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Abstract

Letting Bn,r be the n-th r-Bell polynomial, it is well known that Bn(x) admits
specific integer coordinates in the two bases {xi}i and {xBi(x)}i according to, respec-
tively, the Stirling numbers and the binomial coefficients. Our aim is to prove that the
sequences Bn+m,r(x) and Bn,r+s(x) admit a binomial recurrence coefficient in different
bases of the Q-vector space formed by polynomials of Q[X].

1 Introduction

In different ways, Belbachir and Mihoubi [5] and Gould and Quaintance [10] showed that the
Bell polynomial Bn+m admits integer coordinates in the bases {xiBj(x)}i,j . Xu and Cen [18]

1This research is supported by the PNR project 8/u160/3172.
2The research is partially supported by the LITIS Laboratory of Rouen University and the PNR project

8/u160/722.
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extended the latter in some particular cases of complete Bell polynomials. Also, the second
author and Bencherif [2, 3] established that Chebyshev polynomials of first and second kind,
and more generally bivariate polynomials associated with recurrence sequences of order two,
including Jacobsthal polynomials, Vieta polynomials, Morgan-Voyce polynomials and others,
admit remarkable integer coordinates in a specific bases. Some recurrence relations on Bell
numbers and polynomials are given by Spivey [16] and some other relations by Sun and Wu
[17]. What about r-Bell polynomials?

The r-Bell polynomials {Bn,r}n≥0 are defined by their generating function

∑

n≥0

Bn,r(x)
tn

n!
= exp(x(et − 1) + rt),

and satisfy the generalized Dobinsky formula

Bn,r(x) = exp(−x)
∞
∑

i=0

(i+ r)n

i!
xi. (1)

It is well known that Bn,r(x) admits integer coordinates in the following two: bases {xi}i
and {Bi(x)}i as

Bn,r(x) =
n

∑

i=0

{

n+ r

i+ r

}

r

xi and Bn,r(x) =
n

∑

i=0

(

n

i

)

rn−iBi(x), (2)

according to, respectively, the r-Stirling numbers of the second kind and the binomial coef-
ficients, see for example [11]. For a general overview of the r-Stirling numbers, one can see
[6, 7, 8, 15]. An extension of r-Stirling numbers of the second kind and the r-Bell polyno-
mials is given in [14]. In the sequel, we refer to [1, 4] for some properties and recurrence
relations of r-Lah numbers.

Our aim is to prove that the polynomials Bn+m,r and Bn,r+s admit a binomial recurrence
coefficient in the families

{xiBn,j+r(x)}i,j , {xiBn,i+r(x)}i, {xiBj,r(x)}j, {Bj,s(x)}j and {xiBj(x)},

of the basis of the Q-vector space formed by polynomials of Q[X] .

2 Main results

Mező [11, Thm. 7.1] showed that the r-Bell polynomials satisfy the following recurrence
relation

Bn,r+1(x) =
n

∑

i=0

(

n

i

)

Bi,r(x).

This can be generalized as follows.
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Theorem 1. Decomposition of Bn,r+s(x) into the family of basis {Bi,r(x)}i. For all nonneg-
ative integers n, r and s, we have

Bn,r+s(x) =
n

∑

i=0

(

n

i

)

rn−iBi,s(x).

Proof. Use (1) to get
ds

dxs
(exp(x)Bn,r(x)) = exp(x)Bn,r+s(x). (3)

Using the following identity [11]

Bn,r(x) =
n

∑

i=0

(

n

i

)

rn−iBi(x), (4)

we obtain
ds

dxs
(exp(x)Bn,r(x)) =

n
∑

i=0

(

n

i

)

rn−i d
s

dxs
(exp(x)Bi(x)),

and, applying property (3), we obtain the desired identity.
We give now a combinatorial proof: let x be a positive integer (a number of colors).

By the definition of the r-Bell numbers, Bn,r+s(x) gives the number of partitions of an
(n + r + s)-element set, with the restriction that the first r + s elements are in distinct
subsets (these are called distinguished elements from now on). Moreover, the blocks not
containing distinguished elements are colored with one of the x colors.

We can construct such partitions in the following way: from the n non-distinguished
elements we put n − i into the blocks of r distinguished elements. To do this, we have
(

n

n−i

)

=
(

n

i

)

possibilities choosing those n− i elements. Then, we put these elements into the

above mentioned blocks, which can happen on rn−i ways. Then the remaining n+s−(n−i) =
s + i elements have to form a partition in which s elements go to different blocks and the
other blocks are colored with one of the x colors. The number of these possibilities is exactly
Bi,s(x). The left and right hand sides coincide for any positive integer x, so they coincide
for any x ∈ R.

Corollary 2. For all nonnegative integers n, k, r and s, we have

{

n+ r + s

k + r + s

}

r+s

=
1

k!

n−k
∑

j=0

(

s

j

){

n+ r

j + k + r

}

r

(j + k)!, (5)

{

n+ r + s

k + r + s

}

r+s

=
n

∑

i=k

(

n

i

){

i+ r

k + r

}

r

sn−i. (6)

Proof. From the definition of Bn,r(x) given by (2), we have

ds

dxs
(exp(x)Bn,r(x)) =

n
∑

i=0

{

n+ r

i+ r

}

r

ds

dxs
(xi exp(x)),
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and upon using the Leibniz formula, one obtains

Bn,r+s(x) =
n

∑

i=0

i
∑

k=0

(

s

k

)

i!

(i− k)!

{

n+ r

i+ r

}

r

xi−k

=
n

∑

i=0

i
∑

l=0

(

s

i− l

)

i!

l!

{

n+ r

i+ r

}

r

xl

=
n

∑

l=0

xl

n
∑

i=l

(

s

i− l

)

i!

l!

{

n+ r

i+ r

}

r

The identity (5) follows by identification using the definition of Bn,r+s(x), and the fact that
the elements 1, 2, . . . , r + s are in different parts.

We have a combinatorial interpretation as follows: for j = 0, . . . , s, there are
(

s

s−j

)

=
(

s

j

)

ways to form s − j singletons using the elements in {1, . . . , s} and there are
{

n+r

k+r+j

}

r
ways

to partition the set {s+ 1, . . . , n+ r+ s} into (k + r+ s)− (s− j) = k + r+ j subsets such
that the elements of the set {s+1, . . . , s+ r} are in different subsets. The j elements of the
set {1, . . . , s} not already used can be inserted in the (k + r + j)− r = k + j subsets in

(k + j) · · · ((k + j)− j + 1) =
(k + j)!

k!

ways. Then the number of partitions of the set {1, . . . , n+ r+ s} into k+ r+ s subsets such
that the elements of the set {1, . . . , r + s} are in different subsets is

{

n+ r + s

k + r + s

}

r+s

=
s

∑

j=0

(

s

j

){

n+ r

k + r + j

}

r

(k + j)!

k!
.

For the identity (6), using the definition of Bn,r(x) and Theorem 1 gives

n
∑

k=0

{

n+ r + s

k + r + s

}

r+s

xk = Bn,r+s(x)

=
n

∑

i=0

(

n

i

)

sn−iBi,r(x)

=
n

∑

i=0

(

n

i

)

sn−i

i
∑

k=0

{

i+ r

k + r

}

r

xk

=
n

∑

k=0

xk

n
∑

i=k

(

n

i

){

i+ r

k + r

}

r

sn−i.

Then, by identification, we obtain the identity (6) of the corollary.
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We also give a combinatorial proof for this identity: from the n non-distinguished ele-
ments i go to the k + r blocks which contain the first r distinguished elements:

(

n

i

){

i+r

k+r

}

r

possibilities. The remaining n − i elements go to the s additional distinguished blocks, in
sn−i ways. (So the k+ r+ s blocks are guaranteed). Finally we sum the i disjoint cases.

We note that the formula (6) is immediate from [6, Lemma 13] with appropriate substi-
tutions.

In different ways, Belbachir and Mihoubi [5] and Gould and Quaintance [10] showed that
Bn+m(x) admits a recurrence relation according to the family {xiBj(x)} as follows:

Bn+m(x) =
n

∑

k=0

m
∑

j=0

{

m

j

}(

n

k

)

jn−kxjBk(x), (7)

In [11], Mező cited the Carlitz identities [7, eq. (3.22–3.23)] given by

Bn+m,r =
m
∑

k=0

{

m+ r

k + r

}

r

Bn,k+r and Bn,r+s =
s

∑

k=0

[

s+ r

k + r

]

r

(−1)s−kBn+k,r,

and established [13], by a combinatorial proof, the following identity

Bn+m,r =
n

∑

k=0

m
∑

j=0

{

m+ r

j + r

}

r

(

n

k

)

(j + r)n−kBk,

where Bn = Bn(1) is the number of ways to partition a set of n elements into non-empty
subsets, Bn,r = Bn,r(1) is the number of ways to partition a set of n+ r elements into non-
empty subsets such that the first r elements are in different subsets and

{

n

k

}

r
is an r-Stirling

number of the second kind; see [6, 7, 8]. The following theorem generalizes these results.

Theorem 3. Decomposing Bn+m,r(x) into the family of the basis {xkBn,k+r(x)}k, {x
jBk,r(x)}j,k

and {xjBk(x)}j,k : for all nonnegative integers n, m, r and s, we have

Bn+m,r(x) =
m
∑

k=0

{

m+ r

k + r

}

r

xkBn,k+r(x) (8)

Bn+m,r(x) =
n

∑

k=0

m
∑

j=0

{

m+ r

j + r

}

r

(

n

k

)

jn−kxjBk,r(x) (9)

Bn+m,r(x) =
n

∑

k=0

m
∑

j=0

{

m+ r

j + r

}

r

(

n

k

)

(j + r)n−kxjBk(x) (10)

Also, we have

xsBn,r+s(x) =
s

∑

k=0

[

s+ r

k + r

]

r

(−1)s−kBn+k,r(x). (11)
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Proof. For the identity (8) we proceed as follows: the identity given in [5] and [16] can be
written as follows

Bn+m(x) =
n

∑

i=0

m
∑

j=0

{

m

j

}(

n

i

)

jn−ixjBi(x) =
m
∑

j=0

{

m

j

}

xj

n
∑

i=0

(

n

i

)

jn−iBi,0(x).

From Theorem 1, we have
∑n

i=0

(

n

i

)

jn−iBi,s(x) = Bn,j+s(x), s ≥ 0, then

Bn+m(x) =
m
∑

j=0

{

m

j

}

xjBn,j(x),

and therefore
dr

dxr
(exp(x)Bn+m(x)) =

m
∑

j=0

{

m

j

}

dr

dxr
(xj exp(x)Bn,j(x)). (12)

Now, using (1), we get
dr

dxr
(exp(x)Bn(x)) = exp(x)Bn,r(x) (13)

and using (13) and the Leibniz formula in (12), we state that

Bn+m,r(x) =
m
∑

j=0

{

m

j

} j
∑

i=0

(

r

i

)

j!

(j − i)!
xj−iBn,j−i+r(x)

=
m
∑

k=0

xkBn,k+r(x)
m
∑

j=k

{

m

j

}(

r

j − k

)

j!

k!
.

Let

a(m, k, r) =
m
∑

j=k

{

m

j

}(

r

j − k

)

j!

k!
.

Then

∑

m≥0

a(m, k, r)
tm

m!
=

∑

j≥k

(

r

j − k

)

j!

k!

∑

m≥j

{

m

j

}

tm

m!

=
1

k!

∑

j≥k

(

r

j − k

)

(exp(t)− 1)j

=
(exp(t)− 1)k

k!

∑

j≥0

(

r

j

)

(exp(t)− 1)j

=
(exp(t)− 1)k

k!
exp(rt),
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which means that a(m, k, r) =
{

m+r

k+r

}

r
and Bn+m,r(x) =

∑m

k=0

{

m+r

k+r

}

r
xkBn,k+r(x).

For a combinatorial proof, we consider that there are n+m non-distinguished elements.
From these we put m and the r distinguished elements into k + r blocks, such that the
r distinguished elements are separated: there are

{

m+r

k+r

}

r
cases. We have to color the k

blocks not containing distinguished elements, and this can happen xk ways. Then n items
remain. We can put these elements into the already constructed blocks or into new blocks.
We can handle the already constructed blocks as distinguished elements. So we have n +
k + r elements, of which k + r are distinguished. In addition, we have to color the non-
distinguished blocks. To do this, we have Bn,k+r(x) possibilities. Altogether, if k is fixed, we
have

{

m+r

k+r

}

r
xkBn,k+r(x) cases. We can sum over k.

For the identity (9), use Theorem 1 to replace Bn,k+r(x) by
∑n

j=0

(

n

j

)

kn−jBj,r(x).

For the identity (10), use relation (4) to replace Bn,k+r(x) by
∑n

j=0

(

n

j

)

(k + r)n−jBj(x).
As a combinatorial proof, we can argue as follows: from the n elements we choose k

elements in
(

n

k

)

ways and separate them. The remaining m+ r elements go to j + r blocks,
but r elements stay in disjoint sets. This can happen in

{

m+r

j+r

}

r
ways. We have to color the

j blocks; this is why the factor xj appears. The non-separated n − k elements go to these
blocks. This means (j + r)n−k cases. Finally, the above k separated items go to separated
and colored blocks; this is what Bk(x) represents. We sum over the possible values of j and
k. Again, the left- and right-hand sides coincide for any positive integer x, so they coincide
for any x ∈ R.

For the identity (11) using (1) and the following identity (see [6])

m
∑

k=0

[

m+ r

k + r

]

r

xk = (x+ r)(x+ r + 1) · · · (x+ r +m− 1),

we can write

s
∑

k=0

[

s+ r

k + r

]

r

(−1)s−kBn+k,r(x) = (−1)s exp(−x)
∞
∑

i=0

(i+ r)n
xi

i!

s
∑

k=0

[

s+ r

k + r

]

r

(−i− r)k

= (−1)s exp(−x)
∞
∑

i=0

(−i)(−i+ 1) · · · (−i+ s− 1)(i+ r)n
xi

i!

and this can be written as

exp(−x)
∞
∑

i=0

i(i− 1) · · · (i− s+ 1)(i+ r)n
xi

i!
= xs exp(−x)

∞
∑

i=s

(i+ r)n
xi−s

(i− s)!

= xs exp(−x)
∞
∑

i=0

(i+ r + s)n
xi

i!

= xsBn,r+s(x).
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Corollary 4. For all nonnegative integers n, m, k, r and s, we have

{

n+m+ r

k + r

}

r

=

min(m,k)
∑

j=0

{

m+ r

j + r

}

r

{

n+ j + r

k + r

}

j+r

, (14)

{

n+ r + s

k + r + s

}

r+s

=
s

∑

j=0

(−1)s−j

[

s+ r

j + r

]

r

{

n+ j + r

k + s+ r

}

r

. (15)

Proof. For the identity (14), we have from Theorem 3

Bn+m,r(x) =
m
∑

j=0

{

m+ r

j + r

}

r

xjBn,j+r(x).

Upon using (2) to replace Bn,j+r(x) by
∑n

i=0

{

n+j+r

i+j+r

}

j+r
xi, we can write

Bn+m,r(x) =
m
∑

j=0

{

m+ r

j + r

}

r

n
∑

i=0

{

n+ j + r

i+ j + r

}

j+r

xi+j

=
n+m
∑

k=0

xk

min(m,k)
∑

j=0

{

m+ r

j + r

}

r

{

n+ j + r

k + r

}

j+r

,

and using the definition Bn+m,r(x) =
∑n+m

k=0

{

n+m+r

k+r

}

r
xk, the first identity follows by identifi-

cation. The identity (15) follows by the same way upon using the fourth identity of Theorem
3.

Remark 5. One can proceed similarly, as in the proof of the Spivey’s identity [16] to obtain
a combinatorial proof for the identity (9) when x is a positive integer.
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[11] I. Mező. The r-Bell numbers. J. Integer Seq. 14 (2011), Article 11.1.1.
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