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Bell Polynomials and Degenerate Stirling Numbers.

F. T. HOWARD (*)

1. Introduction.

The (exponential) partial Bell polynomials Bn,k(a1, a2, ..., in

an infinite number of variables al , c~2 , ... , can be defined by means of

or, equivalently,

where the sum takes place over all integers ...&#x3E;0 such that

It follows that B,i = an and Bn,n = Properties of Bn,k and a
table of values for kn12 can be found in [5, pp. 133-137, 307].
These polynomials were apparently first introduced by Bell [1].

In this paper we are concerned with certain special cases of the

(*) Indirizzo dell’A.: Wake Forest University, Winston-Salem, N. C. 27109.
U.S.A.
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Bell polynomials. We shall use the following notation:

where ai = (1- ~,)(1- 2~,) ... (1- (i -1) ~,) for i &#x3E; r; ,

where (l2013yt)(22013~) ... (i-1-Â) for i&#x3E;r.
We call Sr(n, a degenerate associated Stirling number of the

second kind, and we call sr(n, a degenerate associated Stirling
number of the first kind. If r = 0 in (1.4) and (1.5), we have the
degenerate Stirling numbers of Carlitz [3]. If 1 = 0 in (1.4) and (1.5),
we have the r-associated Stirling numbers [7]. If A = 0 and r = 0,
we have the ordinary Stirling numbers.

The purpose of this paper is to examine the properties of the

degenerate Stirling numbers in the most general possible setting. Thus,
in section 2 we develop properties of T,(n, k) and the polynomials

defined by

When y = 1 and r = 0, = Yn(a1, ac2, ... , an), the exponential
complete Bell polynomial [5, p. 134]. In section 3 we focus on the

degenerate associated Stirling numbers, y and we show how some of
the properties of the degenerate Stirling numbers can be extended to
the associated numbers. In section 4 we generalize some of the Stirling
number formulas in [5, chapter 5] and [13] to the degenerate Stirling
numbers.

2. Bell polynomials.

The partial Bell polynomials defined by (1.1) or (1.2) have the
following interpretation: Let N be the set of integers 1, 2, ... , n.

Consider all set partitions of N into exactly k blocks (subsets) such
that each block contains at least r + 1 elements. Assign a « weight. »
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of aj to any block with exactly j elements. The weight of a partition
is the product of the weights of its blocks. Then Tr(n, k), defined by
(1.3), is the sum of the weights of all the set partitions of N into
exactly k blocks, each block with at least r + 1 elements. In [4], [7]
and [9, chapter 4], this kind of interpretation is discussed for the

Stirling numbers and the r-associated Stirling numbers.
The following theorem could be proved by combining several of

the properties given in [5, p. 136] for the Bell polynomials. We shall
give a different kind of proof, however.

THEOREM 2.1. For 

where Pr,k(m) is a polynomial in m of degree k. In fact,

PROOF. For convenience, we use the notation f (i) = ai/i ! . It fol-
lows from (1.1 ) that

where the sum is taken over all compositions (ordered partitions)
U1 + ... -~- Um _= rm + k, each We can represent such a com-
position with a set of rm + k dots arranged in m rows. First place r
dots in each of the m rows; then place the remaining k dots in the m
rows. Suppose when we do this, there are nl rows with hi of the k
dots, n2 rows with h2 of the k dots, etc. Then k = n1 hl + n2 h2 + ... ,
and there are m !/( (m - ~ ) ! nl ! n2 ! ... ) ways of arranging these k dots
in the m rows, where j = nl + n2 + .... Thus the sum in (2.1) can be
written
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where the inner sum is over all partitions of k into j parts, i.e.,

Now, by (1.1),

each the sum taken over all compositions of k into j parts
k = h1-+- ... + h; . Now if hi occurs ni times in the composition, the
right side of (2.3) is

the sum taken over all partitions of k into j parts, i.e., k = n1hl +
+ n2h2 + ... ,j = nl+ n2+ .... Thus the inner sum in (2.2 ) is (f( 
·Tr(rj+k,j)/(rj+k)!.

For small values of k, it is easy to compute Pr,k(m) using the method
of the proof of Theorem 2.1. The only difficulty is finding all the par-
tition of 1~. Again letting f ( i ) = a i /i ! , we have

The formulas in the next theorem follow from (1.1), (1.3) and (1.6).
The proofs are similar to those of Riordan [9, pp. 76-77] for the Stir-
ling numbers. Most of these formulas can also be deduced by com-
bining properties of the Bell polynomials given in [5, p. 136].
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THEOREM 2.2. If T~.(n, k) is defined by (1.3) and is defined

by (1.6), then

Many of the formulas in [13] are special cases of formulas involving
We show this in the next three theorems.

THEOREM 2.3. If is defined by (1.6) or (2.7), then

PROOF. Properties (2.9) and (2.10) are obvious from the definition
(1.6). Property (2.11) follows after both sides of (1.6) are differentiated
with respect to x.

THEOREM 2.4. For all positive i, ~ c n, let
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and

PROOF. This theorem follows from the fact that the series (1.6)
is the reciprocal of - the same series with y replaced by - y. The

determinant expression for the coeffieients of the reciprocal of a series
is stated in [9, p. 45] and [8], and is well known.

THEOREM 2.5. For all + 1,

PROOF. We use Cramer’s rule on the equations (2.8). The corre-

sponding theorem for Stirling numbers is given in [7], and a special
case is given in [13].

3. Degenerate associated Stirling numbers.

We now look at the special cases of the partial Bell polynomials
given by (1.4) and (1.5). The cases when r = 0 have been investigated
by Carlitz [3]. We shall use the notation

and, following Carlitz, call S(n, and s(n, klÂ) degenerate Stirling
numbers of the second and first kinds respectively. Similar numbers
have been studied by Toscano [11], [12]; the numbers of Toscano are

in our notation. It is easy to see that is
the ordinary Stirling number of the second kind and s (n, is the

unsigned Stirling number of the first kind.
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Definitions (1.4) and (1.5) generalize the degenerate Stirling num-
bers in the same way that the r-associated Stirling numbers genera-
lize the Stirling numbers [5, pp. 221-222, 256-257), [6], [7], [9, p. 102].
Using the terminology of [7], we see that the r-associated Stirling
numbers are the special cases of (1.4) and (1.5) when 1 = 0. It
should be noted that, by Theorem 2.1, the numbers S’(k, jlJi) and

defined in [3] are equal to j, k - jlÂ) and sr(2k - j,
respectively, with r = 1.

In (1.1), if we let am = 0 for m  r and am = (1-X)(1-2X) ...

... (1 - (m - 1 ) ~, ) for m &#x3E; r, we see that

ferentiate both sides of (3.3) with respect to x and then multiply
both sides by 1 -~- we have, after some simplification,

Comparison of coefficients gives our next theorem.

THEOREM 3.1. The degenerate associated Stirling numbers of the
second kind satisfy the triangular recurrence relation:

The Tate-Goen formula for the r-associated Stirling numbers [10], [7]
can be generalized to the degenerate numbers, as the next theorem
shows.
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THEOREM 3.2.

where

and the sum is taken over all compositions k1 + ... + kr+2 = k, each
ki&#x3E;0.

PROOF. The theorem can be proved by induction on r. When

r = 0, it reduces to the formula given in [3]:

Assume the theorem is true for Sr-l(n, for all values of n and k.
Then from (2.5), after substituting for k - jlÂ) and sim-
plifying, we see the theorem is true for Sr(n, 

Theorem 3.2 is not difficult to use for small values of k. For

example, if n &#x3E; r,

and if n &#x3E; 2r +1,

Thus when r = 0, and n &#x3E; 1,
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Theorem 3.2 can also be used to prove the following:

where (~)~==~(~2013l)...(~-)-m-pl).
The numbers kl2) should not be confused with the degenerate

Stirling numbers of the first kind in [3]. Unfortunately, the notation
in each case is identical.

We now turn our attention to the degenerate associated Stirling
numbers of the first kind. In ( 1.1 ), if we let am = 0 for and

am= (1- Â)(2 - Â) ... (m-1-~,) for m&#x3E;r, we have

where

When r = 0, we have the degenerate Stirling numbers of the first
kind [3]. Comparison of (3.3) and (3.4) gives us

so, by Theorem 3.1, we have the following recurrence relation:

THEOREM 3.3. The degenerate associated Stirling numbers of the
first kind satisfy the triangular recurrence relation

with
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We also have

if 

Unfortunately, y some of the most interesting properties of the de-
generate Stirling numbers apparently cannot be extended to the asso-
ciate numbers. There is the multiplication theorem, for example:

where « and f3 are independent parameters. This theorem can be

generalized slightly, however, by considering the polynomials defined
by (1.6) with r = 0. We show this in the next section.

4. Degenerate Stirling numbers.

Throughout this section we shall use the notations of (3.1) and (3.2).
One of our purposes here is to show how formulas for the Stirling
numbers given in [5, chapter 5] can be generalized to the degenerate
Stirling numbers. We also consider the polynomials defined by (1.6)
with r = 0, and we use the notation

Thus, by (2.7)
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We shall show how some of the formulas in [13] can be generalized
by means of (4.1) and (4.2). We shall also prove several other proper-
ties of the polynomials defined by (4.1) and (4.2).

Carlitz [3] has pointed out that S(n, = s(n, == It

should also be noted that

This follows from (3.3) and (3.4), or from the fact that

[5, p. 135]. A table of values for numbers of the form

which are called Lah numbers, can be found in [5, p. 156].
It follows from (4.3) and (4.4) that

In general we have = y; S2(yIÀ) = y2 + (1- A) y; S3(yIÂ) =
- y3 + (3 - 3Â)y2 + (2Â2- 3A + 1 ) y. We can get the corresponding
polynomials by using

which follows from (3.5).

CARLITZ [3] has proved the multiplication theorem, equation (3.6),
and also

where s (n, j ) is the unsigned Stirling number of the first kind and

1~) is the Stirling number of the second kind. If we multiply
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equations (3.6) and (4.8) by yi and sum from j = 0 = n, we
have

The formulas in [13] are valid for the special case of (4.3) when
1 = 0 and y = -1. All of the formulas can be generalized to the
polynomials of (4.3), as we see by (2.7), (2.8), Theorems 2.3, 2.4 and
2.5, and the next theorem.

THEOREM 4.1. The following formulas are valid for n &#x3E; 0:

PROOF. Equation (4.11) follows easily from (1.6) and (4.1). To

prove (4.12 ), let lp = 1 and differentiate both sides of

with respect to x and then multiply both sides of the resulting equa-
tion by (1- We now simplify, using (4.6) and (4.8) with
« = -1, ~8 =- A, and compare coefficients to get equation (4.12). To

prove (4.13), we replace A by - A in (4.1~ ) ~ then differentiate both
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sides of (4.15) with respect to x, multiply both sides of the resulting
equation by (1 + and compare coefficients. To prove (4.14),
we first observe that by (4.15) the left side of (4.14) is equal to the
coefficient of in

where D~n&#x3E; means the n-th derivative with respect to x. Now we can
easily prove by induction on n that (4.16) is equal to

We use the recurrence of Theorem 3.1 with r = 0 in the induction

argument, and we now get (4.14) by comparing coefficients of x in
(4.16) and (4.17).

We have already seen in this paper and in [3] how some of the
properties of the Stirling numbers carry over to the degenerate Stir-
ling numbers. In the remainder of this paper, we continue to generalize
the properties in [5, chapter 5]. In particular, for a fixed n we now
look at the numbers V(j, defined by means of

THEOREM 4.2. If V(j, is defined by (4.18) for figed n, then
V(n, klÂ) = Furthermore

J - h

PROOF. It follows from [5, pp. 207, 214] that

When j = n in (4.19), we have, by (4.8), V(n, = S(n, Now
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call the left side of (4.18) 99(k). Then

Comparing coefficients of u, we have

and letting m == n, we have the second part of Theorem 4.2.
The numbers have properties similar to those of the

Stirling numbers. For example, it follows from (4.19) that for fixed n,

with V(m, = 0 if m  k; V(k, = 1 for all k; V(m, kIO) =
- k); V(m, 0 )1) = (- n - m). Also from (4.19) we get
the formula

for m ~ n.
To get the corresponding results for s(n, for fixed n we look

at the numbers klÂ) defined by means of

THEOREM 4.3. If is defined by (4.20) for fixed n, then
= s ( n, kIA). Furthermore,

PROOF. It follows from [5, pp. 207, 214] that
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and so by (4.8) and (3.5), we have Vl(n, = s(n, If we call
the left side of (4.20) 99, (n - 1), then

where is defined by (4.20) with n replaced by n + 1. Com-

paring coefficients, we have

and the second part of the theorem follows by replacing n by n -1
and letting m = n -1.

It follows from (4.21) that for fixed n.

with for all k ;

We see from (4.19) and (4.4) that .

We close by generalizing two more recurrences to the degenerate
Stirling numbers.

THEOREM 4.4. The following recurrences hold:
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PROOF. In the right side of (4.22) replace S(n + + j + 
by + j 12) + (k + j + + j + 1IÂ). Then the right
side is equal to

Equation (4.23) follows from (2.6).
The term « degenerate Stirling number » is probably motivated by

the generating functions (3.3) and (3.4). When G(r, A) = H(r, 1) = 0
in (3.3) and (3.4), the limiting cases 1 = 0 give the generating funct-
tions for the Stirling numbers. It should perhaps be noted that this
idea has also been applied to some extent to the Bernoulli, Euler
and Eulerian numbers [2], [11], [12].

REFERENCES

[1] E. T. BELL, Exponential polynomials, Ann. of Math., 35 (1934), pp. 258-277.
[2] L. CARLITZ, A degenerate Staudt-Clausen theorem, Arch. Math., 7 (1956),

pp. 28-33.

[3] L. CARLITZ, Degenerate Stirling, Bernoulli and Eulerian numbers, to be
published. 

[4] L. CARLITZ, Set partitions, Fibonacci Quart., 14 (1976), pp. 327-342.
[5] L. COMTET, Advanced Combinatories, Reidel, Dordrecht/Boston, 1974.
[6] E. A. ENNEKING - J. C. AHUJA, Generalized Bell numbers, Fibonacci

Quart., 14 (1976), pp. 67-73.
[7] F. T. HOWARD, Associated Stirling numbers, Fibonacci Quart., to appear.
[8] F. T. HOWARD, Numbers generated by the reciprocal of ex 2014 x 2014 1, Math.

Comp., 31 (1977), pp. 581-598.
[9] J. RIORDAN, An Introduction to Combinatorial Analysis, Wiley, New

York, 1958. 
[10] R. F. TATE - R. L. GOEN, Minimum variance unbiased estimation for

the truncated Poisson distribution, Ann. of Math. Stat., 29 (1958),
pp. 755-765.

[11] L. TOSCANO, Numeri di Stirling generalizzati, operatori differenziali e

polinomi ipergeometrici, Commentat. Pontificia Ac. Sci., 3 (1939),
pp. 721-757.



219

[12] L. TOSCANO, Some results for generalized Bernoulli, Euler and Stirling
numbers, Fibonacci Quart., 16 (1978), pp. 103-112.

[13] V. UPPULURI - J. CARPENTER, Numbers generated by the function
egp (1 2014 ex), Fibonacci Quart., 7 (1969), pp. 437-447.

Manoscritto pervenuto in redazione . il 5 settembre 1978.


