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From the Kummer , Fj-summation theorem, the Dixon—Kummer 4 F3-summation theorem and the Dougall—
Dixon 5 F4-summation theorem, we establish, by means of the Bell polynomials, three general formulas
related to the generalized harmonic numbers and the Riemann zeta function. Based on these three general
formulas, we further find series of harmonic number identities. Some of these identities involve both finite
summation and infinite series, so that we can determinate the explicit expressions of numerous infinite
series. In particular, we show that several interesting analogues of the Euler sums can be evaluated.
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1. Introduction

The generalized harmonic numbers are defined by

n

1
HO(’)=O and H”U)ZZP forn,r =1,2,....
k=1

When r = 1, they reduce to the classical harmonic numbers, denoted as H, = H'".

There are several ways of dealing with finite summations or infinite series involving (general-
ized) harmonic numbers, such as the Newton—Andrews method, that is, applying the differential
operator to classical hypergeometric identities [1,9,11,12,32], the partial fraction decomposi-
tion method [7,8,10] and the computer algebra method [17,18,21-23]. Sprugnoli [30] presented
some harmonic number identities by means of the theory of Riordan arrays, and Sofo [27-29]
obtained many from the integral representations of some special binomial sums. Borwein and
Borwein [2], Coffey [14], De Doelder [16] and Flajolet and Salvy [19] established numerous
infinite series (Euler sums or analogues of Euler sums) related to harmonic numbers and the
Riemann zeta function by evaluating some integrals, while Choi and Srivastava [5], Chu [6],
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Chu and Zheng [13], Shen [25] and Zheng [33] derived a large number of infinite series of the
same types by systematically analysing the hypergeometric series. Additionally, based on the Bell
polynomials and the Riordan array method, we established series of harmonic number identities,
some of which also involve other special combinatorial sequences, such as the Stirling numbers
of both kinds, the Lah numbers, the Bernoulli numbers and polynomials and the Cauchy numbers
of both kinds (see [31]).

Recently, also by means of the Bell polynomials, Chen and Chu [3,4] studied the Gauss ; F-
summation theorem and the Dixon ; F>-summation theorem. They established general formulas
involving (generalized) harmonic numbers and the Riemann zeta function, and illustrated as
examples many interesting harmonic number identities. It should be noticed that unlike the works
given in the past decade or so, some of Chen and Chu’s harmonic number identities have both
finite summation and infinite series.

The purpose of this paper is to explore Chu and Chen’s method further, and we are interested
in three well-known results in the theory of classical hypergeometric series, that is, the Kummer
2 F-summation theorem, the Dixon—-Kummer 4 F3-summation theorem and the Dougall-Dixon
5 F4-summation theorem. By introducing an extra indeterminate x, we reformulate these three
summation theorems and establish the corresponding general harmonic number identities. Then,
by specifying some parameters, we obtain numerous finite and infinite series identities involving
(generalized) harmonic numbers and the Riemann zeta function. The identities in this paper
contain the summation

n ) n ZH n n 3H n n 4]HI
-1 ks < ) k or < ) ks
Lo R - 2
where H is a combination of some (generalized) harmonic numbers. In particular, it seems that
harmonic number identities of the form ) ;_,(— ¥ (’,:)Z]HI,( have not been studied before.

The Euler sums are infinite series whose general term is a product of (generalized) harmonic
numbers of index k and a power of k™', such as )=, Hk(P ) /K. The readers may find that the
identities in this paper give the expressions of many infinite series, such as

[} k [} k [} k
—1)"H, —-1)*H, —1

$EVH D e g CDE e ey

k=0 (k+ l)lH-l k=0 (k+ l)n—H k=0 (k + l)n—H

which can be viewed as analogues of the Euler sums.

This paper is organized as follows. Some basic definitions and results are introduced at the
end of this section. Sections 2 and 3 consider the Kummer , F;-summation theorem. Similarly,
Sections 4 and 5 study the Dixon—Kummer 4 F3-summation theorem, and Sections 6 and 7 study
the Dougall-Dixon 5 F4-summation theorem. Now, let us introduce some definitions and results
briefly; for more details, the readers are referred to [3,4].

For the sequence t := (#1, t, . . .), the Bell polynomials (or the cycle indicators of symmetric
groups) §2;(¢) := $2;(t1, t2, ..., 17) are defined by the generating function

[oe] )Cl [oe] )Ci
D SOF =expi Y it (1.1)
=0 i=1
and their exact expression is

I o\ p\R 1t \b
a0-Yirm (i) (5) ()

where the summation takes place over all non-negative integers k1, kz, . . . , k; such thatk; + 2k, +
-+ 1k, =1 (see [15, Section 3.3] and [24, Section 4.2]). From the expression, the first few Bell
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polynomials can be obtained:

$200)=1, $24@)=mn,
() =11 +1, 250) =1 + 30t + 28,
24(t) = 1} + 61}ty + 8t113 + 315 + 6t4.

The following lemma given in [3,4] characterizes the relations between the binomial coefficients,
the Bell polynomials and the harmonic numbers.

LEMMA 1.1 Let A be an indeterminate, then we have

n

by 1 o
[x’](”tl x) = ﬁ.Ql(u) with u; = (=)W HY
—1
[x’](”_“) =152,(v) with v; == A H®
n Al t ne

On the other hand, with the notation from Slater [26], the hypergeometric series reads as

ap, aip, ..., a
1+1)Fq|: <

_i (@o)(ani -+~ (@pe 4
bi, ... b|°|T ¢

ki) b

k=0

where the shifted factorial (rising factorial) is defined, for a complex number x, by (x)o = 1
and (x), =x(x+1)---(x +n—1)whenn = 1,2, .... Most of the hypergeometric summation
theorems evaluate infinite series as a fraction of I'-functions in the following form:

F[a, b, ..., ci|_ (@) ---T'(c)
A, B, ..., C|7 T ATB)- - -TC)

According to the definitions, there hold two relations between the I'-functions and the shifted
factorials:

F()C+fl) . F()C) —_(_1\"(1 _
ray = ad s = (D -, (1.2)

Furthermore, the I"-function has the following power series expansions (e.g. see [3,4,6]):

[oe] i [oe] i
1 1 1
F(l—x):exp{ga,-x?} and F<§—x)=ﬁexp{§nxl—,}, (1.3)
where o; and 7; are defined, respectively, by

o=y and o; =) fori >2,

1=y +2log2 and 1 =2 —1)¢@i) fori > 2,

with y being the Euler—Mascheroni constant given by y = lim,_. -, (H,, — logn) and £ (x) the
Riemann zeta function defined by £ (x) =Y 2, 1/k*.
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2. Reformulation of the Kummer summation theorem
The Kummer summation theorem [26, p. 51] is
a, b - |1+5 14+a-—b
ZF‘[ 1+a—b‘ 1}_l[l+a, 14+¢—b]

By introducing an indeterminate x and the parameters A, ¢ and v with the condition v = A — 6,
we may reformulate the Kummer summation theorem as follows:

1—vx, 1
—1}:1“
1—Jx—n, 1-—

Ax+n

- e i @D

—Ax —n, —bHx—n
2F1|:

+ 0x

According to the relations

(1 —x) = k!<k ;x) and  (—y —n)p = (—1)kk!<":y),

the left-hand side of Equation (2.1) can be expressed as

i (= D¥(=hx = n)e(=0x —n) _ i (D)
k(1 — vx )y - :

k=0

In view of the relations given in (1.2), the right-hand side of Equation (2.1) can also be rewritten.
For n = 2m, we have

1—vx, I IR GO G W B B %x

F Ax Ax
1—Aix —2m, 1-— % +0x +m (7]:171)(171—31—0-9)6) l—ax, 1 )\,7)5 4 ox

For n = 2m + 1, using

1 22m+1 (QX—%+’”)
(1 =20)/24+ 051 Q@m+ DIy
we have
1—2x
1 —vx, 7 m
1 1—2x
1—ix—2m—1, — +0x+m+1
1 m+124m+1 |2)\’ m"‘%x "’H‘QX_%X 1 —vx 1= Ax
_ (_ ) m‘zx(l 1;19 )E m )F ’ 1 )"2
m—+14+20x—Aix -
(2m + 1)'( 2m+1 ) 1 —Ax, al + 0x

Dividing both sides of Equation (2.1) by (”J;’\x) (”J;Qx) and taking into account that

CF) ) R

(11+Ax) (11—k+kx) (11+Ax) - (n + 1)k+1 '

n n—k n
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we finally reformulate the Kummer summation theorem in terms of binomial sums:

( 1)11+1+kk|2

n 2
X0 W)+ > (—1 "<") T
Z SN L (x) ;( ) T

k=0
(- 1)’”( )U(x) n=2m,
= (_1)m+124m+1m|2 (22)

“axVx), n=2m+1,

2m + 1)!
where W (x), Ty (x), U(x) and V (x) are defined, respectively, by

k—2x\[(k—0x\{n+k+1—vx -1
o= (YN

-1
Tk(x):{(n;ﬁ:kx)(n;ﬁ:@x)(k—kvx)} ’

1 1 —vx, 11— %C
Ux) = . r )
CACTHE (1 122 s
ax i 1—Ax
V(x) B (m—lt?-l2 )(111—&-9]2 2 ) - 1 — VX, 3
- (2111+1+Ax) (2m+1+9x) (2m+1+29x—)»x) 1—Ax
2m+1 2m+1 2m+1 1-— )\JC, + Ox

By appealing to Lemma 1.1 as well as Equation (1.3), we can obtain the following coefficients:

[ TW, (x) = Q’gl!”k) with we;, =vHD ,, — 0 +0)HD,

[T (x) = Q’l(fk) with ., = vV H + (=)' +6)H?D, |

W = 20
where

Ui = {(A —0) + <5) } oi — {x’ + <§ —e)l } oi + (=1) {(5) - <9 - 5)} Hy
2 2 2 2
+ (=16 Hy),
and
Ve = 4,

where

o o\ N i
Ui={()»—9)'—)»'}0i+{<§) —<§—9) }Ti

; A\ A\ 0 igqi i Q)
— (=D 5 +1{6— E Hm + (1) {)» +0"+ (20 — )‘) }H2m+1
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Equating the coefficients of x on both sides of (2.2) gives the following general harmonic number
identity related to the Kummer summation theorem.

THEOREM 2.1 (General harmonic number identity) Let {wy, t, u, v} be the four sequences
defined above; then for m, 1 € N, we have

( 1)11+1+kk|2

n 2
f T
AU —1) E CEST Ql_Z(wk)+kE:0(_l) <k) £2;(tx)

k=0
(— 1)’”< )Qz(u) n=72m,
= (_1)m+124m+1m!2 (23)
AS2 =2 1.
amt D) —1(v), n=2m+

3. Harmonic number identities related to the Kummer summation theorem

As applications of Theorem 2.1, we illustrate here a series of harmonic number identities.

31. 1=0,1
Setting [ = 0 in Theorem 2.1, we have
n 2 2m
fn (=™ , n=2m,
> =D )= m (3.1)
k=0 0, n=2m+1,

which is an identity presented in Gould’s famous collection (see [20, Equation (3.81)]).
The substitution / = 1 in Theorem 2.1 yields

n N\ 2 G.— 00, (— 1)m< )( —6Y(H,, + Hy), n=2m,
—_1)k - X _
sz(;( 1) <k) {_()\« + Q)Hn—k} - N (_l)ln+124m+lm!2

9’ == 2 1.
Qm+ 1)! = 2m
Under the involution k — n — k, the last identity can be simplified as
( l)l‘n
n 2 ) (H, + Hap), n=~2m,
n
(—1)k< ) H, = (3.2)
; k (_1)m+124mm!2 (_1)1n+124m 2\ !
= , n=2m+1.
(2m + 1)! 2m + 1 m

In Section 3, many identities containing the summation > ;_,(—1)* (’,:) H, will be displayed,
where H]; is a combination of some (generalized) harmonic numbers, and we have not found
harmonic number identities of this kind in the literature.

32. 1=2

The general identity obtained from Theorem 2.1 by the substitution / = 2 will not be presented
here due to its complexity. Instead, we concentrate on its further specializations.
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Example 3.1 (0 =0o0r A =0) When 6 = 0, it can be found that A is a redundant parameter,
and the final harmonic number identity is

2m 2

2m (=)™ [2m
Z(—l)k< k) (H + H = HiHopi} = ~— ( )H,53>. (3.3)
k=0 "

Note that to obtain this identity, the replacement k — n — k is used again, and in fact, we will
make use of this replacement frequently in the paper.
When A = 0, the parameter 6§ turns to be redundant, and we have

2m 2
2m (=™ 2m
Z(_l)k< k ) {Hk2 + H/((Z) + HkHZm—k} = 2 <m ){(Hm + HZm)2 + H,.ELZ) + Hz(lzn)}
k=0
3.4
Combining Equations (3.3) and (3.4), we obtain
2m 2
2m (=™ (2m 3
Z(—1>k< L ) (H; + HY} = T< . ) {(Hm + Hyn)® + S HD + H;,i)} . (39
k=0

2m 2
2m (=™ [2m 1
> :(—1>k< i ) HiHap = — <m ) {(Hm + Hy)? + EH,E? + Hé,i)} . (3.6
k=0

Example 3.2 (L. = 1and 0 = /—1) By equating the imaginary parts, we arrive at explicit
identities involving infinite series and finite summation as follows:

20 (=D 1 & 2m\ e (=D™ (2m

= —1)kH! H? 2) + H® 3.7
2 arng, ~ame 2TV ) B g JE@HED. G
co 2m+1 2

(=¥ 1 2m + 1
> TR Z(—1>k< L ) 2H? + H?)
k=0 2m—+2 Y k=0
(_1)m+124m+1m!2
+ {210g2 + H,, — 3Hom11)- (3.8)

Qm + D3

These two identities also give us explicit expressions for infinite series of the forms

o (=DF = (—DF
Z W and Z

n 2 :
=0 nt1 =0 (n+ 14+ k)32( Zk)

For example, when n = 2, 3, 4, 5, the corresponding evaluations are

(=D 21 —272 SN (=D —11+16log2
;(k+l)§: 48 ;(k+l)§: 54 ’
i (—DF  —235+4247% O~ (=1 3553 —5120log2
—(k+13 27648 T = (k+1p 2160000

Of course, these four series can be obtained immediately with a system of computer algebra, such
as Mathematica 7. But our aim is to show that from the hypergeometric method, the explicit expres-
sion of a more general series Z,fio(— DF/(k + 1),21 +1 can be derived, while these four series are
just the simplest specializations. In this paper, the expressions of other general infinite series will

be presented. In particular, some specializations cannot be obtained easily with Mathematica 7.
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33. 1=3
Example 3.3 (0 =0o0r i =0) For simplicity, define two abbreviated notations:
o) = (H, H? , H?, ..),
& = Q(H, + Hy, H® + HY , HY + HY, .. );

then by setting & = 0 and A = 0, respectively, we can derive the next two identities:

2m+1 2
2m +1
}:(—1)k< ) (&7 = 3(HE + HP Y Hops1 )

k=0 k
(_1)1n+124m—1m!2 @ )
= Gy W - HD), (3.9)
2m 2
2m (—D)™ (2m
Z(—l)k< k) (@ +3(HE + H) ot} = ~— (m)w,,?>. (3.10)

k=0

Example 3.4 (. = 1and 0 = 1) When n = 2m, we have

> (—D)*H, R 2m\2 5 s
; TESTENNRETET: ;(_1)/(( ’ ) 2H} +3HH?® + H®)
L e (2’”) {(Hp + Hom)® + 3(Hy + Hap)
122m)12\ m
| ) 3 |- 3
x <—c(2) + S HD + HZm) +2 <Zc(3) + HY Hzm)} . (311

Combining Equation (3.11) with Equation (3.10), we obtain

e} 2m

(1" Hy ! K <2m)2 2, @
= —1 H H, H — H i
kXZ; (k + 1)%m+l 2(2m)'2 k2=(;( ) k ( k + k )( k 2, k)

-1 m+1 2
(8(2# < ;){4(3) —HY — (Hp + H)(26(2) + HP)). (3.12)

When n = 2m + 1, we have

ad 2m+1 5
(“D'H, 1 2m +1
2 2" 5 2 D {2H] +3HH® + HY)
Sk + 13, 3@m+ D K
(_1)1n24m—1m!2

(2m + 1)1

1
—-HP + 3H§?J+1} : (3.13)

{(2 log2 + H,, — 3Hamy1)* — ¢(2)

2

These three identities give us explicit expressions of the infinite series

i (=D H, q i (—D*Hy
_— an .
(k4 12, =+ 1R (7
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For example, the following evaluations hold

o]

(—D'H, 1
;m = —§§(3),

(o)
—1FH 2
Zw =4—’T—2 —6log2 +2log?2,

2
= (k+1)3 1
i (—D*H, 42— 5724 6£(3)

2 - 9
= (k+1)3 96
x k 2 2
Z (=D*H,  —1757 + 24m* + 2592log 2 — 576log” 2
o (k+1F 3888 '

Example 3.5 (. = 1 and 8 = —1) For n = 2m, we obtain the identity

— (—DFH 1 & 2m\?
- 2m k
2 Gt i, " 3amp Z(‘l)k+l< k ) (QH + OH HE + 4H + 3H Hop i)
k=0 2m+1 Y k=0
(1" (2m \
+ m m (Hm + HZm) + 3(Hm + Hzm)

5 1
x <c<2) + S HY + Hé,i)) +5(5¢3) + 13H7 +4H2(2>} ;
(3.14)

which, in conjunction with (3.10), immediately yields

0 2m )
(=D Hom g 14 1 o f2m 5 @
L v h, —ame V) G )
k=0 " k=0

(_1)m+1
8(2m)12

—2¢(2)) —5¢(3) + HY + 4H)). (3.15)

2m
<m ){2(Hm + 112111)3 + (Hm + HZm)(SH,;Z) + 6H2(’2n)

On the other hand, for n = 2m + 1, we have

©0 2m+1 2

—1)*H,,, 1 2m+ 1

Z( ) Hopi24x _ Z(_l)k m + {2H,(3+6Hka(2) +4Hk(3)
okt 1Dd,,  3CmtDP k

(_1)m24m—lm!2

— 3H]((2)H2m+l—k} + (2m + 1)'3

{(2 log2 + H, — 3Hpy41)

5
—3¢(2) — EH,;” + 11H2(§3+1} , (3.16)
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which, together with (3.9), gives

0 2m—+1 2
(— ¥ Hypio i 1 k <2m + 1) 2 @
= —1 2H H “)YH>,. 1
L w0, e ) CHE D
(_1)1n24m—1m!2 )
W (2log2 + H,, — 3Hy41)° — 34(2)
1
—HY + 3Hz(,2,3+1} 3.17)

These identities lead us to the explicit expressions for the infinite series

o]

i ( 1) Hn+1+k (_l)kHIH-H-k
and oL
o k+ D1 o (n+14+Kk)2("T

For example, it can be derived that

o]

(=D Hy4a

5
Tk g

”M

[oe]
(—D*Hypn w? 2
— = —6—— —6log2+2log*2,
Z K+ 1)2 7 og2+2log

—~ D" Hs 5 2

i (—D*Hjps  —739 + 247 + 864log2 — 1921og” 2
k+1)72 1296 '

34. 1=4

Example 3.6 (. = 1 and 9 = 1) Recall the notations qﬁ,il> and lI/k<l> defined in Example 3.3.
When n = 2m, we have

i (—l)k 2m
> g, 2 = e 2 ( )@k # 3+ oHH 30
k=0 m—+1
(_l)m—H 2m , o
T 24@mE \m — 6(Hy -+ Hon)? (£02) + 3 HS

1
+6(Hy + Ha)(€(3) = HP) +3 (c @+ EH,;”)

<;<2)__H<2> 2H§,i>) <c<4)+ H<4>)},
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and when n = 2m + 1, we have

©0 _ 1)k 1 2m+1 o) 1 2
Z#QH,? HY) = ——— Z ("
— (k+1)3,., 6(2m + 1)1 k

x (@Y +3H! + 6HH® — 3H™)

(_ 1)m+124mm!2

3om T )P {(2log2+Hm—3H2m+1)3

+3(2log2+Hm—3H2m+1)< £(2) — H(2)+3Héi)+1)

3 1 X
2 <Z§(3) + ZH;S) - 3H2(m)+1)}

From these identities, we can evaluate the infinite series

o] o]

k 1\
Z—( D (2H? — H®} and (=1

(€3]
k+1 n+ky2 sz N Hk }
( + )n—H k=0 (n + 1 + k)Z( X )

For example, the next four series hold

i (= 1)k H2— HOy = — wt
—~ ( 1)2 H k 1440°
— (= 1)k
Z H — H?} = {90 14410g2 4 7210g> 2 — 1610g> 2 4+ 72(—3 + log 4)
0
—3¢(3)},
i (— 1)k H?) — 3555 — 4807 % + = +900;~(3)
~ ( ki 2880
[oe]
Z H? — H®) = 3888{ 8929 + 13728 log 2 — 5184 log® 2 + 768 log® 2

0
— 2472(—9 + log 16) + 144¢ (3)}.

The readers may find that these series cannot be evaluated with Mathematica 7 by the function
‘Sum’. Additionally, it can be seen from the [ = 4 case that the specializations of Theorem 2.1
are becoming more and more complicated, so we choose not to present others.

4. Reformulation of the Dixon—-Kummer summation theorem

The Dixon—Kummer summation theorem [26, p. 56] is

a
a, 14—, d, e _ _
JFs a? -1 =r[1+“ d. Tha—e }
> l+a—-d, 14+a—e I +a, l+ta—d—e

Similar to Section 2, let us introduce an indeterminate x and the parameters A, 6, ¢, v and §
with the conditions v = 1 — 6 and § = A — ¢; then by some transformations, the Dixon—Kummer



Downloaded by [151.31.42.16] at 10:56 17 March 2015

60 H. Liu and W. Wang

summation theorem can be rewritten as

(n—;)»x) (11—;9)6) (n—;sx) 3 (—1)”)»)6 (11—01-1)»)6) . |:1 — vx, 1 —38x i| )

0
;(Ax +n— 2k) (k—kvx) (k—szx) - (11—Ax—;9x+sx) 1— Ax’ 1—ix + Ox + &x

Dividing both sides by (" J;’\x) (" J;Qx) ("***} and then making some further transformations, we may

reformulate the Dixon—Kummer summation theorem as

5 e (=DM —2k—n —2) - " <n)3 PN
Brde ; EERT We(x) + ; L) Gt n = 20T00)
= (=1)"axU(x), 4.1)

where Wy (x), Tx(x) and U (x) are explicitly given by

W B (k—](kx) (k—k€x) (k—ksx)
k(x) = (n+k+1—vx) (n+k+1—5x) ’
n+k+1 n+k+1

1

(SIS I Y

Ti(x) =

0 . 1 1—vx, 1—68x
()C) - (n+9x) (n+sx) (11—Ax+9x+sx) 1—2x, 1—Xix+06x+ex|’

n n n

According to Equation (1.3) and Lemma 1.1, the following coefficients can be deduced:

[ TW, (x) = Q’gf’k) with g, = +8)VHYD, | — O +6" +HHD,
[x'1Ti (x) = Q’l(f_k) with 7y = (' +8)H" + (='W +0" + ) H?,
and
1) = 0
where

i ={h—0—e) + (1)@ +NHD + (V' +8 -1 — (L —0 —¢)}a.

Thus, equating the coefficients of x’ on both sides of (4.1) gives us the general harmonic number
identity related to the Dixon—Kummer summation theorem.

THEOREM 4.1 (General harmonic number identity) Let {wy, &, i} be the three sequences defined
above; then for | € N, we have

o (—DFEP
we Y~ 00 = 3,24 — (20300 + 2K + 2215 (0)
k=0 (n + 1)k—&-l

n 3 n 3
MY <Z) Q)+ <Z) (1 —202(H) = (~'M2@.  (42)
k=0 k=0
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5. Harmonic number identities related to the Dixon—-Kummer summation theorem

By specifying the parameters /, A, 6 and & in Theorem 4.1, many interesting harmonic number iden-

tities can be established. In particular, all of these identities involve the summation ZZ:O (’,:) H,
where H; is a combination of some generalized harmonic numbers.

51. [=1,2

It can be verified that the / = 0 case of Theorem 4.1 is trivial, so letus begin with/ = 1 and [ = 2.
When [ = 1, Theorem 4.1 reduces to

n n 3 n n 3 ”
*;(,{) +k§<k) (n = 26){(2h =6 — &) Hy — (h + 60 + &) ) = (=1)"A.

Under the replacement k — n — k, this identity can be simplified as

n

3
Z(Z) {1430 — 20 H} = (=1, (5.1)

k=0

which can be found in [11, Table 1, Entry (16)] and [23, Equation (3)]. Similarly, the substitution
[ =2 in Theorem 4.1 yields

i <Z)3 [He+ (5 - k) GH + B} = (—1'H,, (5.2)
k=0

which is a result presented in [12, Example 20].

52. 1=3

Example 5.1 (A =2, =1+ +/—3and 0 =0) Now, Theorem 4.1 gives the following identity:

n

3
> <Z) {(3H? — 6H H, ; + H® —3(n — 20)3H? + H®)H, 4} = (="' (3H? + H®).
k=0

(5.3)
Example 5.2 The substitutions A = 1, & = —1 and = 0 give
n n 3
Z <k) (OH? +TH® +3(n — 2k)(3H} + H® (5H, — 2H,_;) + 2H})
k=0
= (=D"{9H; +5H}); (5.4)

the substitutions A = 2, ¢ = 1 and 0 = 0 yield

n

3
n
> (k) {18H(Hy — Hu—i) + 10H? + 3(n — 2k) (3H] (Hy — 3H, ;)
k=0

+5H (H, — Hy_) +2HP Yy = (-1)"2H®?. (5.5)
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Moreover, setting 1 = ¢ and § = 0 results in

n

3
n
> <k) {(Hy(5H, —4H,_;) + 3H® + (n — 2k) (3H}(Hy — 2H,_t)
k=0

+ H (SH, — 4H, ) + 2H Y} = (=1)"{H; + H”}. (5.6)

Note that subtracting (5.4) from (5.5) gives us identity (5.3) in Example 5.1. Additionally,
combining (5.6) with (5.4) or (5.5), we can also obtain (5.3).

Example 5.3 Forl = 3 case, set further A =4, =14 4/—3 and 8 = 1 — 4/—3; then we have

D 2% +2) 1 <) { @ 3
9H,(Hy — Hy—1) + 3H, + {2H
k2=(; (k+1)n+l !3 ¢ £ -+
+9H5(Hk—3H,,_k)+9H;2>(Hk—H,,_k>}} - ,3) £(2). (57

Alternately, set further . = 4,¢ =1+ 3+4/—1and & = 1 — 34/—1; then we have

i D +2k+2) 1
(k + l)n—H 571'3

< ) {(n — 2k){—4H? + 9H}(Hy — 3H,_;)}
k=0
(_l)l‘l

=, i@+ 3H?). (5.8)

+ 18Hk (Hk - Hn—k)} +
From (5.5), we establish an expression of H», which can be substituted into the right-hand side
of (5.8) to obtain (5.7) once again. Furthermore, adding (5.5) to (5.8), we obtain

50 n 3
(—=Df(n + 2k +2) 1 <n) @ &) @
= (2H,” + (n — 26){(2H,” + 3H,” (Hx — Hy—)}}
Z k+ 13, n3 —~\k ¢ ¢ ¢

(_ )l‘l

n3

k=0

+——{¢(2) + H?}. (5.9)

From Equations (5.7)—(5.9), the series

i( DE(n + 2k +2) - = (=Dkn + 2k +2)
= (k4D = k(Y

can be evaluated. For example, when n = 1, 2, 3, 4, we have

—D'Ck+3 _ =* i (—D*Qk+4) 9472

(k+ D3 ~  k+D 48 7

e I

(—D*Q2k +5) 31— 3x? i (—D¥2k +6)  —115+ 1272
(k+13 3888 ° (k+1D3 995328

k k=0

Il
o

The first three series can be obtained immediately with Mathematica 7, while the last one as well
as the other specializations of the general series cannot be evaluated by the function ‘Sum’.
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53. 1=4

For [ = 4 case, we illustrate two identities.

Example 54 (A, =2, =1+ /=3 and 0 = 0) The corresponding identity is

n 3
3 <Z) {4GH Hyy — 2H? + H? Hy_ — 2HH®) — (n — 20)(3H* — 12H H,_,
k=0

+6H2H® — 12H H,_ H® —2H" + (H®)*}} = (-=1)"4H,{H> + H?}.  (5.10)

Example 5.5 (A =4, ¢ =1+ +/—3and0 =1 — /—3) These substitutions give

i (—D*2 = 3(n + 2k + 2)(Hy 11 — Hp))
k+ 1),

k=0
1 < /n\°?
=5 > <k) 2HY — 30 — 2k)(H,«H® — HHE — H))
T k=0

+ EN e 3. 5.11)
n3

By means of the fact that H, ;1| — Hy = Z:.’:ll 1/(k + i), we will obtain many series, such as

i (=D Qk+3)Qk+ 42k +5)

1
TEE @{23 —24¢(3)}.

k=0

The interested readers may find more series from (5.11) by choosing special values for n.

6. Reformulation of the Dougall-Dixon summation theorem

The Dougall-Dixon summation theorem [26, p. 56] is

a, 1+2 b, c, d
sFy a2 1
> l4a—-b, 14+a—c, 1+a—-d
_r 1+a-0>b, l1+a—c, 1+a—d, l+a—b—c—d
- 1+a, l1+a—b—¢c, 14+a—-b-—d, l+a—c—d |’

Similarly, by settinga — —Ax —n,b - —6x —n,c - —ex —nandd — —nx — nand writing
v=A—0,8=A—¢and u = A — 7, we finally reformulate the theorem as

Sk Ox —n —2k—2) - "\ 5
400 W, by — 20T,
x en; L mwg L) O n = 20T)

2n\ ~
= (—1)”Ax<n)U(x), (6.1)
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where W (x), Tx(x) and U (x) are explicitly given by

(TOEEEM

Wi(x) = = = =
Rl [l
- 1
S RN E T EN N
2n—Ax+0x+sx+nx
0 ( )C) — ( 2n )

(11—;9)6) (IHI;SX) (11—&]—177)6) (11—Ax—;9x+sx) (11—Ax—;9x+nx) (11—Ax—;sx+nx)

T 1 —vx, 1—6x, 1— ux, 1—Ax+6x +ex +nx
1—ix, 1—Ax+4+06x+ex, 1—2ix+0x+nx, 1—ix+ex+nx ’

The coefficients of W, (x), Ty (x) and U (x) are

W) = L0 it iy = 0 8 ) H,, — 000+ 4 H,
1 T(x) = %fk) with ;= 0 + 8+ u)HS + (D' + 6+ + ) H,D,
and
10 = 0
where |

G =+ h—0—e =)' =N =0 —0—& = —0—)' = —e—n)o
+ (=D + e+ YHD +{( =0 - + (=0 — ) + A —e—n)}HD
— (=0 —e—n)HY.

Equating the coefficients of x! on both sides of (6.1) leads us to the general harmonic number
identity related to the Dougall-Dixon summation theorem.

THEOREM 6.1 (General harmonic number identity) Let {1y, &, it} be the three sequences defined
above; then for | € N, we have

= kt*
Men Yy ———— (1 — 458215 (i) — (1 — 3)a(n + 2k +2) 24 (i)}
k=0 (n + 1)k—&-l

n 4 R n 4 ~ )
+AY <Z) 1)+ <Z) (n — 202 @) = (—1)"u< :)Ql_l(ﬁ). 62)
k=0 k=0

7. Harmonic number identities related to the Dougall-Dixon summation theorem

By specifying the parameters /, A, &, ¢ and 5 in Theorem 6.1, we obtain many harmonic num-

. . . . 4 . .
ber identities, which have the summation ZZ:O (’,:) H, where H, is a combination of some
generalized harmonic numbers.
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71. 1=1,2
When [ = 1, Theorem 6.1 gives
n 4
n af2n
Z(k) {1+4(n — 20 H} = (—1) <n) (7.1)
k=0

which can be found in [11, Table 1, Entry (17)], [12, Example 24] and [23, Equation (4)]. When
[ =2, Theorem 6.1 yields

. n ! 2 (2) n+l1 2n

k=0

which is a result presented in [12, Example 25].

72. 1=3

Example 7.1 Let6 = ¢ =5 = A;thenwe have v =38 = u = 0 and

n 4
n 3
> <k) {6sz +3 D 4 (n—2k)(H? + 6HH? + 8Hk3)}
k=0

3/2
- (_1)”2< ”){2(112,1 —3H,)* —2H? +3H). (7.3)
n

Setd = —A, & = A and 5 = —A; then we have v = u = 2 and § = 0. The identity is

n 4
n 9
3 <k) {3sz + L HE + (0= 2 H] +3HD QHy — Hy) + 2H }}
k=0

302
- (_1)"§< ”){2(112,, —3H,)% —2H2 +TH®}, (7.4)
n

which, in conjunction with (7.3), yields
"\t 2n
> (k) {H? + (n = 20{H +2H? (H, — H, )} = (=1)" ( . )H,EZ)- (7.5)
k=0

Note that (7.5) is equivalent to an identity given by Chu and Fu [12, Example 29]. Furthermore,
subtracting (7.5) from (7.3) yields

n 4
n 1 1
> <k) {4sz = S HE + = 20 (32H] + 6H (Hi +3H, 1) — SHk@}}
k=0

= (=" (2:){(112” —3H,)? — H"). (7.6)

Example 7.2 Setting [ = 3 and n = 0 leads us to a result of Chu and Fu [12, Theorem 5]. Thus,
by specifying further the parameters A, 0 and ¢, we can obtain Examples 2630 in [12]. More
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identities can be obtained from the [ = 3 and 5 = 0 case. For example, let & = X and & = 0; then
we have

n

n\* @ , 2 2
D\ ) 2 = Hyo) + HE o+ 50— 2602 HE (Hy = 3Hy )
k=0

1/2n
+3HL (H, — H,) + HY = (=1"3 < ’ )H,52>. (1.7)

Subtracting (7.5) from (7.7) gives

n

4
Z <Z) {2Hk(Hk —H,_)+ %(n — 2k){4H2(H, — 3H,_) — Hk@)}}

k=0
102
- (_1)"“5(:)11,52). (1.8)

Adding (7.8) to (7.7) yields

n

4
n 1
> <k) {4Hk(Hk — H,_) + H® + 30— 2k){(8HZ (Hy — 3H, )
k=0

+6H (Hy — Hyp) + Hk@}} =0. (7.9)

The last two identities are equivalent to Examples 28 and 30 in [12], respectively.

73. 1=4,5
As examples, we give one identity for / = 4 case and one for [ = 5 case, respectively.

Example 7.3 (1 =4,0 =¢ =n = 1) Now, Theorem 6.1 gives

o n 4
n+2k+2 1 <n) 3 @ go
—_— {4(8H; + 6HH,” + H ™) + (n — 2k)
kzz(; k+ D, 3nt4 kzz(; k
x {16H, QH} + H?) + 6H? 8H? + H) + 3H"}}
(_1)11+12
3nl*

+4Hy) —3HY —3¢(3)),

2
< ”){2<H2,, —3H,)> —3(Hy, —3H,)QH> —3H®)
n

from which we can evaluate the infinite series

S n+2k+2 2 n42k42
; (k+ Dy, Sk A
For example, the next four series hold
o 2k+3 =\ 2k +4 115 3
; TES ;m =15 T 760
~ 2k+5 5195 5 Z\ 2% +6 290785 35
; G nf T e 162" ; (k+ DI~ 573308928 " 82044° "
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Example 74 (I =5,0 = e =1n=1) Now, we have

o0 n 4

1 +4(n +2k +2)H, 1 n
3 D k_ ~SonT 5 <k) {10{16H,QH] + H) + 6H” (8H? + H)
k=0 n+1 T k=0

+3H} + 8(n — 26)(32H; + 80OH} H? + 40H?H
+30H (H®)? + 15H,H® + 10HP H® +3H))
(1"

6n!4

x QHY —3H®) + 8(H,, — 3H,)(4HS) — 3H?

2n 4 5
n {4(H2n - 3Hn) - 12(H2n — 3Hn)

—32(3)) +3QHY —3H®)? 4+ 3(—8HY + 3HY + 61(4))},

which gives the explicit expressions for the infinite series

i 1 +40+ 2%+ 9H o 1+ 4(n + 2k +2) Hy
7} an —
k=0 (k + l)n—H k=0 (n + k + 1)4( :k)
Moreover, in view of the values of the series Z/fio 1/(k + l)jt +1» We have
i Hk N 7'[4
3 = Azn’
— (k+1) 360
[oe]
2k +3)H 572 n*
Z# =14 — T —3¢(3),
(k+1); 6 45

k=0

Qk+4)H, 103 357z% 29
GADL D1 20,
(k + 1)} 64 128 32

Qk+5H _ 766349 _5005x>  7xt 61
(k+ D4 ~ 1679616 139968 14580  1296°

™M I

k

Il
o

Itcan be found that the last three series cannot be evaluated by the function ‘Sum’ of Mathematica 7.
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