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1. Introduction

The concept of classical orthogonal polynomials changed quite drastically during the last decade (cf.
Andrews and Askey [1]). The present consensus about what should be included in this class can be
neatly summarized in the Askey scheme of hypergeometric orthogonal polynomials, cf. Askey and Wil-
son [4, Appendix], Labelle [30] and §5, Table 3 in the present paper. A remarkable aspect of this
scheme are the arrows indicating limit transitions between the various families of orthogonal polyno-
mials, starting at the top with the Wilson and Racah polynomials and ending at the bottom with the
Hermite polynomials.

Almost all members of the Askey scheme have group theoreretic interpretations. The present
paper gives a partial survey of these connections with group theory, but, at the same time, it tries to
illustrate a philosophy and a research program. The philosophy consists of the following:

1. Almost any identity for special functions in, say, the Bateman project [14], [16] has a deeper
meaning in (i) the harmonic analysis of orthogonal systems of special functions and (ii) some group
theoretic context.

2. The Askey scheme is a subgraph of a much bigger scheme of families of unitary integral
transforms with hypergeometric kernels. From this point of view the selection criterium that these
kernels should be of polynomial nature is quite arbitrary.

3. The integral transforms occurring in the (extended) Askey scheme can be grouped together in tri-
ples (in many different ways) such that the three transforms in a triple, when performed succes-
sively, yield identity. The limit transitions in the scheme often extend to limit transitions for these
triples.

The research program naturally follows from this philosophy. Its main task is to make the
three above items concrete and to fill them in as completely as possible. Partly this can be done by
a search through the literature, partly new research is needed. However, there are also related prob-
lems of more fundamental nature, for instance the following one:

The spectral theory of second order difference operators on Z, and of second order differential
operators on an interval (possibly with singularities at the end points) is quite well understood
nowadays. The first theory is closely related to the general theory of orthogonal polynomials and
the second theory to the integral transform theory with respect to the eigenfunctions of a second
order differential operator, cf. for instance Trimeéche [35]. Classical orthogonal polynomials p,(x)
are not only eigenfunctions of a difference operator in n but also of a second order diferential or
difference operator in x. ”Classical” eigenfunctions ¢, (¢) of a second order differential operator in ¢
are also eigenfunctions of a second order differential or difference operator in A. What would be
helpful, but is still missing, is a general spectral theory of second order difference operators, not just
on Z,, but also on C, with the difference operator being analytic, possibly with singularities.
Recent work by Ruijsenaars [32], related to completely integrable systems in relativistic quantum
mechanics, also shows the need for such a theory.

The guiding formula for this paper is an identity yielding Wilson polynomials as Jacobi func-
tion transforms of Jacobi polynomials, cf. Koornwinder [27, §9], [29] and formula (4.20) in the
present paper. We gradually approach this identity in sections 2, 3 and 4, starting with formulas
which contain a differential operator p,(i d /dr), where p; is an orthogonal polynomial (based on
joint work with E. Badertscher [6]). At the end of §4 we have already seen some illustration of the
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philosophy developed above and we are now ready to discuss in §5 the Askey scheme and its possi-
ble extensions. Until here, not much group theory did enter, except some in §3. In section 6 we
discuss some fundamental ways to construct orthogonal systems from group representations. The
rest of the paper gives examples of these constructions which yield orthogonal systems of hyper-
geometric functions fitting into the (extended) Askey scheme: at the end of §6 for SU(2) and the
Euclidean motion group I o(R?), in §7 for the discrete series representations of SL(2,R) (following
Basu and Wolf [9]), in §8 the Hahn and Racah polynomials and, finally, in § the Wilson polynomi-
als, where the above-mentioned identity finds its proper setting.

The group theoretic interpretations discussed in this paper only use SU(2), SL(2,R), I,(R?),
the rotation groups and the generalized Lorentz groups. By lack of space and time many other
groups relevant for the Askey scheme are not discussed here, for instance the Heisenberg group and
the symmetric group. We also avoided discussion of g-Wilson polynomials, mainly because known
group theoretic interpretations for orthogonal polynomials of ¢g-hypergeometric type are restricted to
Chevalley groups and homogeneous trees.

The analysis in this paper remains at the formal level. The convergence of series and
integrals, the precise sense in which one family of the Askey scheme approximates another family
and the interpretation of inner products of distributions are not considerd here. However, the
author is preparing a paper, where these questions will be dealt with.

2. Continuous Hahn polynomials: Playing around with some remarkable formulas
Consider Bessel functions

14 ¢ \K
Tt := -(%L oFrk+1; —Yr?) @.1)
of order £ =0,1,2, - - - with integral representation
Ji(@) = a7tk [tV cos (ky)dy 22
0

(cf. [14, Vol.2, 7.3(2)]). Substitute the expression for the Chebyshev polynomial
Ti(cos ¥) := cos(ky) 2.3)

in (2.2) and make the change of variable x : = cos ¢ in the integral. Then we obtain

1
Je@) = 271k [ T(x)(1—x*)"" dx. (2.4
-1

In particular, for k =0:
1
Jot) = 77! [e™ (1—x}) % ax. (2.5)
-1

Let us now build from the polynomial 7} the differential operator with constant coefficients
Ti(—id / dt). If we let this operate on (2.5) then we obtain

1
Tu(—id /d)Jo@®) = 77" [ Ti(x)(1=x*) " dx.
-1

Hence, in view of (2.4), we get the curious formula
T(—id /dt)Jo(t) = i* T (). (2.6)
Observe that, by (2.5), J, is the Fourier transform of the orthogonality measure for which the poly-
nomials T} are orthogonal.
We try to play the same game with the associated Legendre functions
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P . 27*TGA+k +%) X
Pi-u(Ch )= Spin—k vy CBY

X Fi(iA+k +%, —iA+k +%; k +1; —(sh(%)?), Q.7
where teR, AeC, keZ ., with integral representation
iA+1%) T .
PK_u(cht) = 9—7—7—](—‘—)’-‘— J(ch # + sh tcos $)*~* cos (ky) Y (2.8)
’ 0

(cf. [14, 3.6(1), 3.7(14)]). Make again the substitution (2.3) in (2.8) and make the change of variable
th y := —cos ¢ in the integral. Then (2.8) becomes

(DFEA+HR), 2

P _y(chn) = —y [ (h@ =y Ti(th y) (ch y) =% ay, (2.9)

which we recognize as a convolution product on R. In particular, for the Legendre function
Piy_y = P,&-% we obtain

Pp—y(cht) = 77! °f° (ch( =y % chy) A" ay. (2.10)

-

Hence

(id /di)f Pp_y(chty =" °f° (ch(z—y)* "% (id / dy) (chy)"* % dy.

-0
One easily proves by induction with respect to & that
(ch yY** % (id / dy) (chy)™ ™% = (—i)f (A+%) (th y)* + lower degree in th y.

It follows that, for each AeC with —iA—% ¢ Z, there are unique polynomials p, of degree k such
that

Ppi(id / dy)(ch y)™™ % = const. Ti(th y)(ch y)~ 7% @.11)
For these polynomials we conclude:
pilid /dt) Pi_y(ch 1) = const. P§_y(ch 7). 2.12)

We will show that the polynomials p, are orthogonal on R with respect to a weight function w
which can be explicitly determined. Observe from (2.7) that the function ¢ P% _, (cht) has a zero
of order k at 0. Let /<<k. Then

0 = const. (id /dt) P&_(ch z)|t=°

= (id /dt) pi(id / dt) Pjn_ys(ch 0‘::0

=en7' [ ¥p@wwadp,

where

W(}l,) = 7 P“A_IA(Ch t)e“" dt

by (2.10). Hence, by [14, 1.5(26)] we obtain
w(p) = const. [(4(ip+iA+%)) T(A(—ip+ik+14))
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X T(A(ip— iA+R)) TA(— ip—iA+1)). (2.13)

Here, for convergence of the integrals, we require that |ImA|<!4. It follows that the polynomials
P are orthogonal on R with respect to the weight function w. In particular, if A € R U (—%i,%i)
then this weight function is positive. The polynomials orthogonal with respect to the weight func-
tion given by (2.13) are particular cases of the continuous symmetric Hahn polynomials

Pe(x;a,b) 1= i* 5F, [”" ktdarab-loa-ix ( 1], 2.14)
which are orthogonal on R with respect to the weight function x - | I'(a +ix)I'(b +ix)|? (a,b>0 or

b=a, Rea>0), cf. Askey and Wilson [3]. From this reference we find that our polynomials p; can
be written as

const. p(ap; Ya+ 14N, Ya—1il)

. - Y, 4+ 155\ — Loj
= const. 1"3F2[ k’kl/;f’gﬁ.’i‘ /2“‘\1]. @.15)

So, similarly as with (2.6), the function ¢ ~ P;,_y(ch ¢) in (2.12) is the Fourier transform of the
orthogonality measure for which the polynomials p; in (2.12) are orthogonal.

We now have three formulas of the same structure:

(W)

Ji(t) = const. Te(id / dt)J (1), (2.16)
PK_y(ch t) = const. p,(hid / dt;Ya+%iX, Ya—%i)) P _w(ch 1), Q.17
P} (cos 8) = const. Qu(*an +%id /d; —%,—%, n) P,(cos 6). (2.18)

Here (2.17) is obtained from (2.12) and (2.15), while (2.18) is obtained from (2.17) by taking iA—%
as an integer=k and by taking ¢ purely imaginary. Then P, in (2.18) becomes the Legendre polyno-
mial while

Ouin +hm; —h, —Vh, n) := 4 F, [‘k’k,}fl/’:,’ —Ym ' 1] Q.19
is a special Hahn polynomial, orthogonal on { —n, —n +2, ... ,n} with respect to the weights
W = (%)Vzn +%m (l/z)‘hn —Yam ,
m (%n +Y%m)! (an —Yam)!
cf. Karlin and McGregor [22] except for the standardized notation, which is given in Askey and
Wilson [4]. Note that the weights w,, are the Fourier coefficients of P,(cos 8):

P,(cos 6) = s Wy, €M @21)

m=-n—n+2,...,n

(2.20)

cf. Szego [34, (4.9.19)].

Formula (2.16) is a limit case of both (2.17) and (2.18): Replace ¢ (or §) by A™! ¢ (or n™' §)
and let A»> o0 (or n—o0).

3. Orthogonal polynomials of argument id/dr: A group theoretic interpretation

Corresponding to the formulas (2.16), (2.17), (2.18), respectively, we consider the Lie groups G =
Io(R?), SO¢(1,2) and SO(3). Here I5(R?) is the group of orientation preserving Euclidean motions
of R?, S0(1,2) is the connected component of the group of linear transformations of R3 which
leave invariant the quadratic form —x?+y2+22 and SO (3) the group of rotations around the ori-
gin in R3. These groups G have natural transtive actions on certain spaces , i.., respectively, on
RZ, on a sheet of the hyperboloid —x?+y2+2% =1 and on the unit sphere S? in R®. In all cases
the subgroup K of G leaving some point of & fixed is isomorphic to SO(2), the group of rotations of
the circle. So Q can be identified with the homogeneous space G / K.

By a unitary representation m of G on a Hilbert space 3(=J({(#)) we mean a mapping 7 of G
into the group of unitary transformations of IC which is a group. homomorphism (ie.
m(g182) = m(g1)m(gy) for all g,,g,€G) and which is strongly continuous (i.e. for all vedl the
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mapping g ~ m(g)v: G-I is continuous).

The representation = of G is called irreducible if the only closed G-invariant subspaces of 3(()
are 9(7) and {0). The set of all irreducible unitary representations of G (more precisely, of all
equivalence classes of irreducible unitary representations of G) is denoted by G.

We can identify the group K with the group SO(2) of matrices

cos § sin @
up = | _sing coso| IR

It can be shown that the three pairs (G,K) as considered above share the following property: For
each meG there is a subset I of Z and an orihcacrmal basis {e Jxc; of J(7) such that

n(ug)e, = e*%e,, kel, OeR.
Otherwise stated: For each &G the restriction of = to K is multiplicity free.

Definition. Let 7€G and denote the inner product on 3({=) by (.,.). Suppose that eq occurs in I
Then

() = (7(g)eo,e0), gEG, (3.1

denotes the spherical function ¢ for the pair (G,K) and the representation #. If, for some k€Z, ¢
also occurs in ¥ then

(@) := ((®)eo. &), g<G, (3.2)
denotes an associated spherical function for (G,K) and 7.
Note that ¢ and ¢* are right invariant with respect to X, so they can be considered as functions on
G / K. Moreover, the spherical function ¢ is left invariant with respect to K.

For each group G as considered above there is a one-parameter subgroup 4 ={4,},cp of G
such that we have the Cartan decomposition G =KAK, i.e., each geG can be written as g =k a,k,
for some k|,k,€K and teR. Now it can be shown that, after possibly rescaling of {a,}, the associ-
ated spherical functions ¢*, when restricted to 4, only change by a constant factor if k is replaced
by —k and that, up to a constant factor, ¢*(a,) with k=0 equals

Ji(Ar) for some AeR or
PX_y(chf) for some AeR | J[— i, %i] or
Pk(cost) for someneZ,,

according to whether G=1Io(R?), SO((1,2) or SO(3). These are essentially the left hand sides of
(2.16), (2.17) and (2.18). So, roughly stated, we have

¢(a,) = const. pi(id / dt)¢la,), (3.3)

where py is an orthogonal polynomial with respect to a measure which is the Fourier transform of
t - Pay).

In Badertscher and Koornwinder [7] it is shown that, with eg,e, and p, as above, we have
e = const. pi(id /di)m(a)e| (34)
(the function  ~n(a,)eq: R—3is C*). Hence, in view of (3.1) and (3.2), we get
#(g) = const. py(id / di) la _,g)’t=0, <G,

which implies (3.3). Formula (3.50) provides us with an explicit right-invariant differential operator
on G which sends the spherical function ¢ to the associated spherical function ¢~.

In the case that G is an arbitrary connected semisimple Lie group with finite center and K a
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maximal compact subgroup, Helgason [20, section 4] has a definition of associated spherical func-
tion (there called generalized spherical function) which generalizes our definition (3.2) and it is
proved in [20, Theorem 4.1] that, under certain conditions for the corresponding representation,
there exists a right-invariant differential operator on G which sends the spherical function to the

associated spherical function. However, Helgason does not specify this differential operator in any
sense.

4. Integral transforms mapping systems of orthogonal polynomials onto each other
It follows from (2.11) and (2.15) that

Ti(thy)(chy) ™% = const.p,(hid / dy; %+ %ik, %a—'%i)) (chy) A%, @.1)
Take Fourier transforms on both sides and use [14, 1.5(26)]. It follows that

? Ti(thy)(chy) A ~% ¢ dy = const. T(%(ip+ik+1))

-0

X T(A(—ip+ik+%)) p(ap; Yo+ %iN , Va—Yail). 4.2)
It is clear from the orthogonality relations for the Chebyshev and continuous symmetric Hahn poly-
nomials that the functions

ye Ti(thy) (chy) 7% k=0,1,2, - - -
form an orthogonal basis of L?(R,dy) and the functions

o TCAGR+HIA+R) TCA(—ip+iA+ %)) pp (Yap; Yo+ '%IN, Ya—14iN), k=0,1,2, - -~

an orthogonal basis of L2(R,dy) and that the Fourier transform maps the first basis onto the second
basis.

More generally there is an identity of type (4.2) for Gegenbauer polynomials

(2a)

o) := <

2Fi(—k,k+2a;a+%; % —%x), (4.3)

which are orthogonal on (—1,1) with respect to the weight function x (1 —x2)*%_ We have (cf.

L)

0
[ [CR(thy)(chy) " *]e® dy = const. T(%(ip+iA+a+1%))
-0
X TCA(—ip+ id+a+'4)) pp(ap; Ya+ Yoo+ AN, Ya+ Yoo —14IN). 44
Here the functions of y occurring in square brackets at the left hand side form an orthogonal basis

of L*(R,dy), while the functions of p at the right hand side form an orthogonal basis of L2(R,dp),
and the two bases are mapped onto each other by the Fourier transform.

A much more elementary result of this type is the well-known formula

o
@M% [ Hyp)e ™™ eWdy = i™* Hy(wye ™, (4.5)
where H, is the Hermite polynomial, orthogonal on R with respect to the weight function y e
Actually, (4.5) can be obtained as a limit case of (4.4). Just replace y by @™ *#y and p by o*p in
(4.4) and let a—o0. Schematically we display the result in Table 1 below.

There is a further generalization of (4.4) which takes the Jacobi function transform of Jacobi
polynomials rather than the Fourier transform of Gegenbauer polynomials. Jacobi polynomials are
given by
(at1),

n!

PEP(x) = 2Fi(—n, ntatBrlatlih(1-x), n=012 .  (46)

For a,8>—1 these are orthogonal polynomials on (—1,1) with respect to the weight function
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Gegenbauer continuous symmetric
polynomial Fourier Hahn polynomial
! ; i
1 f !
U
v v v
Hermite Fourier

polynomial Hermite polynomial

x> (1—=x)*(1+x).
Jacobi functions are defined by
2Pty := L F(hla+B+1+iN), Y(a+B+1—i\);a+1; —sh?y).
We will always assume that a>—1 and BeRUJR. Let
Do p(t) 1= (2sh)™*! 2che)?+1,
Then ¢{*P is an even C*-function on R which satisfies
PO = 1
and
42, Bap® d
drr B pg(r) dt
and ¢{*# is uniquely defined by these properties. Let

Cug)i= 20+ B+ 1= Do+ 1) T(N) ‘
BT TG+ a+ B+ 1) T(A(IN+a— B+ 1)
Then, for a>—1, Be[—a—1,a+1]UiR we have the integral transform pair

+ A2 + (a+B+1)?| P (1) = 0,

gQ) = [ FO) &P Ay p(t)dt
0

F@ =007 [gNefP() |cap®)] "2 dN
0

Table 1

4.7

48)

(4.9)

(4.10)

(4.11)

(4.12)

This establishes a 1-1 correspondence between the space of even C*®-functions on R with compact
support and its image under the Fourier-cosine transform, as characterized by the classical Paley-
Wiener theorem. The mapping fi» g (which we call the Jacobi function transform) extends to an
isometry of Hilbert spaces between LX(R ., A, p(t)dt) and LR, 2m)~! |c,p(\)| “2dN). In the
case that a>—1 and |B|>a+1, (4.12) remains valid except that we have to add to the right hand

side of the second formula a term

e, €N 5N,

where the finite subset D, g of iR, and the weights d, g(A) can be explicitly given. See [24], [27]

and [19, Appendix 1] for further details about Jacobi functions.
Noteworthy special cases of Jacobi functions are
175 70(1) = cos (),

(%)) = SIBAY)
) @ Nsht

o> W0 = Pp—y(chn).

(4.13)
(4.14)

(4.15)
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Thus, for 8= —1, (4.12) reduces to the Fourier-cosine transform pair if a=—1%, to the Fourier-sine
transform pair if «=' and to the Mehler-Fock transform pair if a=0.

As a generalization of (4.4) we now want to evaluate
[}
/ [(the)*+*% (chr)~8~ =1 p@d)(] —2th2y)]
0

% T (a+B+1+iM) T(A(a—

v BYITIA) (o e+ (ch e peBr)| at, (4.16)

where 8,\,ueR and a,6>—1. Indeed, (4.16) reduces to the left hand side of (4.4), up to a constant
factor, if = —', a==% and & is replaced by a—%. (Use (4.13),(4.14) and the quadratic transfor-
mations for Jacobi polynomials.)

Let moreover | 8| >a++1 in (4.16). In view of the orthogonality relations for Jacobi polyno-
mials and the isometry property of the Jacobi function transform, the functions of A defined by
(4.16) for n =0,1,2, - - - will form an orthogonal basis of L*(R.). One can evaluate (4.16) (cf. [29])
as

T(%(a+ B+ 1+iA) Tha—B+1+iN) T(B@ +ip+ 1 +iN) TAG —ip+1+iA)
T(iA)
X W, (U2 ; BB +ip+1), BG—ip+1), Blat+ B+1), hla—B+1)), @.17)

const.

where

W,(x?;a,b,c,d) := (a+b),(a +c), (a +d),

—n,n+a+b+c+d—1,a+ix,a—ix
XaFs [ a+b,a+c,a+d ‘1] (4.18)

is a Wilson polynomial, a polynomial of degree n in x? (cf. Wilson [37] except for the standardized
notation which is taken from Askey and Wilson [4, Appendix]). If the parameters a,b,c,d all have
positive real parts and if they are all real or one or both pairs of them consist of complex conjugates
then the functions x - W,(x?) form a complete orthogonal system of functions on R, with respect
to the weight function

| D@ +ix) T +ix) I'(c +ix)T(d +ix) |?
T(2ix) ‘

x (4.19)

So we have the identity
(4.16) = (4.17), (4.20)

where the constant in (4.17) is independent of A, but does depend on n,a,,8,u. Observe that the
orthogonality of the Jacobi polynomials and the isometry property of the Jacobi function transform
imply the orthogonality relations for the Wilson polynomials. On the other hand the isometry pro-
perty of the Jacobi function transform is implied by the orthogonality properties for the Jacobi and
Wilson polynomials.

If |B|>a+1 then one of the parameters of W, in (4.17) becomes negative. Then the discrete
terms in the inversion formula for the Jacobi function transform will correspond to discrete com-
ponents of the orthogonality measure for the Wilson polynomials. These discrete mass points do
indeed occur if one of the four parameters in (4.18) is negative, cf. Wilson [37, (3.3)].

Just as (4.5) was a limit case of (4.4), we can take limits in the identity (4.20) by replacing ¢ by
87"t and A by 8%\ and by letting 8—>c0. Then both the Jacobi polynomials and the Wilson polyno-
mials tend to Laguerre polynomials, which are defined by
(a+1),
n!

La(x):= Ei(=n,a+1;x) (4.21)

and which are orthogonal polynomials on R, with respect to the weight function xr~x®e™* .
Furthermore, Jacobi functions tend to Bessel functions
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To(x):= %ﬁ% oFi(a+1; —Yax?) 4.22)

and the Jacobi function transform pair to the Hankel transform pair

g = [FOIA) Q)" dr
0

© (4.23)
f@ = [gMJIA)A)* dr
0
The limit identity (cf. [29]) is
bod 2
[t e B LA T A ) dt = (— 1P N e WY LEQ?). (4.24)
0
This identity is quite classical, cf. [15, Vol.2, 8.9(3)].
We can summarize our results in Table 2 below.
Jacobi Jacobi function Wilson
polynomial transform polynomial
1 1 !
| 1 I
| 1 1
v v v
Laguerre Hankel _ Laguerre
polynomial transform polynomial
Table 2

Remark. There is another limit case of (4.20), in which Jacobi polynomials, Jacobi functions and
Wilson polynomials tend to Laguerre polynomials, Whittaker functions of the second kind and con-
tinuous dual Hahn polynomials, respectively (cf. [29, §5]).

5. The Askey scheme of hypergeometric orthogonal polynomials

There are many indication:s that the Wilson polynomials, introduced in (4.18), are the most general
orthogonal polynomials which can be written in terms of a ,F, -hypergeometric function. In Table
3 below we reproduce Askey’s scheme of hypergeometric orthogonal polynomials, as (almost) given
in Askey and Wilson [4, Appendix]. The arrows denote limit transitions. Of course, shortcuts can
be made in these limit transitions by at once going down more than one level.

Let us give the explicit expressions and weight functions of the orthogonal polynomials in the
Askey scheme.
(a) Wilson polynomials. See (4.18), (4.19).
(b) Racah polynomials.

Rno‘(-x); a,,B,y,G) = 4F3

—n,n+a+B+1, —x,x+y+8+1
ut 1)

a+1,B8+86+1,y+1

Ax):=x(x +y+8+1), B+8+1=~N, n=0,1,...,N.

The functions x - R,(A(x)) are orthogonal on {0,1,...,N} with respect to weights which can be
explicitly given.

() Continuous dual Hahn polynomials.

Si3%505,0) 1= @by @+l oFa [ T4 T T 1], ¢2)
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(a) Wilson (b) Racah
/ VAN
(Czjf;“gna;]‘g“s @ Cﬁ’;m“"“s () Hahn (f) dual Hahn
¢ | >
(31),;‘3:;1’;2;“ (h) Jacobi (i) Meixner (j) Krawtchouk
NS NS
(k) Laguerre (1) Charlier
\ /
(m) Hermite

Table 3

where a,b,c have positive real parts; if one of these parameters is not real then one of the other
parameters is its complex conjugate. The functions x rS,(x?) are orthogonal on (0, c0) with respect
to the weight function

T(a +ix)T(b +ix)T(c +ix) |?

TQix) (-3
(d) Continuous Hahn polynomials.
- (@+a),(a+b), —n,n+a+a+b+b—1,a+ix
;abab) = " ——————3F ’ - - 1], 54
Pa(x;a.b,a.0) := 1 n! 302 ata,a+b l G4

where a,b have positive real part. The polynomials p, are orthogonal on R with respect to the
weight function x - | I'(a +ix)I'(b +ix)|%. In Askey and Wilson [4, Appendix] only the symmetric
case (a,b >0 or a =b) of these polynomials occurs. Under these restrictions on a,b, the polynomials
(5.4) reduce to (2.14), up to a constant factor. The general continuous Hahn polynomials were
discovered by Atakishiyev and Suslov [5]. See Askey [2] for notation, but read a +ix instead of
a —ix in his formula (3).

(e) Hahn polynomials.

—n,n+a+B+1, —
Qn(x;a,B,N):=3F2[ n.ntatpil, xll], n=0,1,...,N, (5.5)
orthogonal on {0,1, . .., N} with respect to the weights
a+x)] (N—x+8
x»[ ! ][ VETE) (5.6)

() Dual Hahn polynomials.

Rix(x ot B 1 BNy o= 5Fy [TX X Rt Ll =

i.e., as (5.5) but with n and x interchanged. The functions x - R,(x (x +a+B+1)) are orthogonal
on {0,1,...,N} with respect to weights which can be explicitly given.

1 ] n=01,...,N, (57

(g) Meixner-Pollaczek polynomials.
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P@(x;0) : = M, F\(—n,a+ix;2a;1—e™ %), a>0, 0<¢<m, (5.8)
orthogonal on R with respect to the weight function x -»e® ™™ |T(a +ix)|*.
(h) Jacobi polynomials. See (4.6).
(i) Meixner polynomials.

M, (x; B,¢) := 1F\(=n, —x;B;1—c7"), 0<c<1, B>0, (5.9)
orthogonal on Z., with respect to the weights x ~(8),¢* / x!.
() Krawtchouk polynomials.

K,(x;p,N) := oF\(—=n, —x;=N;p~"), 0<p<1,n=0,1,...,N, (5.10)
orthogonal on {0,1, .. ., N} with respect to the weights
s (Y] pra-py = (5.11)

(k) Laguerre polynomials. See (4.21).
(1) Charlier polynomials.

C,(x;a) := 2 Fo(—n, —x;—a” '), a>0, (5.12)
orthogonal on Z ;. with respect to the weights x »a* / x!.
(m) Hermite polynomials.

H,(x) := (2x)" s Fo(—Yan, h(1—n); —x7?), (5.13)

. - . — 2
orthogonal on R with respect to the weight function x—e™ .

Note that the number of parameters on which the families of orthogonal polynomials depend,
declines from 4 to 0 as one goes down in Table 3. The families in the left half of the table (includ-
ing the Hermite polynomials) have continuous weight functions, while the ones in the right half have
discrete orthogonality measure. Jacobi, Laguerre and Hermite polynomials are the hard-core classi-
cal orthogonal polynomials, but most of the other families also have a long history. Only Wilson,
Racah, continuous Hahn and continuous dual Hahn polynomials are recent inventions. See
Andrews and Askey [1] for more information about the concept “classical orthogonal polynomial”.

The limit behaviour as shown in Table 3 is oversimplified, since, in fact, there are three types
of Wilson polynomials W, (x%;a,b,c,d) (cf. (4.18)), namely the type (a,b,¢,d), where a,b,c,d are real,
the type (a,a,c,d), where ¢,d are real, and the type (a,a,c,c), where we have two pairs of complex
conjugates. (Of course there are overlaps.) There are also two types of continuous dual Hahn poly-
nomials S,(x?;a,b,c) (cf. (5.2)): the type (a,b,c) with a,b,c real and the type (a,a,c). With this
refinement the left half of Table 3 can be rewritten as Table 4 below.

Each system of orthogonal polynomials p,(x) in the Askey scheme can be considered as an
orthogonal basis {p, } of some Hilbert space. After trivial transformations these Hilbert spaces take
the form L2(R), L*(Z.) or Lz({l, ...,N}). Expansion of an arbitrary element of the Hilbert
space in terms of the basis can be considered as an isometry of L2(R) or L*(Z,.) onto L*(Z ) or of
L*({1,...,N}) onto itself. The limit transitions in Tables 3 and 4 can now be considered as tak-

ing weak limits of the isometries. Sometimes the two Hilbert spaces do not change in this limit
transition, but sometimes they do, cf. in Table 3:

(®—(@), (H—@), (§)—() and (e)—(h) (from L2 ({1, .. .,N)) to L%(Z ) once or twice);
(&)->(h) (from L2({1,...,N})to LXR));
()—(m) and (i)—(k) (from L*(Z ) to L3(R)).

Schematically the possibilities for types of isometries and limit transitions are given in Table 5
below.

This table strongly suggests that isometries of L2(R) onto itself might also be obtained as limit
cases of isometries occurring in the Askey scheme. The following example shows that this is indeed



57

(al) Wilson (a2) Wilson (a3) Wilson
(a,b,c,d) (a,a,c,d) (a,a,c,c)
(c1) Cont. dual (c2) Cont. dual (d) Continuous
Hahn (a,b,¢) Hahn (a,a,c¢) Hahn
(g) Meixner- .
Pollaczek (b) Jacobi
(k) Laguerre
(m) Hermite
Table 4
L*({0,1,...,N}) L*({0,1,...,N})
, N
i
1
1
1
1
i
|
Voy
LA(R)
Table 5

possible, at least formally. We have
) —n, Y%(a+ B+ 1)+iX, a(a+ B+ 1) —i)
Jm 3Fy Y(a+ B+ 1)+nsh "2, a+1

1 ]
= L F | (a(a+ B+ D+iX, Bla+B+1)—ix;a+1; —sh?p),
where the limit is taken formally by power series expansion and termwise limits. Hence, in view of
(5.2) and (4.7) we obtain
S, (Y%A2 s a(a+ B+ 1), nsh ™2, (a—B+1)
im =
n—o (Ala+B+1)+nsh "21), (a+1),
i.e., Jacobi functions are limits of continuous dual Hahn polynomials. In §7 we will find many
more examples of unitary integral transforms with hypergeometric kernel as limits of hypergeometric
orthogonal polynomial transforms and we will be able to give an extension of the Askey scheme

such that these integral transforms are also incorporated. Moreover, in §6 we will find isometries of
L?*(Z) and L*(Z ) which are of hypergeometric but not of orthogonal polynomial type.

o*P(), (5.14)



58

6. Orthogonal special functions from group theory: two fundamental constructions

Let G be a Lie group and 7 a unitary representation of G on a Hilbert space J(#) (cf. §3). LetH
and L be closed subgroups of G and suppose that the restrictions of = to H apd L are multiplicity
free. Then we can write 7 restricted to H as a direct sum or integral of irreducible representations y
of H uniquely, and similarly for 8, cf. Table 6 below.

G,m
/ \
H,-Y L’8

Table 6

In the very special situation that all these representations y of H and 8 of L are one-dimensional, we
have two orthonormal bases for () (in the ordinary sense in case of a direct sum and in the gen-
eralized sense, with distribution vectors, in case of a direct integral). We write these bases as (v, }
with y in some subset of H and {w, 3} with 8 in some subset of L, such that

'”(h)vmy = 'Y(h)v'n',ya W(l)w'lr,a = S(I)WW.B- (61)

There are now two ways to construct orthogonal special functions adapted to the group G and its
subgroups H and L.

Method 1.
" (g, m) 1= (W(g)Vay, Was), ZEG, 7eG, yeH, deL. 6.2)

Here v,8 are considered as parameters which are held fixed, while we get orthogonality and dual
orthogonality with respect to the variables g and =, respectively. In case of a compact group G,
orthogonality of the functions ¢"(.,7) is just the Schur orthogonality for matrix elements of irredu-
cible representations and completeness of the system follows from the Peter-Weyl theorem. In case
of a noncompact group G, the integral transform with ¢"%(g, ) as kernel is a specialization of the
Fourier transform on the group and the inversion formula is a particular case of the Plancherel for-
mula on the group. Part of the game in all these cases is the restriction of ¢%(.,7) to a suitable
subset of G which (for the particular v,8) already completely determines the function. If this subset
can be identified with a subset of Euclidean space and the essential part of the Haar measure for G
can be determined on this subset, then we have made the identification of the orthogonal system
(6.2) with a system which can be described without group theoretic terminology.

If v, and w, 5 are generalized elements of () then the inner product in (6.2) can be given a
meaning as a distribution by testing it against C*-functions f with compact support on G. This
testing yields (7(f)v,.y, Wqs), then #(f)v,, is a C*®-vector and its inner product with the distribu-
tion vector w, 5 is well-defined.

Method II

YE7(1,8) 1= (M(g)ny» Was), ZEG, 7€G, yeH, del. (6.3)

Now g and « are held fixed as parameters, while y and § are the variables with respect to which
orthogonality and dual orthogonality are obtained. Note that {m(g)v,,} and {w, s} are both (gen-

eralized) orthonormal bases of J(w), so ¢57(y,8) is the matrix element or integral kernel of the uni-
tary transformation which maps the one basis onto the other,

Our requirement that the representations y and & are one-dimensional is too restrictive,
although it is surprising how many special functions already come out with this assumption, mainly
for G=SL(2,R), SU(2) or I,(R?). More generally we assume that we have two chains of closed
subgroups and corresponding irreducible representations, cf. Table 7 below.

Here we assume that the representation v; of H;, when restricted to H; ., has a multiplicity free
decomposition in terms of irreducible representations y;.; of H;.;, and the irreducible



G,m
/ AN

Hy,v L,.5

| |
Hj,7 L,.5,

1 1

1 [}

I 1
Hp. % Ly,8,

Table 7
representations Y of Hp which occur are one-dimensional, and similarly for the other chain. Thus
we obtain (generalized) orthonormal bases {v,, .} and {w,s 5} for 3m) and we can
write, on the one hand,

.....

[ - TN 8, —
¢T K "(g, 77) = ('”(g)vﬂ'.y. ,,,,, y,awvr,s, ..... 8,)’ (64)
where vy, . . ., %, 8y, ... ,Bq are considered as parameters, and, on the other hand,
VT, -8 0 8) 1= (Ve Ly, Was, 8 (6.5)

where g,m are considered as parameters.
Let us discuss a number of special cases of the constructions I and II.

fa. Let K:=H =L be compact and let (G,K) be a Gelfand pair, i.e., in each 7€G the trivial
representation 1 of K occurs at most once. Take y=8=1 in (6.2). Then ¢V 1(.,m) becomes a spheri-
cal function for (G,K), cf. (3.1).

Ib. Let K:=H;=L, be compact and take p =1, y; =1 in (6.4). Then ¢];5' """ % becomes an associ-
ated spherical function for (G,K), cf. (3.2).

Ic. Let H and L be non-conjugate subgroups of G, let H be compact and take y=1=46 in (6.2).
Then ¢"!(.,7) is a so-called intertwining function for the triple (G, H,L).

Id Let H;=L; (i=1,...,p; p=¢q). Then ¢'"" " %88 ) as given by (6.4) denotes a (general-
ized) marrix element of w with respect to the basis (v, v, }» Wwith the dependence on g
emphasized.

.....

Ila. Assumptions as in case Id. The function y#7 in (6.5) is again a (generalized) matrix element of
7, but here with the dependence on vy, . .. ,y, and &y, ... ,8,, emphasized.

IIb. Let H and L be non-conjugate subgroups. Then y&7 as given by (6.5) is called a mixed basis
matrix element (possibly generalized) of =. Note that, without loss of generality, we may assume
g=e in (6.5). Then the functions ¢*” in (6.5) are called the overlap functions for the bases

Vo, . .., n)and {wss 5, of I(m).

The spherical function case Ia is already so rich that whole books can be written only about
this case. See for instance Helgason [21], Faraut [18] and Koornwinder [27]. Let us here just make
the observation that spherical functions always satisfy a product formula

#(g1.md(g2.m) = [olg1kga)dk (6.6)
K

with corresponding commutative positive convolution structure for the K-biinvariant functions on G
and a linearization formula

Hg )P m) = [, $(g,m3)c(mi,mo,ms) diulms) (67)
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with ¢(mry,m,,73)=0 and corresponding positive dual convolution structure. If we can identify the
spherical functions with special functions then we have, of course, also two positive convolution
structures associated with the expansions in terms of these special functions.

In case II we may have the situation of a third subgroup chain. In the simple situation we
started with in this section, for instance, we may have a diagram as in Table 8 below and three
corresponding (generalized) orthonormal bases {unp}, {vxy} and {wss}.

G,m

/ 1\

F,B H,y L

Table 8
Then the three functions of type (6.3) (with g =e) related to these bases satisfy an identity of the
form

W pW28) = [ (U Vey) Oy Wa0) dCY). €8

In section 7 we will meet concrete examples of this.

Mixed case. There is a third way to obtain orthogonal systems from the inner products
(m(8) 1,4+ Was). Fix m and y as parameters and consider

X”’y(g! 8) = (W(g)vvr,y :wﬂ,S)' (69)
We might as well fix 7 and some u€3{(x) and then consider

xI™@Y) := @@uvay) X37(88) 1= (7(@)uWas). (6.10)
Then a Schur type orthogonality yields

[XT(&v)x3“(8,8)dg = const. (Wn,s,Vmy)- (6.11)

G

Again we have produced an identity involving three orthogonal systems: two of mixed type and one
of type II. It will turn out later that (4.16), (4.17) can be brought into this form.

As an example of (6.2) versus (6.3) consider G:=SU(2), the group of 2X2 unitary matrices
with determinant 1. (See Vilenkin [36, Ch. 3] as a reference for this example) Let
K:=H=L=U(l), the subgroup of diagonal matrices in SU(2). For each /€Z, there is, up to
equivalence, a unique irreducible unitary representation 7' of G with (2/ + 1)-dimensional represen-
tation space 3(7T"). We can choose an orthonormal K-basis (v_pv-isr, ... v} of 94 T"y such that

T'(diag(e ™", e% %))y, = ey, n=—[ —1+1,...,1L (6.12)

Then (T"(g)v,,v,) as a function of g&G is already completely determined if we know it for g res-
tricted to the matrices

. costay —sinlay
Uy = lsint%y coshy |

So write
"y, TY) 2= (T Uy V) =: Y7 (n,m). (6.13)

'(I‘;hg)r; 1t)he functions ¢™™ (fitting into case Id) can be evaluated in terms of Jacobi polynomials (cf.
-0)) By

%
n,m N — gl—m)!!l-‘rmz!
7 T) [ A=) +n)! ]
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X (sin Yay)™ ~" (cos Yhy)™ T P oMt (cosy), m +n,m —n=0. (6.14)

Orthogonality of the Jacobi polynomials is here an immediate consequence of Schur’s orthogonality
relations for matrix elements of the inequivalent irreducible representations 7".

On the other hand, as was shown in [26, §2], the functions "/ (fitting into case Ila) can be
evaluated in terms of Krawtchouk polynomials (cf. (5.10)) by

xlﬂ"(n,m) = [l-lz-lm]v2 [l?;-ln]%

X (= 1)+ (sin Vo) 7 2 (cos Vo) T T K, 4 y(n + 1;sin 2%, 21). (6.15)

The orthogonality of the Krawtchouk polynomials is now an immediate consequence of the fact that
T'(u,)is a unitary operator and the basis {v,} is orthonormal.

It is possible to deform the group SU(2) such that it tends to the Euclidean motion group
Io(R?), while the subgroup U(1) of SU(2) becomes the subgroup SO (2) of Io(R?) and the matrices
u, tend to the translations r,. Then the irreducible representations T! of SU(2) also tend to an
irreducible unitary representation my of I o(R?) (cf. the representation 7 of Io(R?) which we met in
section 3). The orthonormal basis {v_;v_;1|,...,%} of J(T) tends to an orthonormal basis

{Va}nez of I ) which behaves nicely with respect to the subgroup SO(2) of I O(IRZ). We obtain, by
taking limits in (6.14) or (6.15) that

IEI::(TD\(H)( /I)vn,vm) = ('”A(tx)vn’vm) = (_—l)m_njn +m(Ax)7 (6‘16)

where J,, . ,, is a Bessel function (cf. (2.1)). When we emphasize the dependence on A,x in J, 4+ »(Ax)
then we get the generalized orthogonal system which yields the integral kernel for the Hankel
transform (cf. (4.23)). However, when we emphasize the dependence on n and m then we get the
extremely simple orthogonality relations

o0
2 Jnrk()ni(x) = 8y, k€L, x€R, (6.17)

n=-—-00

which are not widely known, although they are hidden in the formula books. Indeed, start with

e o .
eI = S it ] (x) (6.18)

n=-c
(the Fourier series expansion implied by (2.2)). Hence
. . . o .
elxsmq)e—rlnp — 2 e'"¢1n+k(x)-
n=-—o0

So, by Parseval’s formula for Fourier series,

x 2m . G —
S Jaixk )T, 4i(x) = 2m)7! fe'xsme_'k" exsne g ~ile go = & ).
0

n=-—o0

By (6.17) we have, for each x €R, an orthonormal system {nw—J, +x(x)}kcz in L?(Z), which
consists of o F-hypergeometric functions and is a limit case of the Krawtchouk polynomials, but is
definitely not a system of orthogonal polynomials. Still it naturally fits into an extended concept of
the Askey scheme.

One may wonder what else might be included in such an extended scheme. Here is another
example, not (g'et) coming from group theory. From the Jacobi polynomials we build two orthogo-
nal bases of L*((0,1)). A simple computation yields the transition matrix:

1
[x"e(1=x)* PB(1—2x) x"* (1—x)"® PG (1—2x)dx
0

(=17 (B+ 1), T(a+m + 1) T(AB+8)+ 1) (—m +%(B—8)+ 1),
n!m! T(a+%(B+8)+2+m)
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—n,n+a+B+8+1, B(B+8)+1,%(B—-8)+1

XaF3 | g m+ath(B+8)+2, —m+H(B—8)+1

(6.19)

This yields an orthogonal system on L*(Z ) of hypergeometric but non-polynomial type. One can
derive a limit case of (2.8) with Laguerre polynomials at the left hand side and a 3/, of argument 1
at the right hand side.

7. Orthogonal special functions related to the discrete series of SL(2,R)

The paper [9] by Basu and Wolf is a rich source of special functions related to representations of
SL(2,R) (the group of real 2X2 matrices of determinant 1). In particular, the special functions
related to the discrete series of SL(2,R), discussed in [9, section 3], are very neat, much related to
the Askey scheme and a good illustration of the framework we developed in §6. I feel justified to
reproduce here some of the formulas in [9], since the orthogonality properties, limit relations and
identifications with known special functions are not much emphasized there.

The discrete series representations D;f (k ='%,1,3 /2, -+ -) of SL(2,R) are realized in [9, (2.5)]
as unitary representations on L?(R )

o |; ﬂf)(r) = :fof(s)e""’"b"(m)"’
Xexp (%ib ™ (dr? +as?)) y —1(b ™' rs)ds, fEL*(R.), b7~0, A
and, by taking the limit as 50
ey Ccl (c)l]f)(f) 1= (sgnay |a| TR f(la| T ), fEL ®Ry). (12
Further specializations of (7.1) and (7.2) yield:
oF rc ?}f Xr) = €% f(r), feL*Ry), 1.3)
i |, agn ]f)(r) = (sgna)* |a|™*f(la| '), feLl’R.), (1.4)
D FZ?S Z ~2§: 2 ]f)(r) = 7f<s>e""" (sin%y) ™! (s
gxe""&i(mtg'ﬁv)(rl'*sz) T _‘((:in by) lrs)ds, el R.), yenl, 5)
OF | —(l) ]f )r) = :fof ()™ T \(rs) (rs)* ds, feL(R.). (1.6)

The transformation (7.1) is built up from the Hankel transform (7.6) (cf. (4.23)) and the elementary
transforms (7.3) and (7.4) according to the Bruhat decomposition of SL(2,R):

abl [=b 0 1 0} ([0 -1 1 0
cd| T | o -pt| lbd1| 1 O] [b“a 1], ad —bc =1, b5%0. (7.7

Write G:=SL(2,R). There are three conjugacy classes of 1-parameter subgroups in G: the

{)arabolic, hyperbolic and elliptic ones. We choose representatives of these conjugacy classes as fol-
ows:

) 10
parabolic: N := {n_ := lc 1} | ceR};

e "B

hyperbolic: H := {hg := { 0 kB | BeR};
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o coshy —sinlay
elliptic: K := {u, := sinty  cosl%y | yeR}.

Following [9] we choose for L(R)=3(D; ) a generalized orthonormal N-basis {v}, | peR } and

H-basis {v#, | peR} and an orthonormal K-basis {v¥,, | m =k,k +1, - - - } such that
Di (e, = e’ V), peR,, n.eN, (7.8)
Dif (hpwvil, = ey, peR, hpeH, (7.9
Df (u i, = ek, m=kk+1,--- ju,ek (7.10)

Thus we are in the situation of Table 8 and the equations (7.8),(7.9),(7.10t ) are examples of (6.1).
See Table 9 below.

subgroups: N H K
labels of representations: p i m

s vetors
Table 9

For the N-basis we have

e =8, pERy, (7.14)
where §, denotes the delta distribution with support {p}. Then (7.8) follows from (7.3).
For the H-basis we have

v (r) = TR TR 250, peR. (7.15)
Then (7.9) follows from (7.2).

For the K-basis we have an expression in terms of Laguerre polynomials:

2m—k)_|"

— it -
vEa(r) 1= m k£ rk TR e A LRSI, m=kk ], e (7.16)

Then (7.10) can be obtained from the following generalization of (4.24) (cf. [16, 8.9(5)]):
7ta+% e La(IZ)e'Ai(colBY)(t’-H\z)J ( Ar )—Q‘—tﬁa’t
5 " “sinthy ’ sin Yoy

— (__l)n ei(-lr—'y)(n+'/&a+‘/&) )\a+'/& e—%)\z L:(AZ) (717)

Consider now the matrix elements (D (g)vEy ,vE\) and mixed basis matrix elements
(D (g)vEN » vEr), where L,L’ are two of the subgroups N,H,K and where k and g are held fixed as
parameters, while the orthogonality is considered in the labels A\’ of the subgroup representations
(cf. cases Ila and IIb of §6). In Table 10 below we summarize which orthogonal special functions
arise in this way.
Let us quote these results more explicitly from the paper by Basu and Wolf. In each of the follow-

a
ing formulas g denotes the matrix element ( c d) of G.

N-N matrix elements: Bessel functions:
(D @Why Vi, = e ™™ b1 (pp)t &7 @ 9 gy (b7 pp'), b, (7.18)
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Df (g)vl?{p’ Df (g)vlgn' D¢ (g)vlfM’
vi,, | Bessel functions | Laguerre functions Laguerre
(Mellin if g =e) polynomials
Vi, Meixner-Pollaczek | Meixner-Pollaczek
functions polynomials
Vi Meixner polynomials

Table 10
This follows immediately from (7.14) and (7.1). The corresponding integral transform is essentially
the Hankel transform.

H-H matrix elements: Meixner-Pollaczek functions:
(D (gwEy ,vil,) = elementary factors X 2 Fy(k —ip, k +ip'; 2k ; (ad)™"). (7.19)

We call the right hand side, in its dependence on p or p’, a Meixner-Pollaczek function because it
bears the same relationship to Meixner-Pollaczek polynomials (cf. (5.8)) as Jacobi functions do to
Jacobi polynomials (cf. (4.7),(4.67)). The corresponding unitary integral transform does not seem to
be widely known in literature.

K-K matrix elements: Meixner polynomials:
a?+bh +c2+42 -2
a?+br+ci+d2+2

(DFf (g ,vEy,) = elementary factors X M, _,(m'—k, 2k; ). (7.20)

N-H mixed basis matrix elements: Laguerre functions:
(Dif gwH, ,vl,) = elementary factors X | F(k +ip;2k ; —(2ab)"lip?), a,b7-0. (7.21)

Consider, for each peR, the right hand side as a function of p. It bears the same relationship to
Laguerre polynomials as Jacobi functions do to Jacobi polynomials. The limit case of (7.21) for
g—»e follows from (7.14) and (7.15):

Ok vly) = o R p R, (1.22)

This is the integral kernel of the Mellin transform, which is, by a trivial change of variables, just the
Fourier transform.

N-K mixed basis matrix elements: Laguerre polynomials.

In view of the Iwasawa decomposition G =NHK, these matrix elements, in their dependence on g,
are already determined when they are given for geH. As H acts quite trivially on v{’, (in view of
(7.4),(7.14)), it is sufficient to consider the matrix element at g =e. By (7.16) this equals

Ofn,vl,) = vE.(p) = elementary factors X L2 7!(o?). (7.23)

H-K mixed basis matrix elements: Meixner-Pollaczek polynomials:

2
Dif (e, vi.) = elementary factors X P, (u: 14 lactbdy —1,) 7.24
(D& (®)iem » Viou) = elementary factors «(p; Yoarccos( (ac+bd)2+1» (7.24)

Some remarks can be made at this stage. Of the six cases just discussed there are three
orthogonal polynomial cases (K-K, K-H and K-N), in correspondence with the fact that K is the
only compact group among K,H,N. The matrix elements satisfy second order differential equations
in the p-variable but second order difference equations in the y- and m-variables, where the
differences in the case of u are taken in imaginary direction. In case of a second order differential
equation (first row of Table 10), the spectral theory of differential equations with regular singulari-
ties can be used, but, in particular in the H-H case, there is missing an analogous spectral theory of
second order difference equations.

Both the conjugacy class of elliptic and of hyperbolic subgroups have N in their closure:

A0 cos(ch) —sin(cA)] (A% 0 ]! B cos(cA) —Asin(ch)
0 A% | |sin(cd) cos(cA) | [0 A% T |A7lsin(ed)  cos(cA)
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and

{ BV2ZAT  —1kV2 AR

BVZATT BV2IAT"

0 ) [%V2AT —1VINT)TE [ ch(ed) Ash(ed)
0 e™™ | |mV2a" 1V2A~ | T [AT'sh(ed) ch(ed)

10
tend both to c 13 Al0. There are corresponding limit transitions for the matrix elements of
D, with respect to the various subgroups. We display this in Table 11 below.

Meixner
polynomial

N N

Laguerre Laguerre
function polynomial

N

Bessel
function

M-P function M-P polynomial

Mellin

Table 11

Of course, the various matrix elements encountered here offer ample illustration of formula
(6.8). In particular, we obtain integral transforms sending Laguerre or Meixner-Pollaczek polynomi-
als to polynomials of similar kind. Moreover, the various cases are connected by limit transitions,
cf. Table 12 below.

M-P polynomial M-P function

(K-ED h transform (H-H) \
I

! M-P polynomial
' K-H

Y
Laguerre function /
— wansform (N-BD
1

- < - - — = = -

1
1
1
:
Laguerre \ !
polynomial (K-N) ! |
y v
\ Hankel
Laguerre
transform (N-N) polynomial (K-N)
Table 12

By (7.22) the Laguerre function transform simplifies into the Mellin transform for g =e. That par-
ticular case in Table 12 then corresponds to the well-known formula

-Ofn!e-"'"”

e-—'/zx(l'i'icotg‘p)xa L}a—l(x)x—l—i)\ dx
;  (a),
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= el@~NEe=%m (35in ¢)* ~* T'(a — i) P{O(\;9). (7.25)

8. Group theoretic interpretations of Hahn and Racah polynomials
Hahn polynomials have a group theoretic interpretation as Clebsch-Gordan coefficients for SU(2).
We can understand these coefficients as overlap coefficients for bases with respect to two different
subgroup reductions of SU(2)XSU(2). Let T' be the (2/+1)-dimensional irreducible unitary
representation of SU(2) (cf. end of §6). Denote the (1-dimensional) irreducible representations of
the subgroup U(1) of SU(2) by §,:

8, (diag (e "% ")) : = e neWZ. (8.1)
For SU(2)XSU(2), together with its irreducible unitary representations T"®T", Table 13 below
presents two subgroup reductions similar to Table 7.

SUQR)XSUQ), T"®T"

N

U()xu(l), §;, ®s;, diag(SU(2)XSU(2)), T*

diag(U()X U(1)), §;

Table 13

There are corresponding orthonormal bases {v;;,.;,;, } and {w, 1.} of I(T" ®T"). Consider the
overlap coefficients (cf. case IIb in §6)

4’1"1’(1'1,]2;1,]) 2= Wt s Vi)
It turns out that these overlap coefficients vanish if j7%j, +/,, so we can fix j as a parameter, put
Jj2:=j —j1 and only consider

YrBIGLD = Wh st s Vi jig =i )
By construction, the left hand side yields the matrix coefficient of a unitary matrix. It is usually
denoted by

Lo c . .
Cioio = Wt » Vindyjngs)»  J =12 (82)

a so-called Clebsch-Gordan coefficient or (with slightly different notation) a 3j-symbol. It can be
evaluated as

Y S Y N RS p
), = elementary factors X 3F, | | 2—l[+lzl+j-2+l, Zal, 11 '1 ], (83)

11 "Izgjglz—l] <1<11 +12; —11<j1 <11;j1 +j2 =j.
By symmetries the general case can be reduced to (8.3). It follows from (8.3) and (5.5) that we have
obtained Hahn polynomials:
CAy AN Tt PLutherB) o = elementary factors X Q,(x;a,B,N). 84)
The row and column orthogonality of the Clebsch-Gordan matrix yield the orthogonality relations
for Hahn and dual Hahn polynomials. See, for instance, Vilenkin [36, Ch.3] and Koornwinder [25]
for a more detailed treatment of Clebsch-Gordan coefficients.

Racah polynomials (cf. (5.1)) were first obtained when it was recognized that the Racah
coefficients for SU(2) can be expressed in terms of orthogonal polynomials (see Wilson [37]). Racah
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coefficients are the overlap coefficients for certain subgroup reductions of SU2)XSUR)XSU(2).
Write

G XGy XG;3 := SUQYXSURQYXSU2),
G = diag(G; X Gj), i),

Gy := diag(G, X G, XG3),

Ky := diag(UQ)XUQ)X U(1)).

Use again the irreducible unitary representations 7" of SU(2) and 8 of U (1) Then we have three

subgroup reductions for the irreducible unitary representations T ®T ®T" of Gy XG, XG5 as
given in Table 14 below.

G XGy,XGy, T" T @T"

G, XGy, T T" Gy3XGy, T ®T" G XG,, T ®T"

\/

/
Gy, T
Ko,8;

Table 14

There are three corresponding orthonormal bases w/, 1, 1,.1,, 6./ » Vi, s lyilysloj + Wiidplyilsidooj - NOW COD=

sider /y,l;,/3,lg as parameters and define the Racah coefficients or 6j-symbols as the overlap
coefficients

Ly

00 b e o Viod byt donf)- (8.5)
These coefficients can be expressed in terms of 4F3-hypergeometric functions of argument 1, and
can next be written in terms of Racah polynomials (5.1). The row and column orthogonality of the
Racah matrix yield the orthogonality relations for the Racah polynomials. See Biedenharn and
Louck [10, Ch.3,§18] for the general theory of Racah coefficients and Wilson [37, §5] for a proof
that these matrix coefficients can be expressed in terms of Racah polynomials.

There is a fourth subgroup reduction from G, X G, XG3, T'®T"®T" to K 0,0; via the inter-
mediate stage K; XK, XK3, §;,6;,,8; (K; being the subgroup U(l) in G;). This determines an
orthonormal basis {e;, ; ®e;, ;, ®e, ;,} (j1 +j2+/j3=)) for the representation space and we have

1y, ’z Ly
R Ll 2 (ul,,l,.l,;ll‘,.la.j ? elhjl ®e’z~jz ®e’svf;)

JisJasds
X (ey,,j, ®ey,j, Ber, i Vi, by ity 00.f) (8.6)

(in the spirit of (6.8)). The two overlap coefficients occurring as factors in the sum at the right hand
side of (8.6) can be written as products of two Clebsch-Gordan coefficients and they must yield
orthogonal systems. These orthogonal systems can be written as functions depending on two
discrete variables which are products of elementary factors and two Hahn polynomials. It would be
interesting to see if these functions coincide with the orthogonal polynomials in two variables built
from Hahn polynomials which are obtained by Dunkl [12, §4] in connection with harmonic analysis
on the symmetric group. Anyhow, (8.6) shows that the two orthogonal systems of functions in two
variables can be expanded in terms of each other by means of Racah coefficients. We will shortly
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meet other examples of this phenomenon.

It is natural to expect similar group theoretic interpretations for continuous Hahn and dual
Hahn polynomials and for Wilson polynomials. One might speculate about decompositions of two-
and threefold tensor products of representations of SL(2,R). As far as I know, it is still an open
problem to find such interpretations.

However, there is another group theoretic interpretation of Racah polynomials for which we
know how to imitate it in the case of Wilson polynomials. This interpretation was earlier given in
[28, §4] and Nikiforov, Suslov and Uvarov [31, Ch.5, §3]. Let harm(n,p) be the space of spherical
harmonics of degree n on the unit sphere SP "' in R?. Let O(p) be the group of real p Xp orthogo-
nal matrices and let #f be the natural irreducible unitary representation of O(p) on harm(n,p). Con-
sider in this way the representation =£ *¢*" of O(p +¢ +r). We have three subgroup reductions as
given in Table 15 below.

O@p+q+r)af tqtr

|
O +q)><0(r)/0(q +r)><0(p)\0(r +p)XO0(q)

p+q r +
b 1®7, T ®nf w,;j”@vr,‘,/z

O(P)XO0(q)X0(r),nf ®n)l =,

Table 15
Here

n—my,n—myn—m3,m —Ny—N3,My—N3—N|,M3—N|—Ny,n—N|—Hy—N3E2L,. 8.7

Fix n,ny,ny,n3 in Table 15. Corresponding to the three subgroup reductions there are three
orthonormal bases for (£ *4*") and the overlap coefficients turn out to be Racah coefficients
again. This can be shown by realizing #f 9" as a representation on harm(n,p +¢ +r) and then
giving explicit expressions for the three bases in terms of products of Jacobi polynomials.

In fact, by iteration of [23, Theorem 4.2], we obtain that harm(n,p +¢ +r) is spanned by the
functions
RPXRIXR D87 = 3 (x,y,2) s frmr™™ (x,0,2) YE, (x) Y4, (0) Y}, (2), (8.8)
where ny,n,,n; satisfy the inequalities (8.7), Y£ , Y, Y, are harmonic homogeneous polynomials
of degree n,n,,n3, respectively, and
2

Fu™ (p,2) 1= ([x |24 |p | PR plla—tin e miin) g )
|x |2+ |y |?
Yar — 35 - 3
X Py BTN (191212), xeRP, yeRY, zeR', |x |2+ |y |2+ |z |2 =1, (8.9)

with P{*? being a Jacobi polynomial. By cyclic permutation in (8.8),(8.9) we get, in correspon-
dence with Table 15, two other families (g,,*" YA Y{ Y7 } and {h,m>™ YE Y4 Y! } of func-
tions which span harm(n,p +¢ +r).

Fix ny,ny,n3, Y§,Y{, ¥, and write
wr=|z | vi=|y |» vi=hn —n —ny—n3), p=Yims—n, —ny),
Wi=lh(my—n3—m), a:=thr —1+n; B:=Y%q—1+n, y:=Y%p—1+n,

Then f, "™ (x,y,2) can be written as
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PR (uy) i= PBY 24D (1 —20) (1—uy PBV (12 1iu) (8.10)
and h,:;;,'l""’ (x.y,z) as
O (uv) 1= PELFar WD (1 —2p)(1—v)¥ P,gm(l—z—lll"—iv_—”). 8.1D)
Cor/x;putation of the overlap coefficients now amounts to expanding Q% in terms of the functions
PJaY.
Observe that, for arbitrary ,B,y>—1, both {P&E¥}, _o,  and {Q%E"}, =1 ... . form
an orthogonal basis of the space of all orthogonal polynomials of degree n on the triangular region
{(u,v)eR? | u,v, 1 —u —v >0} with respect to the measure u*vA(1—u —v)'dudv. The two families

are obtained by choosing two different ways of orthogonalizing monomials. (In fact, there are three
such families, reflecting the symmetry of order three of the triangle.)

Thus, for arbitrary a,8,y>—1 there is an expansion
14
2B (uy) = 3 BBy PEBY (uy). 8.12)
»=0

The expansion coefficients are then obtained by elementary computations after putting #:=0 in
(8.12). The result is

eBY 1= elementary factors X R, (W +a+y+1);v,8 —r—La+y+r+1), (8.13)

where R, is a Racah polynomial. This result was first obtained by Dunkl [13, Theorem 1.7] as a
limit case of a similar formula for Hahn polynomials in two variables.

Following the limit transitions in the Askey scheme (Table 3) we can take limits in (8.12) and
(8.13). Thus we obtain that the two orthogonal bases

(uv) > LE_ (W) LE(v)
and

u

+v)

for orthogonal polynomials of degree n on R, X R, with respect to the measure u*vfe ™" dudv
can be expanded in terms of each other with Hahn polynomials as coefficients. This was obtained
by Suslov [33] in connection with the Schrédinger equation for the Coulomb prcblem.

() > LEXEF2m 1y 4y (u +v)y" PP (1-2 »

There are similar expansions for two orthogonal bases of the orthogonal polynomials on the
unit disk with respect to the measure (1 —x?—y?)* dx dy (using symmetric Hahn polynomials) and
for two orthogonal bases of the orthogonal polynomials on R? with respect to the measure
exp(—x%—y?)dx dy (using symmetric Krawtchouk polynomials).

9. Group theoretic interpretation of Wilson polynomials

The group theoretic interpretation of Racah polynomials related to Table 15 in §8 admits a (formal)
analytic continuation such that it becomes a group theoretic interpretation of Wilson polynomials. I
will now summarize the results of [28, §5], where this interpretation was given.

Let Hyp(p,q) := {(x,y)eR?XRY | —|x |2+ |y |*=1}, an hyperboloid, and denote by
harm(A;p,q) the class of hyperboloid harmonics of degree iA—'(p +4g)+1, i.e. the class of functions
on Hyp(p,q) which are restrictions of C®-functions on {(x,y)eR? XR? | —|x |2+ |y |>>0} that
are even, homogeneous of degree iA—'%(p +¢)+1 and annihilated by the differential operator

2 2 2 2
O d
ax 1 8xp Byl ayq

Let O(p,q) be the group of linear transformations of R? ¥¢ which leave the form — |x |2+ |y |* on
R? XRY invariant. Then O(p,q) naturally acts on harm(};p,q). If A>0 then we can associate an
irreducible unitary representation 7{? of O (p,q) with this action (cf. Faraut [17]).
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Consider in this way the representation 7§ *¢" of O(p +¢,7) on harm(\;p +¢,r) . By formal
analytic continuation of Table 15 one is led to three remarkable subgroup reductions of this
representation. See Table 16 below.

O@p+qr), ™4

P N

0@ +9)X0(r) 0(g,r)x0(p) O(P r)X0(g)

ng‘l®7ﬁ\¢'g‘r®fn—.§ /'rY "®md

OP)XO0(q)XO(r),nf @nf @m§

Table 16

For simplicity we have restricted ourselves to the case that the representation of the subgroup
O(p)X O(q)XO(r) at the bottom of Table 16 is trivial. (The representations m in Table 16 are
representations on spaces of spherical harmonics as in §8.)

Now fix A>0 and p,q,r in Table 16. The three subgroup chains determine three different
(generalized) orthonormal bases for the O(p)X O(g)X O (r)-invariant elements in harm(A;p +g¢,r).
These basis elements have explicit expressions which are analytic continuations of (8.8),(8.9) (with
the Y-factors trivial). In fact, the basis functions ¢, (meZ. ) with respect to the first subgroup
chain and v , (1R ) with respect to the second subgroup chain are given,up to a constant factor,
by

Srm(itv) = {0 TOIN =LA =) areshy (y +v)A) (u + vy PP~ 1R~ “:;” ) ©.1)
du(uy) = of¥~ 1"")(a.rcshu’&)(u + 1)hin g )T
X ¢, (Y2q — 1,%r —1)(arcsh ——), 5.2)

(u +1)

where (x,5,2) € Hyp(p +¢,r) CRP XRIXR" and u:=|x |?, v:=|y|% The functions P{*P and
$5*P) are Jacobi polynomials (4.6) and Jacobi functions (4.7), respectively.

The systems {¢j » hner, .mez, and {n,}ruer, can be viewed as generalized orthogonal bases
for L2 on (R, )* with respect to the measure

w1y Lty +v) " dudy.

They are built as a kind of semidirect products from two orthogonal systems in one variable, just as
the orthogonal polynomials (8.10),(8.11) on the triangle are built from Jacobi polynomials. This
reduction to the one-variable case also makes it easy to invert the integral transform with (9.1),(9.2)
as kernel. In (9.2) one of the contributing one-variable transforms is the Jacobi function transform

(4.12) with 8 imaginary. This case of the Jacobi function transform seemed to be unobserved before
it occurred here.

The overlap coefficients between the systems in (9.1) and (9.2) can be given by Wilson polyno-
mials:

o
W, = O, elementary factors
m=0
+2N p—2UN g+r—2 +2
X Wl s B2 B8 A2 AT, 03)

with weak convergence, in analogy with (8.12) and (8.13). Essentially, the proof is also similar to
that of (8.13), but much more complicated. Instead of restricting the arguments in (9.3) to one of
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the boundary lines of (R4 )%, one has to restrict arguments to a boundary line of (R4) at infinity,
i.e., one has to study the asymptotics of (9.3) for (u,v) large. In this way the identity (4.16)=(4.17)
can be interpreted as an asymptotic boundary case of (9.3) and the proof of (9.3) can be reduced to
this identity.

Remarks.

1. The case p =g =1 of (9.3) and its group theoretic interpretation were earlier obtained by Boyer
and Ardalan [11].

2. One remarkable difference of (9.3) with (8.12) is that (8.12) restricted to u =0 does not have an
interpretation as a unitary transform between two orthogonal bases for L2-spaces.

3. There is a limit case of (9.100, (9.2), (9.3) in which y, , tends to a product of two Laguerre func-
tions (cf. (7.21)) and ¢, ,, to a product of a Laguerre function and a Jacobi polynomial. The Wilson
polynomial in (9.3) tends to a continuous Hahn polynomial. See Suslov [33].

4. There is a challenging problem left by Table 16: What are the overlap coeificients relating the
second and the third subgroup chain in Table 16 to each other? They might be naturally called
Wilson functions, but what are they like? Maybe of 4F;-type, but probably of an even higher
hypergeometric type. One may expect that everything in this paper can be obtained as a limit case
of these yet virtual Wilson functions.
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