The Fibonacci Quarterly 1976 (vol.14,1): 67-73

GENERALIZED BELL NUMBERS

E. A. ENNEKING and J. C. AHUJA Portland State University, Portland, Oregon 92707

1. INTRODUCTION

In the notation of Riordan [2], the Stirling numbers of the second kind, S(n,k), with arguments n and k are defined by the relation

(1.1)
$$t^{n} = \sum_{k=0}^{n} S(n,k)(t)_{k}, \qquad n > 0,$$

where $(t)_n = t(t-1) \cdots (t-n+1)$ is the factorial power function. They have been utilized by Tate and Goen [4] in obtaining the distribution of the sum of zero-truncated Poisson random variables where

(1.2)
$$(e^{t} - 1)^{k}/k! = \sum_{n=k}^{\infty} S(n,k)t^{n}/n! .$$

The Bell numbers or exponential numbers B_n can be expressed as

(1.3)
$$B_n = \sum_{k=0}^{n} S(n,k), \qquad n \ge 0,$$

with $B_0 = 1$. They have been investigated by many authors: see [1] and [3] for lists of references. Uppuluri and Carpenter [7] have recently studied the moment properties of the probability distribution defined by

(1.4)
$$p(k) = S(n,k)/B_n, \qquad k = 1, 2, \dots, n,$$

and give

(1.5)
$$\sum_{k=1}^{n} k^{r} S(n,k) = \sum_{j=1}^{r} {r \choose j} C_{j} B_{n+r-k},$$

where the sequence $\{C_n, n=0, 1, \dots\}$ is defined by

(1.6)
$$\sum_{k=0}^{\infty} C_k x^k / k! = \exp(1 - e^x).$$

Tate and Goen [4] have also derived the n-fold convolution of independent random variables having the Poisson distribution truncated on the left at c' in terms of the generalized Stirling numbers of the second kind, $d_c(n,k)$ given by

(1.7)
$$(e^{t} - 1 - t - \dots - t^{c}/c!)^{k}/k! = \sum_{\alpha=k(n+1)}^{\infty} d_{\alpha}(n,k)t^{\alpha}/n! ,$$

where $d_c(n,k) = 0$ for n < k(c + 1). They give an explicit representation for $d_c(n,k)$ too complicated to reproduce here. The $d_c(n,k)$ can be shown to satisfy the recurrence formula

(1.8)
$$d_{c}(n+1, k) = kd_{c}(n,k) + \binom{n}{c} d_{c}(n-c, k-1),$$

where $d_{C}(0,0) = 1$ for all c.

Definition 1. We define the numbers $B_c(n)$ given by

(1.9)
$$B_c(n) = \sum_{k=0}^{n} d_c(n,k),$$

for c > 1 and n > 0 as generalized Bell numbers. It may be noted that $B_0(n) = B_n$.

Definition 2. A random variable X is said to have the generalized Bell distribution (GBD) if its probability function is given by

(1.10)
$$p_{c}(k) = d_{c}(n,k)/B_{c}(n), \qquad k = 0, 1, \dots, n.$$

It may also be noted that when c = 0 and n > 0 (1.10) reduces to (1.4) as then $d_0(n,0) = 0$.

In this paper we investigate some properties of the numbers $B_c(n)$ and provide recurrence relations for the ordinary and factorial moments of the GBD. It is shown that the related results obtained by Uppuluri and Carpenter [7] follow as special cases for c = 0.

2. PROPERTIES OF $B_c(n)$

Property 1.

(2.1)
$$\sum_{n=0}^{\infty} B_c(n)t^n/n! = \exp(e^t - 1 - t - \dots - t^c/c!).$$

This is immediately evident upon expansion of the right-hand side making use of (1.7).

Lemma 1.

(2.2)
$$d_{C}(n+1, k) = \sum_{m=0}^{n-c} \binom{n}{m} d_{C}(m, k-1).$$

Proof. Differentiating both sides of (1.7) with respect to t and expanding in powers of t we obtain

$$\sum_{r=c}^{\infty} \sum_{m=0}^{\infty} \binom{r+m}{m} d_c(m, k-1)t^{r+m}/(r+m)! = \sum_{n=0}^{\infty} d_c(n, k)t^{n-1}/(n-1)!.$$

Interchanging sums on the left-hand side and equating coefficients of t^n we are led to Lemma 1.

(2.3)
$$B_{c}(n+1) = \sum_{m=0}^{n-c} \binom{n}{m} B_{c}(m).$$

This is now immediate from Definition 1 and Lemma 1. We note that when c = 0 (2.3) reduces to the known relation

$$B_{n+1} = \sum_{m=0}^{n} \binom{n}{m} B_m$$

for Bell numbers.

In attempting to find a recurrence relation in c for $B_c(n)$ we first need

Lemma 2.

(2.4)
$$d_{c}(n,k) = \sum_{i=0}^{k} [(-1)^{i} n! / i! (c!)^{i} (n-ci)!] d_{c-1}(n-ci,k-i),$$

for $c \ge 1$.

Proof. See Riordan [2], p. 102.

Using Lemma 2 we can now write

$$B_{c}(n) = \sum_{i=0}^{n} [(-1)^{i} {n \choose i} (n-i)!/(c!)^{i} (n-ci)!] \sum_{k=i}^{n} d_{c-1}(n-ci, k-i).$$

It follows directly from the above that we now have

Property 3.

(2.5)
$$B_{c}(n) = \sum_{i=0}^{n} [(-1)^{i} {n \choose i} (n-i)!/(c!)^{i} (n-ci)!] B_{c-1}(n-ci), \qquad c \geq 1.$$

The well-known Dobinski formula for Bell numbers has the form

$$(2.6) B_{n+1} = e^{-1}(1^n + 2^n/1! + 3^n/2! + \cdots).$$

When c = 1 Property 1 gives us a formula similar to that of Dobinski.

Property 4.

(2.7)
$$B_1(n) = e^{-1}((-1)^n/1! + 1^n/2! + 2^n/3! + \cdots).$$

Property 3 suggests that we may write the generalized Bell numbers as a linear combination of the Bell numbers. Write the right-hand side of (2.1) in the form

(2.8)
$$\exp(e^t - 1 - t - t^2/2! - \dots - t^c/c!) = \exp(e^t - 1)H(t),$$

where

(2.9)
$$H(t) = \sum_{r=0}^{\infty} b_c(r)t^r/r!, \qquad c \geq 1.$$

Property 5.

(2.10)
$$B_{c}(n) = \sum_{i=0}^{n} \binom{n}{i} b_{c}(i) B_{n-i}, \quad c \geq 0.$$

Proof. Expand the right-hand side of (2.8) in powers of t. Property 5 now follows from (2.1), with c = 0, and (2.9). For the purposes of enumeration the recurrence relation for $b_c(r)$,

(2.11)
$$b_{c}(r+1) = -\sum_{i=0}^{c-1} \binom{r}{i} b_{c}(r-i), \qquad c \geq 1,$$

with $b_{\mathcal{O}}(j) = 0$ for all $j \ge 0$ and $b_{\mathcal{C}}(0) = 1$, can be obtained by differentiating both sides of (2.8) with respect to t, using (2.9), and equating coefficients. With $b_1(j) = (-1)^j$ we alternately have Property 4 from Property 5.

Making use of the above properties, the first few values of $B_c(n)$ are as follows:

Table for B_c(n)

able for $D_{\mathbf{C}}(H)$													
C	0	1	2	3	4	5	6	7					
0	1	1	2	5	15	52	203	877					
1	1	0	1	1	4	11	41	162					
2	1	0	0	1	1	1	11	36					

3. RECURRENCE RELATIONS FOR MOMENTS OF THE GBD

Let X be a random variable having the generalized Bell distribution defined by (1.10). The r^{th} ordinary moment of X is given by

(3.1)
$$\mu_c(x^r) = \sum_{k=0}^n \frac{k^r d_c(n,k)/B_c(n)}{B_c(n)}.$$

Let

(3.2)
$$B_{c}(n,r) = \sum_{k=0}^{n} k^{r} d_{c}(n,k).$$

Property 6.

(3.3)
$$B_{c}(n, r+1) = B_{c}(n+1, r) - \binom{n}{c} \sum_{j=0}^{r} \binom{r}{j} B_{c}(n-c, j).$$

Proof. Multiply both sides of (1.8) by k^r and sum over k. We have for every choice of c

$$B_{c}(n+1, r) = B_{c}(n, r+1) + {n \choose c} \sum_{k=0}^{n} k^{r} d_{c}(n-c, k-1)$$

$$= B_{c}(n, r+1) + {n \choose c} \sum_{j=0}^{r} {r \choose j} B_{c}(n-c, j).$$

Property 6 follows immediately. When c = 0, $B_o(n,r)$ becomes $B_n^{(r)}$ in [7] with Property 6 replaced by **Property 7.**

(3.4)
$$B_n^{(r+1)} = B_{n+1}^{(r)} - \sum_{j=0}^r \binom{r}{j} B_n^{(j)}.$$

Property 7 is not given however by Uppuluri and Carpenter.

In attempting to express $B_c(n,r)$ as a linear combination of the generalized Bell numbers we are led after expanding (3.3) for the first few values of r to the following:

Property 8.

(3.5)
$$B_{c}(n,r) = \sum_{i=0}^{r} \sum_{i=0}^{i} a_{i,j}(n,r,c)B_{c}(n+r-i-jc),$$

where $a_{i,j}$ (n,r,c) satisfies the recurrence relation

$$a_{i,i}(n, r+1, c) = a_{i,i}(n+1, r, c)$$

(3.6)
$$- \binom{n}{c} \sum_{s=r-i+j}^{r} \binom{r}{s} a_{j+s-r-1,j-1}(n-c, s, c),$$

with $a_{0,0}(n,r,c)=1$ and $a_{i,j}(n,r,c)=0$ if i>r, j>i, or j=0 and i>0.

The proof consists of substituting (3.5) into (3.3) and equating appropriate coefficients. Comparing (3.5) with (1.5) when c = 0 we must have

(3.7)
$$\sum_{j=0}^{\hat{r}} a_{i,j}(n,r,0) = {r \choose i} C_i,$$

independent of n for $i = 1, 2, \dots, r$. By starting with (3.6) and summing out j one can show that

$$(3.8) C_{k+1} = -\sum_{i=0}^{k} {k \choose i} C_i$$

which agrees with Proposition 3 in [7]. We note also when c = 0

$$a_{i,j}(n,r,0) = (-1)^{j} \binom{r}{i} S(i,j),$$

independent of n_r , as (3.6) is then equivalent to

(3.10)
$$S(i,j) = \sum_{k=0}^{i-1} {i-1 \choose k} S(k,j-1),$$

a property of Stirling numbers of the second kind. Now let

(3.11)
$$W_{c}(n,r) = \sum_{j=0}^{n} (j)_{r} d_{c}(n,j).$$

Then the factorial moments of the generalized Bell distribution are given by

(3.12)
$$v_{c}((x)_{r}) = W_{c}(n,r)/B_{c}(n).$$

We now seek a recurrence formula for $W_C(n,r)$ and investigate the special case c = 0. Property 9.

(3.13)
$$W_c(n, r+1) = W_c(n+1, r) - rW_c(n, r) - \binom{n}{c} [W_c(n-c, r) + rW_c(n-c, r-1)].$$

Proof. From (3.11)

$$W_{c}(n, r+1) = \sum_{i=0}^{n} (j)_{r+1} d_{c}(n, j) = \sum_{i=0}^{n} j(j)_{r} d_{c}(n, j) - rW_{c}(n, r).$$

Hence

(3.14)
$$\sum_{i=0}^{n} j(j)_{r} d_{c}(n,j) = W_{c}(n,r+1) + rW_{c}(n,r).$$

Using (1.8) we can write, with c > 1

$$W_{c}(n,r+1) = \sum_{j=0}^{n} (j)_{r} [d_{c}(n+1,j) - {n \choose c} d_{c}(n-c,j-1)] - rW_{c}(n,r)$$

$$= W_{c}(n+1,r) - rW_{c}(n,r) - {n \choose c} \sum_{j=0}^{n-1} (j+1)_{r}d_{c}(n-c,j).$$

Now with (3.14) and the fact that

$$(j+1)_r = j(j)_{r-1} + (j)_{r-1}$$

we have the desired recurrence relation stated in Property 9. One can verify directly that when c = 0 we have Property 10.

(3.15)
$$W_0(n, r+1) = W_0(n+1, r) - (r+1)W_0(n, r) - rW_0(n, r-1),$$

so that (3.13) is true for all c.

The W_0 (n.r) may also be expressed as a linear combination of the Bell numbers. In fact using the same substitution procedure as before for Property 8 one can prove

Property 11.

(3.16)
$$W_{0}(n,r) = \sum_{i=0}^{r} a(r,i)B_{n+r-i},$$

where a(r,i) satisfies the recurrence relation

$$(3.17) a(r+1,i) = a(r,i) - (r+1)a(r,i-1) - ra(r-1,i-2),$$

with a(r,0) = 1, a(r,i) = 0 if $i > \ell$, and $a(r,r) = (-1)^r$. A table of the a(n,k) is as follows:

Table 2
Table for a(n,k)

1 4 5 1 5 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1											
nk	0	1	2	3	4	5	6				
0	1										
1	1	-1									
2	1	-3	1								
3	1	-6	8	1							
4	1	-10	29	-24	1						
5	1	-15	75	-145	89	-1					
6	1	-21	160	-545	814	-415	1				

(3.18)

We note that the a(n,k) are the coefficients of a special case of the Poisson-Charlier polynomials (cf. Szegő [6], p. 34). Touchard [5] gives formulas for the first seven polynomials corresponding to the coefficients in the table above. The polynomials take the form

(3.19)
$$h_n(x) = \sum_{i=0}^n (-1)^i \binom{n}{i} (x)_{n-i}.$$

If we write

(3.20)
$$(x)_{n-i} = \sum_{k=0}^{n-i} s(n-i,k)x^k, \qquad n-i > 0,$$

where the s(n,k) are the Stirling numbers of the first kind (see Riordan [2] p. 33), then

(3.21)
$$h_n(x) = \sum_{k=0}^n \left[\sum_{i=0}^{n-k} (-1)^i \binom{n}{i} s(n-i,k) \right] x^k.$$

Hence a(n,k) has the representation

(3.22)
$$a(n,k) = \sum_{i=0}^{k} (-1)^{i} \binom{n}{i} s(n-i, n-k).$$

Investigating the general case using similar procedures as before one can easily prove Property 12.

(3.23)
$$W_{c}(n,r) = \sum_{i=0}^{r} \sum_{j=0}^{i} b_{i,j}(n,r,c)B_{c}(n+r-i-jc),$$

where $b_{i,j}(n,r,c)$ satisfies the recurrence relation

$$(3.24) b_{i,j}(n,r+1,c) = b_{i,j}(n+1,r,c) - rb_{i-1,j}(n,r,c) \\ - \binom{n}{c} [b_{i-1,j-1}(n-c,r,c) - rb_{i-2,j-1}(n-c,r-1,c)],$$

with $b_{r,j}(n,r,c) = 0$, for j = 0, 1, ..., r - 1, $b_{0,0}(n,r,c) = 1$, and $b_{r,r}(n,r,c) = (-1)^r n!/(c!)^n (n - rc)!$. Comparing (3.16) and (3.23) when c = 0, we have

(3.25)
$$a(r,i) = \sum_{j=0}^{i} b_{i,j}(n,r,0).$$

Hence in view of (3.22)

(3.26)
$$b_{i,j}(n,r,0) = (-1)^{j} \binom{r}{j} s(r-j,r-i)$$

independent of n.

Recurrence relations for the ordinary and factorial moments are readily obtained from (3.3), (3.4), (3.13), and (3.15).

REFERENCES

- 1. H. Finlayson, "Numbers Generated by exp $(e^x 1)$," Masters thesis, 1954, University of Alberta, Canada.
- 2. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958.
- 3. G. C. Rota, "The Number of Partitions of a Set," Amer. Math. Monthly, 71 (1964), pp. 498-504.
- 4. R. F. Tate and R. L. Goen, "Minimum Variance Unbiased Estimation for the Truncated Poisson Distribution," Ann. Math. Statist., 29 (1958), pp. 755–765.
- 5. J. Touchard, "Nombres Exponentials et Nombres de Bernoulli," Canad. J. Math., 8 (1956), pp. 305-320.
- 6. G. Szegö, Orthogonal Polynomials, Revised edition, American Mathematical Society, Providence, R.I., 1959.
- 7. V. R. Uppuluri and J. R. Carpenter, "Numbers Generated by the Function exp $(1 e^x)$," The Fibonacci Quarterly, Vol. 7, No. 4, (Dec. 1969), pp. 437–448.
