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1. Introduction 
The theory of Hankel matrices has been previously 

studied by some mathematician and its connections in 
some areas of mathematics, physics and computer science 
(see, the works of Desainte-Catherine and Viennot [9], 
Garcia-Armas and Sethuraman [11], Tamm [22], Vein and 
Dale [23]). Though, Hankel determinants had been 
previously studied (see, for example, Aigner [1], Radoux 
[19], Ehrenborg [10]), the term Hankel Transform was 
first introduced in Sloane’s sequence A055878 [20] and 
first studied by Layman [15]. Layman used the notion of 
binomial transform (bn) of a sequence (an) given by 
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in establishing some properties of the Hankel transform 
including the theorem which states that any integer 
sequence has the same Hankel transform as its binomial or 
invert transform. 

Hankel transform Sequences 

{1, 1, 2, 12, 288, ...} A000085, A000110, A000296, A005425, 
A005493, A005494 ,A045379 

{1, 1, 4, 144, 
82944, ...} 

A000142, A000166, A003701, 
A010483 ,A010842, A052186, A053486, 

A000522, A053487 
Layman found out that some sequences have the same 

Hankel transform. For instance, the sequence of Catalan 

numbers {1, 1, 2, 3, 14, 42, ...} (sequence A000108 in the EIS) 
and approximately twenty sequences have the same Hankel 
transform {1, 1, 1, ...}. The following are some of the 
sequences with the same Hankel trans- form. 

Also, Layman and Michael Somos found ten sequences 
(A055209) in the EIS whose Hankel transform is 
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which was shown theoretically by Radoux [19] to be the 
Hankel transform of the derangements, or rencontres 
numbers (A000166). 

Several later studies of Hankel transform of some 
integer sequences were estab- lished. Among them were: 

1. Cvetcoć et al. [8], who established the Hankel 
transform of the sequence of the sum of two adjacent 
Catalan numbers. More precisely, if we let an = 
Cn+Cn+1 where Cn is the nth Catalan number, then the 
Hankel transform of an is 

 ( ) { }2 1n n n No
H a F + ∈=  

where Fn is nth Fibonnaci number. 
2. Armas and Sethuraman [11], who established the 

Hankel transform of central binomial coeffficients 
which is stated as follows: 

The zeroth Hankel transform ( )0
nd  of the sequence 
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 0,1,2,l =   is the sequence 12n− , 

1,2, ,n =   and the first Hankel transform ( )1
nd  is 

the sequence 2n , 1, 2, ,n =   
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3. Spivey and Steil [21], French (2007), Chamberland 
and French (2007), Rajković, Ivković and Barry 
(2007), who established the k-binomial transform and 
Han- kel transform, transformation in preserving the 
Hankel transform, generalized Catalan numbers and 
Hankel transformations, and the Hankel transform of 
the sum of consecutive generalized Catalan numbers, 
respectively. 

4. Aigner [1], who established a characterization of the 
sequence of Bell numbers (Bn) and proved that this 
sequence has the Hankel transform which is given by 
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5. Mezo [16], who recently proved that the Bell 
numbers and r-Bell numbers [18] have the same 
Hankel transform. 

In this present study, certain generalization of Bell 
numbers which is defined as the sum of noncentral 
Stirling numbers of the second by M. Koutras [14], will be 
established. It will also be shown that these generalized 
Bell numbers has the same Hankel transform as that of the 
sequence of ordinary Bell numbers. 

2. The Noncentral Bell Numbers 
In 1982, M. Koutras [14] introduced the noncentral 

Stirling numbers of first and second kind. These numbers 
denoted by sa(n, k) and Sa(n, k) are defined as the 
coefficients of the following expansions, with parameter a, 
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where ( ) ( )0,0 0,0 1,a as S= =  ( ) ( ),0 ,a ns n a=  

( ) ( ),0 n
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The following theorems contain some combinatorial 

identities of the noncentral Stirling numbers of both kind 
which are established by Koutras [14]. 
Theorem 2.1. The noncentral Stirling numbers of the first 
and second kind satisfy the recurrence relations 
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Note that if a = 0 in (3) and (4) , then we have 

 ( ) ( ) ( )1, , 1 ,as n k s n k ns n k+ = − −  

 ( ) ( ) ( )1, , 1 , .aS n k S n k kS n k+ = − +  

Thus, the ordinary Stirling numbers can be expressed as 
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Theorem 2.2. The numbers ( ),as n k  and ( ),aS n k  have 
the following exponential generating functions 
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Theorem 2.3. The numbers ( ),as n k  and ( ),aS n k  Sa(n; 
k) have the following explicit formula 
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Now, let us define the noncentral Bell numbers parallel 
to the definition of the ordinary Bell numbers. 
Definition 2.4. The noncentral Bell numbers, denoted by 
Ba(n), are defined by 
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In particular, B0(n) = B(n), the ordinary Bell numbers. 
Using the exponential generating function of the 

noncentral Stirling numbers of the second kind, we can 
obtain the following exponential generating function for 
Ba(n). 
Theorem 2.5. The noncentral Bell numbers have the 
following generating functions 
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Proof. By making use of the exponential generating 
function (6) of ( ),aS n k  we have, 
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Hence, the exponential generating function of ( )aB n  is 
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If a = 0, (9) becomes 
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the exponential generating function of the ordinary Bell 
numbers. 

The next theorem contains a kind of Dobinski formula 
for ( ).aB n  

Theorem 2.6. The noncentral Bell numbers ( )aB n  can 
be written in the form of a convergent series 
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Proof. Applying the exponential generating function of 
( )aB n  in (9), 
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The following theorem contains some relations which 
are useful in establishing the alternative proof of the claim 
that the sequence of ( )aB n  has the same Hankel 

transform as that of the sequence of ( ).B n  This is a kind 

of a recurrence relation of ( ).aB n  
Theorem 2.7. The noncentral Bell numbers satisfy the 
relations 
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Proof. Multiplying ue  to both side of (9) with a being 
replaced with 1a + , we have 
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Comparing the coefficient of 
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Similarly, multiplying ue−  to both side of (9), we have 
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Remark 2.8. Theorem 4.1.4 implies that ( )1aB n+  is the 

binomial transform of ( )aB n  or ( )aB n  is the inverse 

transform of ( )1aB n+ . 

3. The Hankel Transform of Noncentral 
Bell Numbers 

Let ( ),n ka=  be the in_nite lower triangular matrix 
defined recursively by, 
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with the intial condition 0,0 1,a =  ( ), 0 .n ka n k= <  
The following lemma contains the exponential 

generating function of the kth column entries of . 
Lemma 3.1. Let ( )k xΨ  be the exponential generating 
function of the kth column of ,n ka  
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Proof. By making use of the recurrence relation in (12) we 
obtain 
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Proof. Let n  be the submatrix of   consisting of the 
rows and columns numbered 0 to n. Clearly, det 1,n =  
since n  is a lower triangular matrix with diagonal 1. It 

follows that det 1.Tn =  Let ( ), 0 ,
! .n i j i j n

j a
≤ ≤

=  Then 

 
0

det !.
n

n
j

j
=

= ∏  

By Lemma 3.2, 

 ( ), 0 ,
Tn n i j i j n

a
≤ ≤

′=   

where 

 ( ), , , ,0
0

! .
n

i j i k j k i j a
k

a k a a a B i j+
=

′ = = = +∑  

That is, 

 ( )( )0 , .Tn n a i j nB i j
≤ ≤

= +   

Thus, 

 ( ) ( )( )
0 0

det det det 1 ! !.
n n

T Tn n n n
j j

j j
= =

= = ⋅ =∏ ∏     

The theorem can also be proved without using Lemma 
3.2. One can use the fact that ( ) ( )0 ,B n B n=  the ordinary 
Bell numbers. This means that 

 ( )( )0
0

det !.
n

j
B n j

=
= ∏  

That is, the Hankel transform of ( )( )0B n  is 

( )0!1!2!3! .  By Theorem 2.7, ( )1B n  is the binomial 

transform of ( )0B n  and so, by Layman's theorem, ( )0B n  

and ( )1 .B n  have the same Hankel transform. Again by 

Theorem 2.7, ( ) ( )1 2
0

n

k

n
B n B k

k=

 
=  

 
∑  implies that ( )2B n  

is the binomial transform of ( )1 .B n So, by Layman's 

Theorem, ( )1B n  and ( )2B n  have the same Hankel 
transform. Continuing this process and again, since 
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0

,
n

a a
k

n
B n B k

k +
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by induction, ( )aB n  and ( )1aB n+  have the same Hankel 

transform. Hence, ( )0B n  and ( )aB n  have the same 
Hankel transform. Thus, 
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For possible future research, it is interesting to establish 
q-analogues of the noncentral Stirling and Bell numbers 
and to determine their Hankel transforms. It will be more 
interesting if one can establish connections with those q-
analogues of Stirling and Bell numbers via normal 
ordering expressions of creation and annihilation operators 
(see [12,13]). 

4. Further Generalization 
The r-Whitney numbers of the second kind [17], 

denoted by ( ), , ,m rW n k  are certain extension of 
noncentral Stirling numbers. In particular, 

( ) ( )1,, , .a aS n k W n k−=  Properties of noncentral Stirling 
numbers of the second kind can be deduced from those of 
r-Whitney numbers of the second kind by taking 1m =  
and r a= − . One may see [17] for a more detailed 
discussion of r-Whitney numbers of the second kind. 

The Dowling numbers, denoted by ( )mD n , were 
defined as the sum of Whitney numbers of the second kind 
(see [2,3]). Hence, one may define the r-Dowling numbers, 
say denoted by ( ), ,m rD n  as 

 ( ) ( ), ,
0

, .
n

m r m r
k

D n W n k
=

= ∑  (14) 

These numbers are equivalent to (r, β)-Bell numbers [7] 
and they are certain extension of non-central Bell numbers. 
In fact, ( ) ( )1, .a aB n D n−=  

On the other hand, the (r, β)-Bell numbers, denoted by 
, ,n rG β , were shown to have the following Hankel 

transform [7] 

 ( )
1

2
, , 0 ,

0
det ! !!.

nn
ki j r i j n

k
G k nβ β β

+ 
 
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=
= =∏  (15) 

This Hankel transform has been shown using the same 
method employed to obtain the above alternative solution 
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for the Hankel transform of ( ).aB n  In this section, we are 
going to give an alternative proof for (15) following the 
method in doing the first proof for the Hankel transform of 

( ).aB n  

Let ( ),n kM a=  be the infinite lower triangular matrix 
defined recursively by, 
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 (16) 

where 0,0 0,1, 1, 0kn a a≥ = =  if 0k > , and , 0n ka =  if 
.n k<  Then we have the following lemma. 

Lemma 4.1. Let ( )k yΦ  be the exponential generating 
function of the kth column of matrix M , that is, 
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=
Φ = ∑  That is, the 0-

column entries of M  are , , , 0,1, 2, .y rG nβ =   
Proof. Using the recurrence relation in (16), we obtain 
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This implies that 
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While the right-hand side of (18) gives 
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which shows that the function ( ) ( )1 1 1
,
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kyye ry
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e
e
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⋅  

where 0,k ≥  is a unique solution to the differential 
equation (18). Thus, the exponential generating function 
of the kth column of M is given by 
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Lemma 4.2. Let nw  be the nth row of ( ), .n kM a=  
Define 
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Then ,0 , ,n m n m n m rw w a G β+ += =  for all n and m. 
Proof. By induction, if n = 0 we have 

 0 0, ,
0

!.km k m k
k

w w a a kβ
≥

= ∑  

Since 0, 0 0,ka k= ∀ >  

 
00 0,0 ,0 0,0 ,0

0 ,0 ,0,

0!

.
m m m

m n

w w a a a a

a G mβ

β

+

= =

= = ∀



 

Suppose that ,0p m p mw w a +=  holds for 1p n≤ −  and 
all .m  Then by (16) 
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By interchanging and reindexing the summation, we have 
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By (16), 
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By the inductive hypothesis, 
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Theorem 4.3. The (r, β)-Bell numbers have the Hankel 
Transform 
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where ,0,1n nG B=  (Bell numbers) and ( ), ,1nG B nα α− =  
(Non-central Bell numbers). 

Proof. Let nM  be the lower triangular submatrix of 
M  consisting of the rows and columns numbered 0 to n. 
Then nM  is a matrix with diagonal 1. It follows that 
det 1.nM =  This implies that the determinant of upper 
triangular submatrix TnM  is one; that is, det 1.TnM =  Let 
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