (Spqg=s5)t°

n>p s>0
=P E (%)
p q
= | et | | Dt
jzl §>0
- 123(‘1) (1! (1—1)! )ﬁ
=r n+q,p+q \t*Pl-1; 1) -
nzp
. . |
This gives P (Spq=n) = ﬁBﬁg&pﬂ,mq (Upr—1, (1 = Dgj—1) . O

For the choice go = 1 and ¢; = 0 if j > 1 in the last theorem, we may state that:

Corollary 16 Let {X,,} be a sequence of independent discrete random variables with the same law of
probability p; := P (X1 = j) and
Spg=X1+--+Xp+q.
Then we have
pl

P(Spq=n)= mBn-f-P-F%p-f—q U=y, Upi—y) .

9 Application on the successive derivatives of a function

Let F(z) = Y foZr € 0 (0) and G (z) = 3 ga (2=a)" ¢ goo (a). It is shown in [4] that

n!
n>0 n>1

A

dz™

(F' (G (2)))

Tr=a

= kaBn,k (gj) .
k=0

The following theorem gives a similar result on using the partial »-Bell polynomials.

Theorem 17 Let F, G be as above and H (x) = > hy, (m;f)n € C*™ (a). Then, we have
n>1

i ((prw) rew)

= kaBT(LQT‘,k+T‘ (gj’ hJ) .
k=0

r=a
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Proof. This follows from

5 (S ) £

n>0 \k=0
(x —a)"
- kaZBnJrr k+r g]’ ) T
k>0 n>k )
N\ T N\ k
(x —a)’ f T —a
(st ) s 3 e
7>0 k>0 j>1
—(Lrw) Few)
=|GH@ z)).

For the choice F' (z) = exp (z), we obtain:

Corollary 18 For G,H € C* (a) with G (0) = 0, we have
a (@) epG @) =ew ZBW o (o), ),

Example 2 Let G (a) = % and H (a) = exp (a). On using Corollary [I8 and the generating
function of the numbers Wy, , (n, k) given above, we get

dc% <eXp <W + m>> = exp (W + m) Zn:Wm,r (n, k) exp (mak) .

k=0
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