Journal of Integer Sequences, Vol. 11 (2008),

On a Generalized Recurrence for Bell Numbers

Jacob Katriel
Department of Chemistry
Technion - Israel Institute of Technology
Haifa 32000
Israel
jkatriel@technion.ac.il

Abstract

A novel recurrence relation for the Bell numbers was recently derived by Spivey, using a beautiful combinatorial argument. An algebraic derivation is proposed that allows straightforward q-deformation.

1 Introduction

Spivey [1] recently proposed a generalized recurrence relation for the Bell numbers,

$$
B_{n+m}=\sum_{k=0}^{n} \sum_{j=0}^{m} j^{n-k}\left\{\begin{array}{c}
m \tag{1}\\
j
\end{array}\right\}\binom{n}{k} B_{k} .
$$

Here, B_{n} is the Bell number, $\left\{\begin{array}{c}m \\ j\end{array}\right\}$ is the Stirling number of the second kind, and $\binom{n}{k}$ is a binomial coefficient. Recall that the Stirling numbers of the second kind can be defined via

$$
x^{k}=\sum_{\ell=0}^{k}\left\{\begin{array}{l}
k \\
\ell
\end{array}\right\} x(x-1)(x-2) \cdots(x-\ell+1)
$$

and the Bell numbers are given by

$$
B_{k}=\sum_{\ell=0}^{k}\left\{\begin{array}{l}
k \\
\ell
\end{array}\right\} .
$$

Spivey's derivation invokes a beautiful combinatorial argument.
An algebraic derivation of Spivey's identity is presented below, using the formalism due to Rota et al. [2] that was specifically developed for the present context by Cigler [3]. The relevance to the normal ordering problem of boson operators has been considered in Katriel $[4,5]$. The basic ingredients of the Rota-Cigler formalism are also known as the Bargmann representation of the boson operator algebra [6]. The main advantage of the algebraic derivation is that it readily yields the more general q-deformed identity.

2 Algebraic derivation of Spivey's identity

We shall use the operator X of mutiplication by the variable x, and the q-derivative D

$$
\begin{aligned}
X f(x) & =x f(x) \\
D f(x) & =\frac{f(q x)-f(x)}{x(q-1)}
\end{aligned}
$$

that satisfy

$$
\begin{equation*}
D X-q X D=1 \tag{2}
\end{equation*}
$$

From the definition of the q-derivative it follows that

$$
\begin{equation*}
D x^{n}=[n]_{q} x^{n-1}, \tag{3}
\end{equation*}
$$

where $[n]_{q}=\frac{q^{n}-1}{q-1}$, and from Eq. (2) it follows that

$$
\begin{equation*}
D X^{n}=q^{n} X^{n} D+[n]_{q} X^{n-1} \tag{4}
\end{equation*}
$$

Eq. (4) can also be written in the form

$$
\begin{equation*}
(X D) X^{n}=X^{n}\left([n]_{q}+q^{n}(X D)\right) \tag{5}
\end{equation*}
$$

that will be useful below. The q-exponential function $e_{q}(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{[n]_{q}!}$, where $[0]_{q}!=1$ and $[n+1]_{q}!=[n]_{q}![n+1]_{q}$, satisfies

$$
\begin{equation*}
D e_{q}(x)=e_{q}(x) \tag{6}
\end{equation*}
$$

Repeated application of the q-commutation relation (2) yields

$$
(X D)^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \tag{7}\\
k
\end{array}\right\}_{q} X^{k} D^{k}
$$

where $\left\{\begin{array}{l}0 \\ 0\end{array}\right\}_{q}=1$ and

$$
\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}_{q}=q^{k-1}\left\{\begin{array}{c}
n \\
k-1
\end{array}\right\}_{q}+[k]_{q}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{q} .
$$

The initial value and the recurrence relation are sufficient to identify the coefficients $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{q}$ as the q-Stirling numbers, hence the sum $B_{n}(q)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\}_{q}$ is the q-Bell number.

Applying both sides of the identity (7) to the q-exponential function we obtain

$$
\frac{1}{e_{q}(x)}(X D)^{n} e_{q}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \tag{8}\\
k
\end{array}\right\}_{q} x^{k} \equiv B_{n}(q ; x)
$$

For $x=1$ the q-Bell polynomial $B_{n}(q ; x)$ reduces to the q-Bell number $B_{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\}_{q}$, and for $x=-1$ it reduces to the q-Rényi number $[7] R_{n}(q)=\sum_{k=0}^{n}(-1)^{k}\left\{\begin{array}{l}n \\ k\end{array}\right\}_{q}$. Since $(X D) x^{m}=[m]_{q} x^{m}$ it follows that $(X D)^{n} x^{m}=[m]_{q}^{n} x^{m}$ and $(X D)^{n} e_{q}(x)=\sum_{k=0}^{\infty} \frac{[k]_{q}^{n}}{[k]_{q}!} x^{k}$, yielding the Dobinski formula for the q-Bell polynomial.

Using Eq. (7), then Eq. (5), and finally the binomial theorem we obtain

$$
\begin{aligned}
(X D)^{n+m} & =(X D)^{n} \sum_{j=0}^{m}\left\{\begin{array}{c}
m \\
j
\end{array}\right\}_{q} X^{j} D^{j} \\
& =\sum_{j=0}^{m}\left\{\begin{array}{c}
m \\
j
\end{array}\right\}_{q} X^{j}\left([j]_{q}+q^{j}(X D)\right)^{n} D^{j} \\
& =\sum_{j=0}^{m} \sum_{k=0}^{n}\left\{\begin{array}{c}
m \\
j
\end{array}\right\}_{q}\binom{n}{k}[j]_{q}^{n-k} q^{j k} X^{j}(X D)^{k} D^{j}
\end{aligned}
$$

Applying this operator identity to the q-exponential function, using Eqs. (6) and (8), dividing by $e_{q}(x)$ and setting $x=1$ we obtain

$$
B_{n+m}(q)=\sum_{j=0}^{m} \sum_{k=0}^{n}\left\{\begin{array}{c}
m \\
j
\end{array}\right\}_{q}\binom{n}{k}[j]_{q}^{n-k} q^{j k} B_{k}(q) .
$$

Note that the binomial coefficient is not deformed. For $q=1$ this identity reduces to Eq. (1).

3 Acknowledgement

I wish to thank the referee for very helpful suggestions.

References

[1] Michael Z. Spivey, A generalized recurrence for Bell numbers, J. Integer Sequences 11 (2008), Article 08.2.5.
[2] G.-C. Rota, D. Kahaner and A. Odlyzko, On the foundations of combinatorial theory. VIII. Finite operator calculus, J. Math. Anal. Appl. 42 (1973) 684-760.
[3] J. Cigler, Operatormethoden für q-Identitäten, Monatsh. Math. 88 (1979) 87-105.
[4] J. Katriel, Combinatorial aspects of Boson algebra, Lett. Nuovo Cimento 10 (1974) 565-567.
[5] J. Katriel, Bell numbers and coherent states, Phys. Lett. A 273 (2000) 159-161.
[6] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math. 14 (1961) 187-214.
[7] A. E. Fekete, Apropos Bell and Stirling numbers, Crux Mathematicorum with Math. Mayhem 25 (1999) 274-281.

2000 Mathematics Subject Classification: Primary 11B73; Secondary 05A19, 05A30, 05A40. Keywords: q-Bell numbers, q-Stirling numbers, umbral calculus.
(Concerned with sequences $\underline{\mathrm{A} 000110}$ and $\underline{\mathrm{A} 008277 .)}$

Received August 12 2008; revised version received September 8 2008. Published in Journal of Integer Sequences, September 102008.

Return to Journal of Integer Sequences home page.

