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Abstract

We give the dual of Spivey’s recent formula for Bell numbers. The dual involves

factorials and Stirling numbers of the first kind. We point out that Spivey’s formula

immediately yields the famous Touchard congruence for Bell numbers. Finally, we

extend these formulas to the r-Stirling case.

1 Introduction

In 2008, Spivey [8] proved that
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holds, where Bn is the nth Bell number (counting the ways to partition a set of n elements)
and

{

m
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is the Stirling number of the first kind with parameters m and j (counting the ways

to partition a set of m elements into j blocks). See Comtet’s book [3] for more on these
numbers.

The Stirling number of the first kind, denoted by
[

m

j

]

, enumerates all the permutations
of m elements forming j cycles.

Since
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and
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we may think that there is a formula similar to (1) with factorial on the left and Stirling
numbers of the second kind on the right. This is really so, as the next theorem states.

2 The dual of Spivey’s formula

Theorem 1. For all positive integer m and n we have
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where ab = a(a + 1) · · · (a + b − 1) is the Pochhammer symbol.

Proof. The left hand side enumerates all the possible permutations of n + m elements. Any
such permutation can be given on the next way. We pick some (say k) elements from n and
we form a k-long permutation. At this time we have

(

n

k

)

k! possibilities and n− k remaining
elements. On the other hand, we construct a permutation on the other m elements with j

cycles. The remaining n − k elements can be put into the m-permutation as follows: the
first element can go between the m elements and to the right: here are m possibilities. Now
the next element can go to m + 1 places and so on. (Note that the elements in a cycle can
be shifted together from left to right, so the first position does not count and there are no
multiple possibilities between two elements at the gap between the cycles.) Finally, we sum
on the possible values of k and j.

We note that Spivey’s result (1) was deduced later by different authors also: H. W. Gould
and J. Quaintance [4] (generating function proof), H. Belbachir and M. Mihoubi [1] (base
coordinates of Bell polynomials with respect to a specific base), and A. Xu and Zh. Cen [11]
(Faà di Bruno’s formula)

3 Touchard’s congruence

In 1933 J. Touchard [10] proved the next congruence for the Bell numbers:

Bn+p ≡ Bn+1 + Bn (mod p)

for any prime number p.
Formula (1) can be applied to prove this. Although some unpublished papers [6, 9]

contain proofs relying on (1), the following one seems to be a simpler one.
Let m = p be a prime number in (1). Since

{
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≡ 0 (mod p) if 1 < j < p ([5]), we have
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In the last sum all the terms k = 0, . . . , n − 1 are divisible by p, so only the last term Bn

remains. The special values
{
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=
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= 1 and the most basic identity on Bell numbers
∑n

k=0
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Bk = Bn+1 gives that Touchard’s congruence really holds.

4 Generalization to the r-Bell case

Now we carry the Spivey’s formula and its dual to a more general setting. To do this, we
recall the definitions of the r-Stirling numbers [2].

For any positive integer r the symbol
[

n

m

]

r
denotes the number of those permutations of

the set {1, 2, . . . , n + r} that have m + r cycles such that the first r elements are in distinct
cycles.

In addition,
{

n
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}

r
denotes the number of those partitions of the set {1, 2, . . . , n + r} that

have m + r nonempty, disjoint subsets, such that the first r elements are in distinct subsets.
The corresponding sums for (2) and (3) are
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Here Bn,r is the nth r-Bell number [7]. (Note that the notation slightly differs from that of
[7]; the parameters of r-Stirling numbers there are shifted with r.)

The generalizations of (1) and its dual (4) are presented in the next theorem.

Theorem 2. For all positive integer n,m and r we have
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Proof. According to the above definition of the r-Bell numbers, the left hand side of the first
formula enumerates all the possible partitions of n + m + r elements such that the first r

elements are in distinct blocks. Any such partition can be given on the next way. We pick
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some (say k) elements from n and we form a partition with k elements. At this time we
have

(

n

k

)

Bk possibilities and n − k remaining elements. On the other hand, we construct a
partition on the other m + r elements with j + r blocks taking our restriction into account.
The remaining n− k elements can be put into the j + r blocks independently; thus we have
(j + r)n−k possibilities. Finally, we sum on the possible values of k and j.

The proof of the second formula is almost the same as of (4), so we leave it to the
reader.
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(Concerned with sequence A000110.)
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