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GENERALIZED BELL NUMBERS

E. A, ENNEKING and J. C. AHUJA
Portland State University, Portland, Oregon 82707

1. INTRODUCTION

In the notation of Riordan [2], the Stirling numbers of the second kind, Sfn,k), with arguments 7 and k are de-
fined by the relation

n
(1.1) t? = Z St kNt n>0
k=0

where (t), = t(t — 1) - (t — n + 7) is the factorial power function. Thay have been utilized by Tate and Goen [4] in
obtaining the distribution of the sum of zero-truncated Poisson random variables where

(1.2) ("= 1)k/kt =" Sinklt"/nt .
n=k

The Bell numbers or exponential numbers B,, can he expressed as
n
L
(1.3) By = D, Skl n>0,
=0

with B, = 1. They have been investigated by many authors: see [1] and [3] for lists of references. Uppuluri and
Carpenter [7] have recently studied the moment properties of the probability distribution defined by

(1.4) ofk) = Sin,k)/B,, k=12-,n,
and give
n r
(1.5) S K'Stk) = ) (,( ) CiBpiri »
k=1 i=1

where the sequence % Ch,on=01 - } is defined by

Ry
(1.6) 2_, Cexk/kt = exp (1—6%) .
k=0
Tate and Goen [4] have also derived the n-fold convolution of independent random variables having the Poisson
distribution truncated on the left at ¢” in terms of the generalized Stirling numbers of the second kind, d (n,k/ given
by

o

(1.7) el 1—t— ekt = Y deln k)" /i,
n=k(c+1}

where d.(nk) = 0 for n < kic + 1). They give an explicit representation for o, (n,k/ too complicated to reproduce
here. The d(n, k) can be shown to satisfy the recurrence formula
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(1.8) defn+1, k) = kdelnk)+ () deln—c.k= 1),
where 0.(0,0)= 1 for ali c.
Definition 1, We define the numbers B, (n) given by

n
(1.9) Boln) = 3~ delnk),
k=0
forc > 7 and n > 0 as generalized Bell numbers, It may be noted that Bpfn) = B,,.
Definition 2. A random variable X is said to have the generalized Bell distribution (GBD) if its probability func-
tion is given by
(1.10) pelk)=dg(nk)/Ben), k=01, -,n.
[t may also be noted that when ¢ = 0 and n > 0 {1.10) reduces to {1.4) as then d, (n,0} = 0.
In this paper we investigate some properties of the numbers B,(n/) and provide recurrence relations for the erdinary
and factorial moments of the GBD. It is shown that the related results obtained by Uppuluri and Carpenter [7]

follow as special cases for¢ = 0.
2. PROPERTIES OF B8.(n/

Property 1.

(2.1) 2 Bo(njt"/n! = exple®=1—t——tcH.
n=0

This is immediately evident upon expansion of the right-hand side making use of {1.7).

Lemma 1.
n-=c
2.2 ' deln+1,k) = 3 (,71) delm, k—1).
m=0
Proof. Differentiating both sides of {1.7) with respect to ¢ and expanding in powers of f we obtain
2L (w7 detm k= 0T et = 3 deln k)™ 0= 101
r=c m=0 ! n=0
Interchanging sums on the left-hand side and equating coefficients of ¢” we are led to Lemma 1.
Property 2.
n-c
(2.3) Bofn+1) = 35 (7] Befm) .
m=0

This is now immediate from Definition 1 and Lemma 1. We note that when ¢ = 0 (2.3) reduces to the known relation

n
Bn+r = Z ( ,,,;) Bm
m=0
for Beli numbers.
In attempting to find a recurrence relation in ¢ for B, (n) we first need

Lemma 2.

k
(2.4) delnk) =Y, [(=1nl/ilct)in - cil]de-1(n —ci, k— i),
i=0
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forc > 1.
Proof. See Riordan (21, p. 102,

Using Lemma 2 we can now write

n n
Beln) = 3 (=11 (7} tn=idftet)n = citt] 3 doqln = oi, k= ).
i=0 k=i

It foliows directly from the ahove that we now have

Property 3.
n
(2.5) Boln) = 35 =107 (1) =i/ (eitn — cif] Boestr~cif. ¢ > 1.
i=0
The well-known Dobinski formula for Bell numbers has the form
(2.6) Bpeg = & (17 +27/11+37/20 + ).
When ¢ = 7 Property 1 gives us a formuia simifar to that of Dobinski.
Property 4.
{2.7) Byfn) = e ((=1)"/ 11+ 17721+ 27/31 + ).

Property 3 suggests that we may write the generalized Bell numbers as a linear combination of the Bell numbers.
Write the right-hand side of (2.1) in the form

(2.8 exp(ef— 1 ~t—1t2/21— .= t%/cl) = exp (e — 1JH(t),
where
(2.9) Hit) = 3 belet'/r, ¢ > 1.
r=0
Property 5.
n

2.10) Boln) = 3. (7) belj)Bpj, € > 0.

j=0

Proof. Expand the right-hand side of (2.8) in powersof . Property 5 now follows fram (2.1), with ¢ = 7, and (2.9).
For the purposes of enumeration the recurrence relation for b,fr),
c-1
2.11) bolr+1) = = 3 (;)bc(r~f), c> 1,
i=0
with b, (j) = 0 for all j = 0 and b,(0) = 1, can be obtained by differentiating both sides of (2.8) with respect to ¢

using (2.9), and equating coefficients, With &, (j) = (— 7}/ we alternately have Praperty 4 from Property 5.
Making use of the above properties, the first few values of B, (n/ are as follows:

Table 1
Table for B(n)

3 4 5 6 7

1 1 2 5 156 52 203 877
1 0 1 1 4 1 41 162
1 0 0 1 1 i 1 36

N =0 ¢
/

o

-

N
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3. RECURRENCE RELATIONS FOR MOMENTS OF THE GBD

Let X be a random variable having the generalized Bell distribution defined by (1.10). The i ordinary mement
of X is given by

n
3.1) Uelx") = Z‘ k'doln,k)/Beoln).
k=0
Let
n
(3.2) Belnr) = 9 K'dglnk).
k=0
Property 6.
,
(3.3) Bof,r+1) = Beln+ 1,0~ (7 )3 (] ) Betn—c.il.
'

Proof. Multiply both sides of (1.8) by k" and sum over k. We have for every chaice of ¢
n
= n r
Beln+1,) = Beln, r+ 1)+ (1) 3 Kdeln—c, k=1
k=0

r

= Bc(n,r+7)+('c’) Z( ;)Bc(n—c,/').

=0
Property 6 follows immediately. When ¢ = 4, B, (n,r) becomes B,f’} in [7)with Property 6 replaced by
Property 7.
r
+1) _ plr) i ]
(3.4) it =gl -3 (1 ) gl
j=0

Property 7 is not given however by Uppuluri and Carpenter.
In attempting to express 8. {n,r) as a finear combination of the generalized Bell numbers we are led after expanding
(3.3) for the first few values of r to the foliowing:

Property 8.
r i
{3.5) Bylnr) = Z Za,-,/-‘(n,r,c}Bc n+r—i-jel,
=0 j=0

where a; ; (n,r,c) satisfies the recurrence refation
aijln, r+1,cl = ailn+1,rcl
r
(3.6) - ( ’c’) Z ( : ) Bjtgmpr-1j-100— ¢, 5 ¢),
S=r-i+f

withag oln,r,c)=1and a; jln,rc)=0ifi>r, j>i orj=0and/> 0.
The proof consists of substituting (3.5) into (3.3) and equating appropriate coefficients.
Comparing (3.5} with (1.5) when ¢ = 0 we must have

#

(3.7) 2 a0 = ( 1) &
=

An evaluation version of novaPDFE was used to create this PDF file.
Purchase a license to generate PDF files without this notice.


http://www.novapdf.com/

1976] GEMERALIZED BELL NUMBERS

independent of n for/ =1, 2, ..., r. By starting with (3.8) and summing out/ one can show that

k
(3.8) Chrr == 3 (f‘)C,

=0
which agrees with Proposition 3 in [7] . We note also whenc =0
(3.9) aiiinr0) = (-1 ( ) i),
independent of n, as (3.6) is then equivalent to

-1 .
o i—1 .
(3.10) sy =3 (757) sti-1),
k=0
a praperty of Stirling numbers of the second kind.
Now let
n
(3.11) Weln,r) = 3, (j)pdelng).
j=0
Then the factorial moments of the generalized Bell distribution are given by
3.12) veltx)y) = Weln,r)/Bplnt.
We now seek a recurrence formula for W,.(n,r} and investigate the special case ¢ = 0.
Property 9.
(3.13) Weln, r+ 1} = Wefn + 1, 1)~ rtWgin,r) - ( Z ) Woln—c, r)+Woln—c,r—1)].
Proof. From (3.11) \
n n
al ~
Weln, r+1) = 25 (rerdeln) =, jli)edeln) = Weln,r).
=0 j=0
Hence
n
(3.14) S itihedeln) = Weln, r+ 1)+ Ws(n,r).
=0

Using {1.8) we can write, with¢ > 1,

n
Weln, r+1) = Z () ldeln+ 1) — ( K ) defn—¢, f— 11 — lg(n,r)
j=0
n-1
= Waln +1, r)—ch(n,r)—( Z \; (i + 1),doln — c,j).
j=0

Now with (3.14) and the fact that
(f+ ”r = i(i)r—l + {j)r—1
we have the desired recurrence relation stated in Property 9. One can verify directly that when ¢ = 0 we have
Praperty 10.
(3.15) Wyln, r+ 1) = Woln+1,1)—(r+ 1Wn,e)— tWyn, r—1),
so that (3.13) is true for all c.
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The W, (n.r) may, also be expressed as a linear combination of the Bell numbers. [n fact using the same substitution
procedure as before for Property 8 one can prove

Property 11.
r
(3.16) Wylnr) = alrilBnirei,
=0
where afr,i) satisfies the recurrence relation
(3.17 alr+1,i) = afri)—(r+1)alr,i— 1) —rafr—1,i- 2),
with afr,0) = 1, afr,it = 0if i > ¢, and afr,r) = (—~7)". A table of the afn, &) is as follows:
Tahle 2
Table for afn, k)
(0 1 2 3 4 5 6
n
0 1
1 1 -1
(3.18) 2 g =3
3 1 -6 8 -1
4 1 =10 29 -24 1
5 1 -15 75 —145 89 -1
6 1 -21 160 -545 814 -—-415 1

We note that the afn,k/ are the coefficiants of a special case of the Poisson-Charlier polynomials (cf. Szegd [6], p.
34). Touchard [5] gives formulas for the first seven polynomials corresponding to the coefficients in the table above.
The polynomials take the form

n
(3.19) hatx) = 3 (1) | 7} Wi
=0
I we write
n-i
(3.20) (ihei = 2, stn—i kixX,  n—i> 0
k=0

where the sfn,k) are the Stirling numbers of the first kind (see Riordan [2] p. 33), then

n n-k
3.21) hntx) = [Z (-1) (7> s(n-—i,k):|xk.
k=0

=0
Hence afn, k) has the representation

k
(3.22) afnk) = 2: (1) ( 7>s(n —in—k).
=0 ’

Investigating the general case using similar procedures as before one can easily prove
Property 12.
roi
(3.23) Wolnr) =3 bijlnrelBeln+r—i—jc),
i=0 j=0
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where b; j(n,r,c/ satisfies the recurrence relation

bijln, r+1,¢) = bij{n+1,1,¢)—rbj-g jln,rc)
(3.24) ]
- (c ) [bj-gjyfn—c,r,e)—rbigjgln—c r—1,¢l,

with b jln,re) =0, %orj=8, 1, -, r— 1, bgoflnre) =1, and b, fn,rc) = (—1)"ni/ci)" (n — rc)t.
Comparing (3.16) and (3.23) when ¢ = g, we have

i
(3.25) alri) =y bjj(n,r,0).
=0
Hence in view of (3.22)
(3.26) bijinn0) = (<17 ( 7 Vst =i r=1)

independent of n.
Recurrence relations for the ordinary and factorial moments are readily obtained from (3.3), (3.4), (3.13), and (3.15).
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