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Abstract. Two linearly independent solutions of the three-term recurrence re-

lation for the <¡r-Askey-Wilson polynomials are obtained for the special cases

abed = qm , m = 1, 2..... By obtaining the subdominant solution and em-

ploying Pincherle's theorem, the associated continued fractions and properties

of the corresponding weight functions are derived. The cases abed = q or q

are exceptional. They differ from the cases considered by Askey and Wilson [1]

and are limits of a family of associated cases considered by Ismail and Rahman

[5].

1.  INTRODUCTION

Recently, Masson [8] obtained the general solution to the recurrence relation

(D Xn+ï-(z-aH)Xn + b2nXn_v=0

associated with the Wilson polynomials [13, 14] in the special cases a+b+c+d =

1,2,... . From Pincherle's theorem [6], he derived an analytical expression for

the continued fraction

(2) CF(z)^z-aQ + KZl

and also obtained the associated weight function. Here we complete the calcu-

lations indicated in [8] for the <?-Askey-Wilson polynomials in the special cases

abed = q , q , ... , 0 < \q\ < 1 .
For associated Wilson polynomials and associated g-Askey-Wilson polyno-

mials, reference may be made respectively to Masson [9], Ismail et al. [4], and

Ismail and Rahman [5], where analogous results have been obtained in a more

general setting depending on the properties of 2-balanced very well poised 1F(¡

and g(p7 series.
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718 D. P. GUPTA AND D. R. MASSON

In our derivations here we need Pincherle's theorem (see Jones and Thron

[6]), from which we have the following formula for the continued fraction

CF(z):

(3) -i-=   X°){Z)
C,F(z)      blx^x(z)'

where X^' denotes a subdominant (minimal) solution of (1).

In case of real orthogonality, an e E, bn+x >0, « = 0,1,2,..., one has

(A) \ =   [ dWW
{> CF(z)     hz-x'

where dw is a positive measure. If x is in the absolutely continuous spectrum,

we have (see Masson [7]) the formula

, 1   W(X{_?\(x + iO), X{:\(x - i0))
(5) W (x) = x—:--s—ri-lt>-

27tl b¡\X<?\(x + iQ)\2

where W is the Wronskian

(6) W(Xn,Yn):=XnYn+x-Xn+xYn.

We shall apply (3) and (5) to the special cases of ^-Askey-Wilson polynomials.

Note that in what follows we define indeterminate ratios in terms of limits.

Thus (l-<7"+1)/(l-<72"+2) and (1 - qn)/(\ - q2n) at n =-1 and 0, respec-

tively, are assigned the value \. It is this assignment which in (7), (8), and (10)

below yields the exceptional cases.

2. g-AsKEY-Wilson polynomials

The recurrence relation for c7-Askey-Wilson polynomials [1] is given by (1)

with

(7)
bn -=b2n(a, b,c,d;q) = An_x(a, b,c,d\ q)Bn(a, b,c,d;q),

an := an(a, b, c, d; q) = -An(a, b, c, d; q) - Bn(a, b, c, d; q) + - + —,

, _ (1 - abcdq"~l)(l - abq")(l - acqn)(\ - adq")

An(a,b,c,d;q) - - 2a{l-abcdq2-^-abcdq2") '

"y   '    '    '    'q) 2(1 -abcdq2"-2)(l-abcdq2"-])

The renormalized (for renormalization identities, see Masson [10]) q-Askey-

Wilson polynomial solution is given as

X?\z;a,b,c,d;q)= ._„. ,   A-udq2n~X]~-
(8) (2a)"[abcdq"-l]Jabq" , acq" , adq"]^

,   (q~", abcdq"~ , au, a/u; q, q

4 3 V ab, ac, ad
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EXCEPTIONAL «-ASKEY-WILSON POLYNOMIALS 719

with z = cosö, u = eie, [y]n = (1 - y)(l -yq)---(\ - yqn~{), [y]^ =

lim„^00[>']„ , and [y,, y2, ... , yj^ = [y.UD^U ■ ' ' LvJ«, •
Besides the permutation symmetry [1] with respect to the parameters (a, b,

c, d), it may be verified that

(9) b2_n(q/a, q/b, q/c, q/d ; q) = b\(a ,b,c,d;q),

a_n_x(q/a, q/b, q/c, q/d; q) =an(a, b,c, d; q).

In order to obtain a second polynomial solution of (1), we apply the transfor-

mation n -» (—n - 1), (a, b, c, d) —> (#/û, #/£, ?/c, g/â?) to (1) and (8).

After renormalizing, the second solution, except for a constant factor, is given

by

(10)

X(2)(z;a,b,c,d;q)= (j-^j
\abcdq2n~\

[bcq\cdqn,bdqn]oc[qn+x]oc

q      ,q       /abed, q/au, qu/a;q,q
11")

q /ab, q /ac, q /ad

abed = ql, q2, ... .

Using the subdominant solution of the next section and Pincherle's theorem,

we shall prove the following in §4:

Theorem. If an and bn are given by (1), then the continued fraction

1

\nd (24) in the respective case,

and abed = qm, m = 3, 4, ... , with u = z + Vz2 - 1, |w| > 1.

2
is given by (22), (23), and (24) in the respective cases abed = q , abed = q,

In order to obtain the large n asymptotics of X(n    and X(n   , we follow the

3. Subdominant solution

f and X?
p /ocedure adopted by Ismail and Wilson [3]. We need the Sears transformation

[11] which transforms a balanced 4<p3 into another balanced 403 :

(q-",x,y,z;q,q\_ n[uv /yz]n[uw /yz]n

(w       403l u,v,w )-W*W-      [v]n[w]n

x403
q " ,x,u/y, u/z;q,q

u, uv/yz, uw/yz

uvw = xyzq "    . When the Sears transformation is applied to X(n ' and the

relation

(12) [kq-\ = (-k)kqk{k-X)ll-nk[qlk}J[q/k}n_k

is used, then the usual argument of bounded convergence of (n - k) series and

Tannery's theorem (see [3, p. 47]) lead to the following asymptotic value as
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720 D. P. GUPTA AND D. R. MASSON

n —► OC :

(13) 4"~(f)
u\n [a/u, b/u, c/u, d/u]c

[ab^cad^ll/u2]^
\u\> 1.

(i5) 42)~m"(-r2 ^g!iLfz^4£fiiiZí% ,  N>1,
n \2)    V a I \a2lnh   n2lnr   n2lnd*\    fi /îv21

For Tannery's theorem  see [2, p. 316].

Alternatively, an interchange of u and \/u gives

(14) xw„n\"[au,bu,cu,du]

On the other hand, applying (11) to X^ and writing abed = qm ,  m

l,2,...,0<|#|<l,we obtain the asymptotic estimate

Ai)     {U\* fqu\m~2    [q/au, q/bu, q/cu, q/du]c

[q2/ab,q2/ac,q2/ad]00[l/u\

or, alternatively,

«        \2u)   \auJ        \q2lab,q2/ac,q2/ad\Ju2\OQ

From (13) and (15), the subdominant solution of (1) for abed = qm , m =

1,2,..., and \u\ > 1 may be written as

(17) xf-otX^-ßX?,

where

(18)

qu\m~2 [q/au, q/bu, q/cu, q/du]c

[q2/ab, q2/ac,q2/ad]oc

[a/u, b/u, c/u, d/u]
ß

[ab, ac, ad]x

with large- n behavior given by

x(s) ^_(q/a)m-2_

"    ~ [ab, ac, ad]Jq2/ab, q2/ac, q2/ad]00(2u)n[u2]oo

v     / m—1
x (u      [q/au, q/bu, q/cu, q/du]   [au, bu, cu, du]c

for |m| > 1.

- u   m[qu/a, qu/b, qu/c, qu/d]   [a/u, b/u, c/u, d/u]   )

4. Particular cases

Exceptional case I.  abed = q  . Computing the value of

Xis)(z)

b2Aslx(z)

'Let p(n) Î oo and limn^O0ur(n) = vr. Then limpio ur(n) = Eo° vr if l",(")l < M,,

V« and 2~Z°° Af r < oo .
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EXCEPTIONAL «-ASKEY-WILSON POLYNOMIALS 721

from (8), (10), and (17), and then taking n = 0, we find that

X{0s)(z)_4(1 -q)

(20)

where

(21)

bz0X(_!\(z)     a^-bcq-1)^ -bdq-y)(\ -cdq~l)

Ylx(u)-n2(u)
x n,(M) + n2(w)'

n, (w) = [q/au, q/bu, q/cu, q/du]^ ,

Il2(u) = [a/u, b/u, c/u, d/u]x.

Consequently, from Pincherle's theorem (3) for |w| > 1, the following contin-

ued fraction representation follows:

4(1 - q)[Ux(u) - U2(u)][Tlx(u) + Tl2(u)]-1

(22) a(\ - bcq-l)(l - bdq-')(\ - cdq~l)

z-aQ + KZl(-b2J(z-an))

with u = z + Vz2 - 1 and the branch chosen so that \u\ > 1 .

Exceptional case II.  abed = q . In this case, we obtain for \u\ > 1

X(oS\z)
= 4a

(l-ab)(l -ac){l-ad)

{l-q)(23) boX^z)

n2(uy
-(l-au)U-a-)+au^i

\     u)      n,(«(«)J    '

which gives the associated continued fraction where the left side of (22) is

replaced by (23).

Note that the exceptional cases discussed above differ from the cases consid-

ered by Askey and Wilson [1]. They are a —> 0 limits of the associated family

{pan(x)} examined by Ismail and Rahman [5]. The corresponding Askey-Wilson

cases are a->0 limits of the second associated family {q^(x)} of Ismail and

Rahman [5].
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722 D. P. GUPTA AND D. R. MASSON

Askey- Wilson cases,  abcd = q   , m = 3, 4, .... In these cases we have B0 = 0

(and hence b0 = 0). After some simplification, we obtain for \u\ > 1

(24)
1      = X$\z)

CF(z)      -X\s\z) + (z-a0)x£\z)

=     2u(Uq)m~'    [g]°°    n'(M)

_[¿>c, ¿af, ca^_

* (1 - a&fl-'Xl - a^-')(l - adq-*)[q2/ab, q2/ac, q2/ad]x

+ &

i, m—1,
,1-0        )

-1 - .-li« / (1 - aô$_I)(l - acq~l)(\ - adq~l)

4V3

q /abed, q, q/au, qu/a;q, q
111

q /ab, q /ac, q /ad

5. Weight function

Once we have the continued fractions (22), (23), (24), we may use (5) to

obtain the absolutely continuous part of the weight function in the respective

cases. We obtain the following expressions for the weight function: When

abed = q ,

w (x) =
1 4(1 -q)

(25)
nia(\ -bcq~x)(\ -bdq~x)(\ - cdq~x)

n.(i/«)n2(«) - n,(u)Yi2(\/u)

\ux(u) + n2(u)\¿

when abed = q ,

(26)
,,  .      2a¿

m

uu2(u)    n,(i/w)

n,(M)    Hiyi/toj

(1 -ab)(\ -ac)(\ -ad)

:i-flf)

and when abed — qm , m = 3, 4, ... ,

1   /q\"-*     [q]

,1 n /,        a\ n2("
1 -au    1 --   + au=fj-

\    u)      n,(t/

(27)
[èc, M, cî/]

(1 - abq-{)(\ - acq-')(\ - adq'x)[q2/ab , q2/ac, q2/ad]c

i<m-2Ux(u)       __2-mn,(l/M)

n2(«:
- M

n,(i/«)j '

u = X + l V\ -x2, xe (-1, 1).
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EXCEPTIONAL 9-ASKEY-WILSON POLYNOMIALS 723

Note that, in order to accommodate the case of complex measures, we have

used in (25) and (26) the convention \f(u)\ = f(u)f(l/u) so that complex

conjugation is taken only with respect to the variable u = x + ¡vl - x2.

The cases abed = qm , m — 3, 4, ... , are special ö-Askey-Wilson cases. To

see that (27) coincides with the weight function obtained by Askey and Wilson

[1], we derive an identity using an alternative calculation of the W in (6).

By iterative use of (1), we can derive

W(Xls\x + iO),xls\x-iO))(s).
(28)   b, W(Xy_ (x + iO), X'_ (x - i0)) = lim

v ' l n—>oc

From (28), we obtain the following modification of (5):

b\b22

(29) w (x)
1 W(X(ns,(x + iO),X(ns)(x-iO))

27tin~œ b2xb¡---b2-b*\X{_:\(x + iO)\2 '
lim

Using (29) and the asymptotic value of X(ns)  given by (19), we obtain, for

abed = qm , m - 3, 4, ... ,

w (x)
m \aJ

lm-6

(30)
[( [be, bd, cd\Jq\m_x[{\ - abq-l)(\ - acq-l)(l - adq-1)]'2

["2Ui/«2Ua>ë> ¿tn^n^iMiab^cad]^
x [HM~2n1(K)n2(i/K) - w2_mn1(i/M)n2(«)]2.

Equating values of w'(x) given by (27) and (30), we obtain the nontrivial

identity

(31)
(I) /t;-")["W 2Ux(u)U2(l/u)-u2 mn,(l/u)U2(u)]

= [abq    , acq    , adq   ]

li

2 2 2

i_  i_   <L
ab' ac' ad

[u\
LW2J

for m — 3, 4,..., \u\ = 1.
From (27) and the above identity we recover the Askey-Wilson form of the

weight function (see [1, pp. 11-12]), viz.,

(32) w'(x) =
1 [ab,ac, ad\[bc, bd,cd]\q]\u2]\l/u2l

2ii\l\ -x2[au' bu,cu, du^a/u, b/u, c/u, d/u^abed]^

Here we have given an almost algebraic proof of (32). The derivation is

independent of the usual orthogonality conditions flnel, bn+x > 0 and for

more general parameter values gives us the absolutely continuous part of the

complex measure whose Stieltjes transform gives the continued fraction (24).

This complex measure is purely absolutely continuous if \a\, \b\, \c\, \d\ < 1,

since the discrete part is given by the zeros of FI2(w) in (24).
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724 D. P. GUPTA AND D. R. MASSON

2
Repeating the calculation for the exceptional cases abed = q or q estab-

lishes the identity (31) for the additional cases m = 1,2. Note that identity

(31) is a special case of the a-analogue of Dougall's theorem [9].

For comparison, we record the corresponding alternative form for the weight

function in the exceptional cases. Using (26), (27), and (31), we obtain the

following results:

Case abed = q2.

(33)        w'{x)=   2(1~g)  [^>flg>^>^.^.^]M["2U""2L|

nVl-x2 |ni(w) + n2(w)|

Case abed = q.

(34)
2

i. a
w (x) =

ttVT x
2

[ab, ac, ad, be, bd, cd]\u][u \

|n,(w)[(l -ab)(\ -ac)(\ -ad)/(I - q) - (1 - au)(\ - a/u)] + auU2(u)\2'

In the next section we discuss the discrete spectrum in the case when the

measure is positive.

6. Mass points

We consider here some properties of the discrete spectrum in the case of real

orthogonality (aneR, b2n+x > 0, n > 0).

In the normal Askey-Wilson cases, (24) yields an explicit discrete spectrum

from the zeros of Tl2(u). Thus there are no mass points if— I <a, b, c, d < I.

Mass points exist in (1, oc) for 0 < \q\ < 1 if one of the parameters is greater

than unity, and in (-oc, -1) if one of the parameters is less than -1 .

For the exceptional cases, the discrete spectrum is no longer explicit.

Exceptional case I. From (22), when abed = q , we have to examine the func-

tion
nx(u)-n2(u)

nx(u) + n2(uy

It is clear that no mass points exist for 0 < \q\ < 1, \q\ < \a\, \b\, \c\,

\d\ < 1, because of the positivity of Ux(u) + U2(u).

On the other hand, we will obtain the existence of mass points using the

monotonicity of (4) for a positive measure, i.e.,

d   f dw(x) f dw(x)      _ _ ,
-7- / —y— = - / -y~ < 0,        zel,  zrf supp dw.
dz J   z-x J  (z-x)2

With an absolutely continuous spectrum in [-1, 1] this monotonicity implies

that a zero of (22) as a function of u (or z) outside the interval [-1, 1] is

accompanied by a pole.
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EXCEPTIONAL «-ASKEY-WILSON POLYNOMIALS 725

We now observe that mass points exist:

(i) if both n,(w) and Y\2(u) have a zero either for u > 1 or for u < -1,

e.g., when a > 1 and 0 < b < \q\, or when a < -1, -\q\ < b < 0;

(ii) if either Ux(u) or n2(w) has more than one zero in R\[-l, 1], e.g., for

a > 1, b < -I, or a > I, b > 1, or a > i/q, q>Q,orO<a<q2,

q > 0, or a > -1 /o2, # < 0, etc.

To obtain (i), suppose 11, (w) = 0 for some value of u, say ux > 1. Then

for u = ttj > 1, \/CF(z) — A ,

a(\-bcq-x)(\-bdq~x)(\-cdq-x)'

If in addition I12(m) = 0 for some value of u, say u2 > 1, then for « = w2 > 1,

\/CF(z) = -A. Consequently, there exists a zero of \/CF(z) between ux

and u2, say at u = u > 1. Hence there exists a pole of \/CF(z) at some

u    > u  .

To obtain (ii), suppose n,(w) has two zeros, u , u" in R\[-l, 1]. Then

\/CF(z) = A at both t/ and u". The monotonicity implies a zero between

w' and u" and consequently a pole.

Note that, in contrast with the Askey-Wilson cases, we can now have a

mass point with all parameters in the interval (-1, 1). This can be seen by

first considering the case a — q,b = c = d=\, which yields Tlx(u) —

[l/qu, q/u, q/u, q/u]x and U2(u) = [q2/u, \/u, \/u, \/u]oo. Thus

Ux(u) + n2(u) = [(1 - q/u)(l - l/qu) + (1 - 1/w)2]

x [\/u, q2/u, q/u, q/u]^,

which has a zero at z = \(u + u~ ) = (1 + q) /4q > 1 , if 0 < q < 1 .

By continuity Hx(u) + Yl2(u) will have a zero for some z > 1 (u > 1) if

a = q~z, b = c = d = qe/ , with e small and positive. Alternatively, since

it can be shown that for this case a0 > 1, so that Px(z) - z - a0 has a zero

for z = a0 > 1 , we can use the result in Szegö [12, Theorem 3.3.1]. By a

similar argument, one gets a zero in the denominator of (22) for some z < -1

(w<-l) if a = -\q\2~£, b = c = d = -\q\eß , and -1 <q<0.

Also, by perturbing the case a=l,b = c = d = q' ifO<<?<lor the

case a = —I , b — c = d = \q\ if -1 < o < 0, we can see that it is no longer

sufficient to have a parameter outside the interval (-1, 1) in order to obtain a

mass point.

The above properties will be true also for the family {p°(x)} of associated

Askey-Wilson polynomials discussed by Ismail and Rahman [5] if a is suffi-

ciently small and abed is sufficiently close to q  .

Exceptional case II. Finally we discuss the mass points in the exceptional case

when abed — q . For expression (23), we prove the nonexistence of mass points

for the normal range of the parameters -1 < a, b, c, d < 1.
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726 D. P. GUPTA AND D. R. MASSON

First consider q<a,b,c,d<\, 0 < 0 < 1, u > 1 . The denominator in

(23) will always be positive if (l-ad)(l-ac)(l-ab)/(l-q)-(l-au-a/u+a ) >

0. Since I - au - a/u + a2 = 1 - 2az + a2 < (I - a)2, the condition may be

written as

'(I - ad)(l - ac)((l - ab)      1      a
2a + 2a>0,

2a(l-q) 2a     2\

or -2aa0 + 2a > 0, where a0 is given by (7). Thus positivity will follow for

a0 < 1 . But, for abed = q ,

a0 = (a + b + c + d - q/a - q/b - q/c - q/d)/2(\ - q).

Examining the maximum value of a0 for q < a, b, c, d < 1 , with the con-

straint abed = q , we find that the maximum a0 = 1 occurs when two of the pa-

rameters are equal to 1. Thus there are no mass points for q < a, b, c, d < 1,

0 < q < 1 . However, because of the constraint abed = q , if one has 0 < a < q

and b, c, d > 0, this implies that some parameter, say d, satisfies d > 1.

Thus, it is sufficient to require 0 < a, b, c, d < I.

If one parameter, say a, is negative and u > 1, one can similarly see that

the denominator in (23) will always be negative if a0 > -1 , and one can

examine the minimum of a0 . By similarly considering the cases u < -1 and

-1 < q < 0, we show that there are no mass points if -1 < a, b, c, d < 1.

Alternatively, one can realize that a0 = I/2a + a/2 - AQ - B0 in this ex-

ceptional case is the same as in the regular Askey-Wilson case. (Here we have

AQ = BQ while the corresponding Askey-Wilson case replaces A0 by 2AQ and

B0 by 0.) Thus, the absence of mass points in the Askey-Wilson case when

-1 < a, b, c, d < 1 implies that -1 < aQ < 1, which in turn implies the ab-

sence of mass points for this exceptional case because of the positive or negative

definiteness of the denominator in (23).

For the existence of a mass point in the exceptional case abed = q , it suffices

to have some real parameter, say a, satisfying \a\ < \q\, since this implies that

n,(w) = 0 for some real u, \u\ > I , which yields a zero in (23). This in

turn implies a pole in (23) by the monotonicity property mentioned in the case

abed - q . However, we note that, in contrast to the Askey-Wilson cases, it is

no longer sufficient to have some parameter, say a , satisfying a > 1 or a < -1

in order to have mass points. To see this one can perturb the case |a| = 1 ,

\b\ = \c\ = \d\ — \q\     , which has no mass points.
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