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APPELL POLYNOMIALS AND THEIR RELATIVES
MICHAEL ANSHELEVICH

ABSTRACT. This paper summarizes some known results about Appelhpatyals and investigates
their various analogs. The primary of these are the free Appl/nomials. In the multivariate case,
they can be considered as natural analogs of the Appell polials among polynomials in non-
commuting variables. They also fit well into the frameworKrefe probability. For the free Appell
polynomials, a number of combinatorial and “diagram” fota®uare proven, such as the formulas for
their linearization coefficients. An explicit formula fdndir generating function is obtained. These
polynomials are also martingales for free Lévy procesBes.more general free Sheffer families, a
necessary condition for pseudo-orthogonality is givenothar family investigated are the Kailath-
Segall polynomials. These are multivariate polynomialsiclv share with the Appell polynomials
nice combinatorial properties, but are always orthogomhkir origins lie in the Fock space repre-
sentations, or in the theory of multiple stochastic intégréiagram formulas are proven for these
polynomials as well, even in thedeformed case.

1. INTRODUCTION

Let 1 be a probability measure on the real line all of whose moments

mali) = [ 4" duo)

are finite. Then there are at least three natural familieslyifwmials associated to such a measure.
The most familiar ones are the orthogonal polynom{dts} .. This is a polynomial family (that
is, P, has degree) such that

(PouPa)y = [ Pua)Pule) du(o) =0

for n # k. Two standard normalizations are to require the polyn@nialbe monic or to be
orthonormal. By the spectral theorem for orthogonal polgiads, such (monic) polynomials satisfy
a three-term recursion relation

Poi1(x) = 2P, (x) — a, Po(z) — By Po_1(x),

whereq,, € R, 3, € R, are the Jacobi parameters, aid = 0, P,(z) = 1. The Jacobi parameters
and the moments of the measure can be expressed in term$aftbac and their properties related
to the properties of the measure and the orthogonal polyaienfor example using the Viennot-
Flajolet theoryl[22], 46, 47]. A typical question in this diten is to find explicitly thdinearization
coefficients

[ Pa@Pu@). Pu(o) duta),
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Already the proofs of the positivity of these coefficients guite subtle[[19] and they are known
explicitly only in very rare case§ [28].

Another natural and very classical [10] polynomial famigsaciated tq. is its family of Appell
polynomials, which have the exponential generating fuamcti

[e.e]

1
(1) AW ()" = exp(wz — log M,(2)),
n=0
where
<1
My(2) = D —ma(p)2"
n=0

is the exponential moment generating function.oft is easy to see that an equivalent definition is
via a recursion relation

@ AP () = 2 A (@) = 3 (”) k(1) A®) (2)
k=0 k
andA©(z) = 1. Here,r(1) are the cumulants (semi-invariants) of the measure. Uthi&gdacobi
parameters, the cumulants are obtained from the momertte ofi¢asure via a simple relation
1
Erk(ﬂ)zk = log M,,(2)
k=1 """
(both sides considered as formal power series). Many classion-orthogonal) polynomial fami-
lies are Appell. They arise in finite operator calculus [4@] éhe study of hypergroups, in numerical
analysis (Bernoulli polynomials are Appell), but also iopability theory, in the study of stochastic
processes [32], non-central limit theoreimsd [13, 25], artdnahexponential families [39]. From the
combinatorial point of view, they have nice linearizatiordanultinomial formulas.

The third family of polynomials has not apparently been Exjy defined before, although it ap-
pears implicitly in the papef [43]. For this reason, we willdthem the Kailath-Segall polynomi-
als. These are polynomials in (infinitely many) variables},- ;. They are indexed by all finite
sequences of natural numbets- (u(1),u(2),...,u(n)),n > 0, and defined by the recursion

with initial conditionsWy, = 1, W; = x; — r;. As usual,u/(?) means “omit thei'th term”.
Note thatlV; contains a single monomial of the highest degride= " , u(i), namelyz; =
Ty(1)Tu(2) - - - Tu(n), @Nd that it is a polynomial in the variables

{xi ti=Y_u(j) for somes C {1,2,...,n}} .
jes
The origin of these polynomials is again in probability theevhere they appear as certain multiple
stochastic integrals. Moreover, they share a number ofgutigs with both the orthogonal and
the Appell polynomials. Their recursion relation is detared by the cumulants, and they have
nice linearization properties, just like the Appell polynials. In fact, we will show thati(™(z,)
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is a linear combination of the Kailath-Segall polynomia®n the other hand, the polynomials

-----

specifying its multivariate cumulants:
ra(ut™) = iz (1)

See Remarkl1 for the fashion in which the measufe is determined by its cumulants. ffis
infinitely divisible, (™) is a positive measure. Then

W 2y, xg, .., x))WE (g, 29, ... 2p) dp™ (21, 29, ..., 20) =0
RTL
if k& <n.

A generalization of the Appell polynomials are the Sheffelypomials. LetU be a function with
a formal power series expansion such thdt) = z + higher-order terms. Then the Sheffer
polynomials are defined via their exponential generatimgtion

=1

n!
n=0

P, (2)2" = exp(zU(2) — log M, (U(2))).

Equivalently,

U™(9:)(P,) = nP,—y and (P,, 1), = 0 forn > 0.
They share with the Appell polynomials the multinomial expi@n properties and the relation to
stochastic processes (see Sediioh 2.4). Among the Apfdghgmials, only the Hermite ones are
orthogonal. Meixner’s classic characterizatibnl [34] dixss all the orthogonal Sheffer polynomi-
als. There are also multivariate versions of this statef@jt

We start the paper by describing some properties of andoetabetween the three aforementioned
families of polynomials. In the Appell and Kailath-Segadises, natural starting points are in fact
certain multi-linear functionals on more general algepwasch can then be specialized to polyno-
mials. These families have similar but different properti€or example, the Appell linearization
coefficients are sums over non-homogeneous partitionde e Kailath-Segall linearization co-
efficients are sums over inhomogeneous partitions. A numiiie results in Sectidd 2 are known
and so are stated without proof.

As mentioned above and described in more detail below, b@Appell and the Kailath-Segall
polynomials arise in probability theory and are relatedhtoriotion oindependence.et o be areal
linear functional on the algebi@[x, | of polynomials in two variables. Then y are independent
with respect tap if for any P, Q,

¢ [P(z)Qy)] = ¢ [P(x)] ¢ [Qy)]-

In the early 1980’s, Dan Voiculescu introduced a paralldleally very different notion ofree
independencf48]. Let » now be a real linear functional on the algeBtér, y) of polynomials in
two non-commutingariables. Themr, y are freely independent with respecttaf whenever

p[P(2)] = el@i(W)] = ... = ¢[Pu(z)] = ¢ [@n(y)] = 0
and@Q), P, each are either centered or scalar, then
0 [Qo(y) Pr(x)Q1(y) - . . Pu(2)Qn(y) Paga(x)] = 0.

A whole theory offree probability[49], based on this notion, is by now quite well developed. It
turns out that there are “free analogs of” the Appell and &hilSegall polynomials, which, very
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roughly, are obtained by replacing commuting variableswibn-commuting ones, exponential
generating functions with the usual ones, and exponentigtsresolvents. Such a replacement,
however, is quite non-trivial. The analysis of the precgdirction is repeated in Sectidn 3 for the
free case, except that in this case most of the results are Remthe free Appell polynomials,
we find an explicit form of the generating function and vasaacursion and “diagram” formulas.
As expected, these formulas are in most cases based onttbe tdtnon-crossing, rather than all,
set partitions (but not always, compare for example eqoafi@) with Propositioi12(c)). For
the free Sheffer polynomials, we find a necessary conditowrtiem to be pseudo-orthogonal.
Consequences of these results for free probability will éeetbped elsewhere.

Comparison of formulas from the preceding two sections shihat many of them appear as par-
ticular cases ofi-interpolated forms, with the usual case corresponding+o1 and the free case
corresponding tg = 0. On the other hand, many other formulas do not appear to adrsitch an
interpolation. In Sectiofl4, we define tii\ppell andg-Kailath-Segall polynomials, and show that
some of their properties carry over to the whole interpaldéenily. Some of the other properties,
at least at present, do not. Therefore this section is nagsmore tentative than the preceding
ones. We only consider single-varialglé&ppell polynomials, and find an explicit form of the gen-
erating function for them, as well as thenalogs of the Meixner families. For theKailath-Segall
polynomials, we find various recursion and “diagram” forasulFinally, in the appendix we show
thatg-Appell polynomials are not linear combinations of fh&ailath-Segall polynomials, unlike
in the classical and the free case. As a consequence, thegtdaamartingale polynomials for the
g-Lévy processes.

Acknowledgements: Thanks to Mourad Ismail, Marius Junge, and Michael Skeidei$eful and
enjoyable conversations. Thanks also to the referees fandar of helpful suggestions and criti-
cisms, especially the correction in Definitidn 5.

2. CLASSICAL POLYNOMIAL FAMILIES
2.1. Notation. We will use multi-index notatiow = (u(1),u(2),...,u(k)). Denote by
Ay, ={@eN:|d =n}

a basic simplex (whereé ¢ N). For two multi-indicesi, v, (u, v') will denote their concatenation.
Forue N*", B C{1,2,...,n}, B={v(l) <wv(2) <...<w(k)}, denote

(@ : B) = (u(v(l)),u(v(2)),...,u(v(k))).

For a subsetl C B, A° will denote the complement of, whereB is understood.

2.1.1. Partitions. A set partition of a se$ is a collection of disjoint non-empty subsets®#hose
unionisS. If S'is an ordered set and= { By, Bs, ..., B;} is such a partition, we order the classes
of = according to the order of their smallest elemenisy(B,) < min(B;) < ... < min(By).
We will consider the following three lattices of partition8y P(n) we’ll denote the lattice of
all partitions of the sef1,2,...,n}. Form € P(n), Sing(n) is the collection of single-element
(singleton) classes of.

By NC(n) we’ll denote the lattice ofion-crossing partitionf31]. These are the partitions with the
property that

P<j<k i~k LIS = i<l<k
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For a non-crossing partition, a classB is calledouter if for any other class”' € «, if i, € C,
k € B, and: < k, thenj < k. Otherwise a class is called inner. The outer classeswill be
denoted byOuter(r).

The third lattice of partitions, which we use mostly for rtadaal convenience, is that afterval
partitions, all of whose classes are intervals of consecutive intedéris lattice/nt(n) is naturally

.....

Int(n) the interval partition

{(1,...,s<1)),(s<1>+1,...,s<1)+s<2)),...,( s(i)—i—l,...,n)}.

There is a partial ordex onP(n) which restricts to the other two lattices. We denote the ksl
element inP(n) by 0 = {(1),(2),...,(n)} and the largest one by= {(1,2,...,n)}. We denote
the meet and the join in the lattices byandV, respectively. In particular,

k-1

=1

. TANO . LT .o .
i~ jei~jandi~ j.
Definition 1. Leto € P(NV) be a partition. For a partitiom € P(N), we say that

(a) AclassB € 7 is homogeneouwith respect tar if B C C for someC € o,
(b) = is non-homogeneouwsith respect tar if 7 has no homogeneous classes with respegt to

(c) 7 isinhomogeneouwith respect tar if 7 A o = 0, thatis,i ~ j =i £ j,
(d) = is connectedvith respect tar if 7V o = 1.
See Figuréll.

a

< N N

©

FIGURE 1. With respect to the partitiod(1,2,3), (4,5,6),(7,8,9)}, partitions
which are (a) non-homogeneous, connected, (b) inhomogeneonnected, (c) not
connected.

2.1.2. Extended partitions and restricted crossingor S C , call the pair(S, 7) an extended
partition; S is to be thought of as the collection of classes dbpen on the left”. See Figuié 2 for
an example.

Forl < k < m < n, define the restriction

(S, @) =(S,7) | {k,...,m}



6 M. ANSHELEVICH

& d
\=4 \=4 \=4 \=4 \=4 \=4 \=4 \=4 \=4 \=4

FIGURE 2. An extended partition of0 elements with2 left-open classes andl
restricted crossings.

as follows:
B erit B=Bn{k,...,m},Bem,
B'eSifBeSorBN{l,....,k—1} #0.
Define the number of right restricted crossings.8fr) at the point: as follows:
0, if k€ B,k =max(B)ork+1 € B,
rc(k,S,m) =< |8, ifkeB,j=min{i € B,i >k},
(Slvﬂ-/) = (577T) [ {k+ 17"'7j - 1}
Letre (S, 7) = > ,_,rc(k, S, n). Note that also
re(S,m) =rc(m) + Z |C € 7 :min(C) < min(B) < max(C)]|,
BesS
whererc () = rc (0, 7) (see [14]).
2.1.3. Cumulants.A measurey on R all of whose moments are finite induces a positive semi-
definite unital linear functionab on R[z| by ¢ [2"] = m,,(x). Positivity will not play a part in most
of the results below. Thus, our starting object is a lineactional o, which does not necessarily

correspond to a positive measure, although we still asshatattis unital, [1] = 1. Throughout
the paper, the functional will be fixed, and so will frequgrie omitted from notation.

In the multi-dimensional situation, let be a general unital real linear functional on some real
algebraA. ForX;, X,,..., X, € A, denote by

M[Xl,Xg,...,Xn] = (p[XlXQXn]
thejoint momenof (X, Xs, ..., X,) with respect tap. Also, form € P(n), denote
Mo [Xy, Xs, ... X, = [[ MIX: :i € B]
Ben

the partitioned moment afX;, X», ..., X,). Here, in the case whed is hon-commutative, the
factors in[[,.; X; and the terms i{ X, : i € B} are taken in order. For eaah M, is ann-linear
map. Given)/, define the correspondingint cumulantrecursively by

(4) RX1, X, .., Xp] = M[X1, Xs,. ., Xo] = ) Re[X1, X, X,

weP(n)
£l
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where the partitioned cumulanfs, are defined as above, and involve only cumulants of lower
order. These are also multi-linear maps.

The multi-index notation will be used extensively but cateintly. Throughout the paper
Xg = Xy Xu@) - - Xuk),
(5) M[Xz] = M[Xuqy, Xu@): - > Xumw) = M[Xu@) Xu@) - Xuw);
R[Xg] = R[Xuw), Xu@), - Xuw)],
R[(Xa)] = R[Xum) Xue) - - - Xuw)

On the other handk = (x4, xo, .. ., x,) Will denote the total collection of variables involved, and
same forz, w, X, etc. Finally, forB C {1,...,n},

Ip = Hxi,
i€B
the product taken in order of increasing indices.

ForS = {B,..., By} acollection of disjoint subsets §f, ..., n} (for example, a partition) is
always ordered according to the order of the smallest eleswdithe subsets.

Remark 1. If  is a measure oR” all of whose moments

mal) = [ wadn(x)

are finite, its cumulants;(..) are defined in terms of the moments by equatidn (4). Note thdéw
the functional:; — mgz(u) is determined by its cumulants, again via equation (4), teasure:
itself may not be. The determinacy of the moment problem éntlultivariate context is a difficult
question, see [20, Chapter 3] and their references.

2.2. Appell polynomials. Appell polynomials are defined by equatiofk (1)0r (2). Thesiséy the
following properties, easily obtained using the genegatimction:

(6) 0, A™ () = nAV(z), ¢ [A(")} = Ono,
o — ~(n (k) (1
) > (Jre-ea®ie)
(8) A(z) =3 (m™ ), g,
k=0
where
_ - 1 n

and the notation is suggested by the relation

k=0
See the original paper [110], whefé (6) was taken as the definibr [25].
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Remark 2. The following result of Appelll[1D], developed in great débky Rota et al.[[40], appears
to have no free analog. L™}, { B} be two families of Appell polynomials, with exponential
generating functions’, G, respectively. Define a new family of ponnomie{ISAB)(">} as follows:
expandA™ in the powers ofr, and for each* substituteB*). Then(AB)™ = (BA)™, and
these polynomials are again an Appell family, with exporaigienerating functio'G.

2.3. Multivariate Appell polynomials [13,/25] Let.A be a commutative real algebra with a unital
real linear functional. We will usually call elements of such an algelbbaadom variablessince
any collection of real-valued random variables on some gldity space, such that all of their
joint moments are finite, generates a commutative real edgeiih the expectation functional on
it. Forn > 1, define ann-linear mapA : A" — A as follows. ForX;, X,,..., X, € A,

A (X, Xy, ..., X,) isinfact a symmetric polynomial ifX;}"_,, which we denote by

Ax, Xoo 0 (X1, 22, .., T0)
It is determined recursively by
9) O Axy XX (T1, T2y ) = Ay x5 x (T By, @)
and
(10) e[A(Xy, Xs,..., X,)] =0

forn > 0, whereAy = 1 is understood. The advantage of this notation is that we casider only
the algebra generated Ky}, (and1), and the restriction af to this algebra can be thought of

as the joint distribution of these random variables. #ar {1,2,..., n}k, define the polynomials
Ag (X) = Axum,xu@) ..... Xo(r) (%(1), Ly(2)s - - - ,%(k)) .
Thus

Az (X) = A (Xu@)s Xu@)s - - - Xuw)) -
Note that this notation differs from the usual onk; depends in fact only on the number of occur-

rences of each index(i), and not on their order; in the usual notation one writes déwemumber
of such occurrences. Our notation is better suited to thecoommutative case.

The following are some properties of the multivariate Appelynomials. Denote

X+ Z = Z Tizi,
=1
and denote by
1
R(2)=D>, >, hXd=

the exponential cumulant generating function. Note thatfs commute and? is symmetric in its
arguments, so each term

n

2 z;(z)...z;("), Zi(j):/{;

j=1
appears
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times. So this notation coincides with the usual one.
Single- and multivariate Appell polynomials are related vi
A (z) = Ay o (2,2, .. ),
where the single-variable polynomial corresponds to thenerd sequence:,, = ¢ [X]]. Also,

(11) 1+Z o Z A :exp(x-z—R(z)),
ved{l,...,
(12) A(Xj, Xq) = XA (Xﬁ) — Y RIXj, XawnA (X@ve) |
Vc{l,...,n}
=Y > A Xap) [[ BiXaol= Y. AXav) Y Md[Xave),
m€P(n) Ben Cerm, Vc{l,..n} WEP(VC
C+£B
(13) = > > Xap(-)"T] RiXa
m€P(n) BeT cemr,
C#B
Here V¢ is the complement o in {1,...,n}. Equation[Ill) looks slightly unusual because of

our different notation. The single-variable polynomidksesatisfy a binomial formula: iK', Y are
independent,

14 AM(X 4+Y) = (") A®(X) AR (),

(14) (X +Y) kZ:O AP (X)ATE(Y)

This is, of course, the short-hand notation for

n

A ta ) =3 () AP @Ay )

k=0

Remark 3. For fixed { Xy, X»,..., X,,} C A, their joint distribution is the functionapbx on
R{xq, zs,...,z,) determined by

ox[zal = o [Xa] .
Any such functionat) onR(z1, 25, ..., z,) can be included in a one-parameter fandily; },; ...,
in the following fashion. Letk denote the joint cumulants @fcy, z», ..., x, } with respect to).
Then define
dilea) = D ] Rlz@s
wEP(n) Berm

That is, the joint moments dfry, xo, . . ., x,, } undery, correspond to the joint cumulart® via re-
lation (4). If all the linear functionalg, are positive, the corresponding measures form a semigroup
with respect to the convolution operation. They are alsagmat distributions of the corresponding
Lévy process (see Sectibn2.4). Alb,} are positive if and only ify itself is infinitely divisible.
Without the positivity requirement, any functional is dbgaically infinitely divisible. So any family

of Appell polynomials naturally comes included in a onegwaeter familyA™ (-, ).

A similar construction, based on relatidn19) can be dortbénfree case (see Sectidn 3). In this
case, if all the linear functionals; are positive, the corresponding measures form a semigroup
with respect to the additive free convolution operatiord #mey are marginal distributions of the
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corresponding free Lévy process. This is the cageitéelf is freely infinitely divisible. However,
in the free one-dimensional case, more is true: for any pesit, v, is positive fort > 1 [35].

2.4. Martingales. Let{X(?)}, ., be aLévy process, thatis, a stochastic process with statjo

independent increments. Assume that all of the joint moment{ X (¢)} (with respect to the
expectation functional) are finite. L&}, be the conditional expectation onto the (von Neumann)
algebra generated byX (s)},.(, ,» Which extends to an orthogonal projection on the spacel of al

square-integrable random variables. Then for each™ (X (t)) is a martingale, that is,
B, [AD (X (£))] = A® (X (s)).

The following are two elementary proofs of this fact Mf(z) is the moment generating function for
X (1), then the moment generating function fo(t) is M (z)'. So using the generating functidd (1)
of the Appell polynomials,

E; [exp(X (t)z — tlog M(z))]
—E, [exp((X(t) —X(s))z — (t — 8)log M(z)) exp <X(s)z ~_ slog M(z))}
= exp(X(s)z — slog M(z))
sinceE [exp((X(t) — X(s))z)] = M(2)'~*. On the other hand, using the binomial propelfy (14),
E, [A™ (X ()] = E, [A(") (X(s) + (X () — X(s)))]
3 (Z) AW (X (s)) - AR (X () — X(s))

k=0

~F, = AM(X(5))

sinceE [A"M (X (t) — X (s))] = 0for n > k. Independence of increments and properties of the
conditional expectation are used in both proofs.

Definition 2. A monic polynomial familyn »n variables is a family of polynomials indexed by

{ﬁe G{l,?,...,n}k}

such thatPy(x) = 1 and each
Pz(x) = zz + lower order terms

where the grading is by total degreeain z», . . ., z,,. All the families of polynomials considered
in this paper form monic polynomial families.

Let R(x) = R(zy,xo,...,z,) be all the real polynomials in non-commuting variables. For a
multi-index € N*, denote
(@)% = (u(k), ..., u(2),u(l)).

Define an involution ofR (x) via anR-linear extension of
(za)" = z(@)er-
Similarly, define an involution ot (x) via aC-anti-linear extension of the same relation.
A monic polynomial family{ P;} is pseudo-orthogonal with respect to a functiopai
p[PiPy] =0
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wheneveti| # |v]. The family is orthogonal if this is the case whenevet v.

2.5. Fock spaces.Let {P;(X)} be a monic polynomial family im variables. Define a func-
tional p on C(Xy, Xy, ..., X,) by p[1] = 1, ¢ [Pz] = 0 for |u| > 1, and extendC-linearly. On
C(zy, s, ..., x,), define an inner product via

(Tq, v5) = ¢ [P; Py .

So this is nothing other than the Gelfand-Naimark-Segastantion. Note that this inner product
need not be positive; it will be positive (resp, positive did) if the functionaly is. Define the
action of C(X;, Xo, ..., X,,) onC(xy, 2, ..., x,) by

Pﬁ~1:$g

and
Py xy = (PgPy) - 1.
Then for anyP,
p[Pl=(LP-1).
P;(X) is sometimes called the Wick product 8,1y, Xy2), - - ., Xu®), and denoted X3 :.

2.6. Appell Fock space. Given a family of polynomialsi; (z1, zs, . . ., z,,) satisfying

there is a unique functional on R[zy, z,, ..., x,] such thatp [1] = 1, ¢ [Az (x)] = 0 for all .
The Fock space construction provides a natural way to resmah a functional. The induced inner
product onC(xq, s, ..., x,) is determined by

(g, x5) = E R X (@or.v), X(@:v))
Uc{l,...k},U#0
Vc{l 7777 l}7V§é®

for @ € N*, & € N.. Since in this section the cumulant maRsire symmetric in their arguments,
the inner product is degenerate and factors through1e, o, . . ., z,,].

From the recursion relatiof{]12), the action of the operatpis

Xjﬂ?ﬁ = .Tjﬂ?ﬁ‘i‘ Z R[Xqu(ﬁ:V)]x(ﬁ:VC)-

Thus it is a sum of a creation operator

aj 1 xTg o TiTg,
a scalar operator
zg — R[Xj|xa,

and some unusual annihilation operators.
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2.7. Sheffer and Meixner families. Sheffer families are monic polynomial famili¢®, (z,¢)} >,
such that their exponential generating function has the for

1
H(z,t,z) = ) —Fu(x,1)2" = f(z)teV @
n.

n=0
for U(z) = z + higher-order termsf(z) = 1 + higher-order terms. Among these, the Meixner
families are those consisting of orthogonal polynomiate(842, Chapter 4] for references). It
follows from the results of Meixnel |34] that up to affine tsdormations, the polynomials from

this class satisfy recursion relations
xP,(z,t) = Pyii(z,t) + anPy(z,t) + n(t + b(n — 1)) P,_1(x,t)

fora € R, b € R,. Here we have assumed, without loss of generality, that,t) = =. By
re-normalizing, we can restrict the values of the pararsdtethe following five classes, labelled
by the names of the corresponding families.

Hermite: a = b = 0. Orthogonal with respect to the Gaussian distribution.

Charlier: b =0, a = 1. Orthogonal with respect to the centered Poisson distabut

Meixner-Pollaczek: 0 < a < 2, b = 1. Orthogonal with respect to the centered continuous
binomial distribution.

Laguerre: a = 2, b = 1. Orthogonal with respect to the centered Gamma distributio

Meixner: a > 2, b = 1. Orthogonal with respect to the centered negative binodisitibu-
tion.

Here for any measure with m, (1) < oo, the corresponding centered measure is

pe(S) = (S + ma(p)),
for which

/R wdpalw) = ma (1) = 0.

2.8. Kailath-Segall polynomials. Basic Kailath-Segall polynomialg’(®) have appeared in the
paper|[43]. They were defined via certain stochastic integbat the authors also showed that they
satisfy a recursion

n

l
1 (n+1) _ k™ (n—k) _ (n)
(15) W ;( famen rW

(with a different notation and slightly different normadizon). We define multivariate Kailath-
in the compound Poisson (“de Finetti”) case; there is anauwals definition for the more gen-
eral (“Kolmogorov”) case of functionals with finite variagcseel[9]. That paper also details the
stochastic integral connection in Section 3.1.

The following more general definition comes naturally frorR@ck space construction, see Sec-
tion[435.

Definition 3. Let. A, be a commutative complex star-algebra without identitd @pha star-linear
functional on it. Denote byl5* the self-adjoint elements of the algebra. l&etbe the complex unital
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star-algebra generated by commuting symioly f) : f € Aj*} (and 1) subject to the linearity
relations

X(af +Bg) = aX(f) + 5X(g).
Equivalently, A is the symmetric tensor algebra df). The star-operation on it is determined by
the requirement that alk (f), f € A" are self-adjoint. For suclf;, define the Kailath-Segall

polynomials byW (f) = X(f) — (f) and

n

~

W (Ffiforoo fu) = XUOW (s for oo ) = SOFIW (Frs fooe s i)

=1
_Zw(ffzaaflaafn) _<f>W(f17f277fn)
i=1

The definition can be extended inCalinear way, so eachl’ is really a multi-linear map fror,
to A, which turns out to be symmetric in its arguments.

In the particular casély = Cy[z] (polynomials without constant term), we may denote= X ().
The functional can be taken to be the cumulant functionalasure:, (z*) = r;(x). Then

Wa(x) =W (x“(l), @ ,x“("))
are multivariate polynomials ifiz; : i € N}. If ¢ is the functional orClxy, z,, . . .| determined by
¢ [Wa(x)] =0
for all non-emptyiz, then its cumulants are
() = rak(p),
and more generally
Rlzg] = 1z ().

If u is infinitely divisible, the functional-) is positive. It follows that the functionab is also
positive, see Sectidn4.5.

Proposition 1. The following expansions hold.
(a) Of usual products in terms of the Kailath-Segall polynosrtial
X)X () X(f)= DD I (fs) W(fe:Ces).
m€P(n) SCr BeES®
(b) Of the Kailath-Segall polynomials:
W(fluf?ﬂ"'ufn>: Z Z (_1)n—|7r|+\5\ H <fB> H(‘C|_1)'X(f0)

weP(n) SCSing(m) BeS Ccese

(c) Of products of Kailath-Segall polynomials: far= (i, . . ., i),

k

HW (fuz(1)7 fui(2)7 ceey ful(s(z)))
- Z Z H <f(ﬁ:B)>W (f(g:c) :C e S) )

TEP(N) ~SCm, Bes¢
TATS(1),5(2), ..., s(k):O Sing(S5¢)=0
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Proof. We only consider part (c), see TheorEm 26 for the remainingfgr We use induction on
the length of the longest;. If all of them have length, the desired statement is

HWf, Z > Il sy Wife:Ces).

weP(k Scm, BeSe
Slng(SC) 0

This is just the sum in part (a) except tliitis not allowed to contain any singletons, and the result
follows from part (a) and the fact th&¥ (f;) = X (f;) —(fi;). Now letw; be the longest multi-index.
Supposei;(1) = j, and denote’ = (u;(2), u;(3), . . .). Using the defining recursion relation,

W (fa) W (far) - W (fa,) - - (fuk)

:W(fﬁl)m(X Z<fgfuL >W<fuz -~'>fui(l)>"'7fui(s(i))>

— ZW (fjfui(l)a c fui(z), e fui(s(i))> — (fj>W(fa)) W (fa,)
1=
=W (fa) . - W(HW(fa)...W(fz)

s(i)

- W(fa)- Z<fjfuz(l YW <fuL -afui(l)a"'vfui(s(i))> .. W (fa,)

_W ful . Zw<f]fuz 7ful(l)77fuz(s(z)))W(fﬁk)

Apply the induction hypothesis to the right-hand-side. @asired sum on the left-hand-side is over
pairs(S, ), m inhomogeneous. Any such term appears in the sum correspptalihe first term
on the right-hand-side. We need to show that all the othenehés in the sum corresponding to this
term cancel out. Indeed, take any p&icC 7, 7 inhomogeneous with respecttqq) .. 1,s()—1,...s(k)»

but not with respect tar 1) . su),...s(x)- ANy such partition contains a clagswhich contalns the
position ofu;(1) and a position of some othef(!). If B ¢ S and|B| = 2, it gets cancelled by the
corresponding term from the second term on the right-hahel-©therwise it gets cancelled by the
third term on the right-hand-side. U

Corollary 2. The linearization coefficients for the Kailath-Segall paynials are sums over inho-
mogeneous partitions with no singletons:

K
© HW(fui(l)afui@)a---afui(s(i))) = Z I (fan)-

TEP(N X Ber
TATs(1),5(2), ..., s(k) =0,
Sing(m)=0
Corollary 3. {WW;} are pseudo-orthogonal.
Proof. Forw € N*, & € N*, by the preceding corollary

MUEIERT TS S § (R 0

JESymn i=1
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Now assume that-) is positive, (z') = m;(v) for some positive measure (In this caseu
is infinitely divisible, in fact a compound Poisson measwaed v is the Lévy measure for the
convolution semigroug;}.) Let {p;};~, be the orthogonal polynomials with respect:toand
y; = X(p;). Equivalently,{y;} is the orthogonalization ofz;} with respect to the inner product

(i, 75) = 1igj (1) = mig; (V).
Corollary 4. By a linear change of variables, define polynomials
Wi (x) = Waly).

ThenW;- are orthogonal, that is,

u;éU:>g0[(W (x)) W(x )}:o.

Free and eveg-analogs of Corollarfd4 hold, derived from appropriate nficdtions of CorollaryP.
These properties are related to the “generalized chaosrgexsition property” of[[317].

Appell polynomials are linear combinations of the Kail&&gall polynomials of the same degree.
Note that a priori, such a linear combination is a multiviripolynomial, but in this case it turns
out to depend only on a single variable.

Proposition 5. For x = x4,

AW (@)= > Win s, s (X Z > aaWalx

WEP(TL) k=1 ueAkn
n={B1,Ba,...,By}

wherea; = [{m € P(n), 71 ={By, B, ..., By},u(i) = |B;|,i =1,2,...,k}|. Since in this case
the variables commute and; is symmetric in its indices, also

|
A(n) (l') = Uz W 1s s, 7Ln,s()()’
; (1hpr o (n)Prpy!. o py! p1lsp22's,..p

wherep + n is a number partition of the number, " ip; = n.

Proof. The Fock representation of Sectionl2.5 is clearly faithfd. it will suffice to show that in
the Fock representation of the Kailath-Segall polynomials

||

A(")(X) -1 = Z W B, 1,|Bal,....| B | (X Z Hx\B\

TEP(n) m€P(n) 1=1

The proof will proceed by induction. Using the recursiorati&n for the Appell polynomials and
induction,

|| lo|
(16) A (X Z x Tl - Z( ) Y e

reP(n oeP (k) i=1
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The action of the operatak is determined by the recursion relatidd (3) for the KailSggall
polynomials,
Xozg=(XiWa(X)) - 1= |:W1,u(1),u(2) u(k)

.....

k k
= x1xg + Z T14u(i)Tu(l) - - - Tu(i) - - - Tu(k) T Z T14u(i) Lu(l) - - - x/u(\z) o Ty(k) T T1Tq-
i=1 i=1

Therefore expressio{IL6) is

|| |7
E : {‘TlH‘(L’Bi_‘_E :x|Bi|+1x‘Bl‘"'x‘Bi""x|B‘,,r‘|

TEP(n) i=1 i=1

|| |7 " /n |o|
+ D BT B g T HSCBA] - <k) BN § E

i=1 i=1 k=0 oeP(k) i=1
The first term in the sum, as well as the fourth term, are indéxeall partitions of(n + 1) whose
first class is a singleton. The second term, as well as the tidxim, are indexed by all partitions of
(n + 1) whose first class is not a singleton. Finally, the term whgchubtracted is indexed by alll
partitions of(n+ 1), with the cumulant factor corresponding to the first classuzh a partition, and
the binomial factor accounting for the choice of the remagni — k£ elements of that class (other
than the elemerit). Therefore the third and fourth terms in the brackets damactly all the terms
that are subtracted, and the first and second terms add ue desired sum ove?(n + 1). O

Example 4. Hermite polynomials are orthogonal, Appell, and Kaila#gg8ll (with z; = 0 for
i > 1). Charlier polynomials are orthogonal, Sheffer, and Kai&egall (with allz; = x). Jacobi
polynomials are orthogonal, Bernoulli polynomials are AlppAbel polynomials are Sheffer.
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3. THE FREE ANALOGS
3.1. Notation.

3.1.1. Non-commutative power serieB this section we will use power series in non-commuting
variables. Most theorems about formal power series remalid n this context. In particular,
series with non-zero constant term have inverses with ce$penultiplication:

(1 — ZagZﬁ)(l + Z ngg) =1

for
(17) bw = Z agb* = Z Z agla@ . a,gk,
(@,9)=w, k=1 (u1,d2,...,Ux)=0
VW

wherew € N™. From general theory, left inverse and right inverse areakqu

3.1.2. Free cumulantsLet G(z) = >_°7 m,z~™*) be a formal Laurent series, a generating
function for a moment sequence. Define the correspondiegfienulant generating functidi( z)
via the functional relation

(18) o(HRE) -, LEREED

Note that we use the boldface notation to distingi@sinom the usuaR-transformR(z) = R(z)/z
[49]. Define the corresponding free cumulant sequence ¥igeiherating function

o0
= g 2
n=1

Let A be a possibly non-commutative real algebra, aralunital real linear functional on it. For
X = (X1, Xs,...,X,) C A a collection of non-commutative random variables, defirggr floint
moments

= Z.

M[Xa] = ¢ [Xi]

= M[Xg)za

denotes therdinary moment-generating function. Here, and in the seqyé,are formal non-
commuting indeterminates. Define the joint free cumulahiX @ia

(19) R[X4] = - Y J]rBx

TeNC(n), Bem
m#£1

which expresse®| X, 1), Xu2), - - -, Xuw)] in terms of the joint moments and sums of products of
lower-order cumulants. Define the free cumulant generdtingtion via

= ZR[X~2

For a single random variabl¥, R[X, X, ..., X]| = r, for the moment sequen({enk = [X’f] }

as before, but now
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The relation between joint moments and joint free cumulaatsbe summarized in a relation be-
tween their generating functions, as follows. The follogyproposition is due to Nica and Speicher;
for completeness, we provide a direct proof.

Proposition 6. [36] Letz; = w; (1 + M(w)). Then
R(z) = R<w1 (1+MwW)),. .., w,(1+ M(w))) — M(w).

Proof. In the defining relation{19), the sum is over all non-croggartitions. Each non-crossing
partition can be described by a subBetontainingl and a collection of non-crossing partitions on
the intervals into which” subdivides the sdfl, 2, . . ., k}. Applying the formulal(I9) again to each
of those intervals, we obtain

s

Z Z R[X@v)) H M [ Xa.(iGG)+1,...iG+1)-13],

s=1 Vc{1,2,...k} j=1
V={1=i(1),i(2),...,i(s)}

where by conventiof(s+1) = k+1andM [ Xg.(i(j)+1,...i¢+1)-13) = M[0] = Lif i(j+1) = i(4)+1.

.....

So
M(w) = Y M[X; Z Z RIX: > H (wuy M X, Jws, )
! et poseitly emoty
=3 S RG] (wu (1 + M(w))) = R(w1(1 +M(W)),. w1+ M(w))).
s=1 ge{l,...,n}° j=1

O

Example 5. The key distribution in free probability, which appears éxample in the free central

limit theorem, is the semicircular distribution. It is chaterized by the property th&(z) = 22,

its moments are the Catalan numbers, and the correspondagure has density

_w/ —[L’Z]_ 22]( )
More generally, we say thaf has a (scaled, shifted) semicircular distributioRifz) = a> + bz
A family {X;, X, ..., X, } form a semicircular family if all of them are self-adjointchall their

linear combinations have (scaled, shifted) semicircuistributions. Equivalently, they are self-
adjoint and their free cumulant generating function is gqaid. They form a free semicircular
family if in addition they are freely independent, in whichse it suffices to require that ea&h be
self-adjoint and have a semicircular distribution.

3.2. Free Appell polynomials.

Definition 4. Free Appell polynomials are defined via their ordinary gatieg function

= 1
(n) no_
;A (z)2 1—2zz+R(z2)
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Proposition 7. Some properties of the free Appell polynomials are:

(20) zAM (z) = A £ " AP (),

I
m
>
ol
+
=
3
+
iR
-
()

See Proposition12 for a more general statement.

sin n+1)

Example 6. Chebyshev polynomials of the second kilg,(2 cos6) = , are free Appell.
They are orthogonal with respect to the semicircular distion. In fact, from equatior (20) it
follows that these are the only orthogonal free Appell polyials.

3.3. Multivariate free Appell polynomials. Define the partial derivativé;, on polynomials in
non-commuting variables,, z-, . . ., x,, by a linear extension of its action on monomials

aixﬁ— Z xu(l xu(g - Ly (k)

Definition 5. Let . A be a non-commutative real algebra with a unital real lineacfionaly. We
will continue to call its elements (non-commuting) randoariables. ForX;, X,,..., X,, € A,
define the multivariate free Appell polynomial

Ax, Xo. 0 (X1, 22, ..., Tp)
by the following conditions:
(21) O0iAx, xo X0 (15 Ty ) = Axyoxey (@150 Tim1) S Ax X (Tigts o5 T)
(with Ay = 1),
(22) 0[Ax, x5, x, (X1, X0, ..., Xp)] =0,
and the restriction that
(23) in each monomial, the variables appear in the incrgasider of indices.
The polynomials are uniquely determined, and since fary,
0;0;A%, X X (X150, Tiy oo, Ty)
=Ax, xi (@, mim) - Ax X; (Tig1, ., xj-1) - AXJ.+1 _____ X, (Tjg1,. 0, Tp)
= 0;0;Ax, Xoo. X (T15o o, Ty oo, T0)

they are well defined. Most of the time we will be interested in
Ax, X x0 (X1, Xo, .0, X)),
which will be denoted simply byl (X1, Xs, ..., X,,).
On the other hand, if the-tuple { X, X, ..., X,,} is fixed, define the polynomiald; (x) by

Aﬁ (SL’Z 1= u(j) for somej) = AXu(1)7Xu(2) ..... Xu(k) <$u(1), Ty(2)) - - - ,xu(k)) .
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This is a monic polynomial family.

Example 7. From conditions[(21) and(22) is follows that eadli X}, ..., X,,) is a polynomial in
X1, ..., X, and their joint moments. Moreover, from conditiohsl(21) &8) it follows that this
polynomial has degrekin eachX;. Some low-order polynomials are:

A(Xy) =X —p[Xy],
A (X1, Xo) = XaXo — @ [X1] Xo — 0 [Xo] Xi — o [Xa Xo] + 20 [X1] 0 [Xo],
A (X1, Xo, X3) = X1 Xo X3 — 0 [Xa] Xo X3 — ¢ [Xo] X0 X5 — ¢ [X3] X1Xo

— @ [X1Xo] Xz — 0 [Xo X3] X1 + 20 [Xi] 0 [Xo] X3 + ¢ [X1] ¢ [X5] X
+ 20 [Xo] 0 [X3] X1 — 0 [X1Xo X3] + 20 [X1.Xo] ¢ [X3] + 20 [X1] ¢ [ X2 X5]
+ ¢ [XaX5] 0 [Xo] — 5 [Xq] ¢ [Xa] 0 [X5].

Lemma 8. Forn > 1, the mapA™ — A,

(X1, X X)) = A(X1, Xo, o, X))
is n-linear.

Proof. For X; = aX + Y, we will show that

(24) Auxipv.xe,.x, (ax+ [y, za, ..., 2p)
= 0Ax x,..x, (T, T2, ..., T0) + BAv xo... x, (Y, T2y oo, Th)
Then in particular,
AX +0Y, Xo, ..., X,) = A (X, Xy, ..., X0) + BAY, Xo, ..., X)),
and a similar proof holds for the other components.

8anX+5y7X2 ..... Xn (Oél’—i—ﬂy,l’g,...,l",...,l’n) :aAX2 ..... Xn (LL’Q,...,.Tn)
= ax(aAXXQ ..... Xn (lf,fz, S Jn) + ﬁAY,XQ ..... Xn (y>$2> e 733n))

So condition[(ZB) implies that each monomial containifig aAx x,... x, (, 2, ..., z,) appears,
with the same coefficient, itl,x: sy x,,. . x, (ax + By, xa, ..., 2, ..., 2,), With 2 replaced by
(ax 4 By), and all monomials containingvr + By) appear in this way. Application af, pro-
duces a similar statement, and implies in particular tharigiht-hand-side of(24) is a polynomial
in (az + PBy), and that monomials containing this term on both sideE df¢@#hcide. By induction,

aiAaX+5y7X2 ..... Xn (ozx—i—ﬂy,xg,...,xi,...,xn)
= AaX+ﬁY ~~~~~ Xi—1 (O‘I + ﬁyv SERE) .1’2-_1) ' AXi+1 ~~~~~ Xn (xi-i-lv s ,.Tn)
:aAX _____ Xi_ 1(1‘,...,l‘i_1)'AXi+1 _____ Xn (le'i_,_l,...,l’n)

+ BAY ..... Xi1 (y7 R 7xi—1) ' AXi+1 ..... Xn (xi+17 v 7‘TTL>
:ai(aAXXz _____ Xn ($,$2,...,l’n)+ﬁAy7X2 7777 Xn (y,xg,...,xn)>.

This implies that all the terms on both sides[0fl(24) whichtaonax + Sy, x, . . ., z,, coincide.
Finally,

0 [Aax+8y.Xo,.. x, (X + Y, X5, ..., X,,)] =0
=pladx x,. . x, (X, Xo, ..., Xp) + BAyv x,...x, (X, Xo, ..., X3)]
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implies that the constant terms coincide as well. U
In the following power series, the variables commute with thevariables, although neither the
nor thez variables commute among themselves.

Lemma 9. LetX = (X;, Xs,..., X,,) be a family of random variables, aridl the corresponding
free cumulant functional. Then in the expansion

(1-x-z+R(z) '=1+ Z Bi(x) 2z,

Bix)= Y wavy >, (DR [Xve]
Vc{l,...,n} weInt(V°)
(m,V)ENC(n)
Proof. This is just formulal(1l7) for the coefficients of the inversever series to

1-— Zx,z, — Z(—R[Xg])Zﬁ.

u

O

Theorem 10. Let X = (X, Xs,..., X,,) be a family of random variables, aridl, R, A be the
corresponding moment and free cumulant functionals arelAgpell polynomials. Then

1+ Ag(x)za=H(x,z) = (1-x-z+R(z)) "
Proof. Using the substitution in Propositiéh 6,
-1
H(x,z) = <1 + R<w1(1 +M(w)),...,w,(1+ M(W))) —x-w(l+ M(W)))

= (1 +M(w) —x-w(l+ M(W)))_l
=(1+Mw) (1 -x-w)"
Since
(1 —X-W)_1 = 1—|—Zl’1ﬂqu,

it follows that
p[H(X,2)] = (1+M(w)) o [(1-X-w)'] =1,

Since
0p,(1-x-z+R(z)'=(1-x-2+R(z) 'zl —x-z+R(z) ",

Jru(j)=i
Finally, it follows from Lemme[P that in each monomial &% , _,, the variables appear in the

-----

A1,2 ..... n-
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This is true for an arbitrary family of random variables, arfcular for
(Y1,Ys,...,Y%) = (Xuq), Xu@)s - - - Xu)-

Using the explicit expression from Lemrk B;(x) is the free Appell polynomiaH, 5, for Y
applied to(z,1), - . ., Tur)), Which is exactlyA; (for X). O

Corollary 11. The one-variable polynomials of Definitibh 4 até”) (v1) = Ay 1(z1).

Proposition 12. Letu € N™.
(a) The expansion ak; in terms of the free Appell polynomials is

n k+1
Xa=) >, HM o=+, 0() 1)
k=0 Bc{12,...n},
(25) B={v(1)<v(2)<...<v(k)}
Z <HR[ )]_'_ Z A(X(uB HRX(uC )
TeNC(n) “Cem BeOuter(m Cem,

C#B

wherev(0) =0, v(k+ 1) =n+1,
(b) The recursion relation for the free Appell polynomials is

(26)  A(X(a) = XA(Xa) = > RIX; Xy Xunei) A (Xupnoirn)s - > X)) -

(c) The expansion of the free Appell polynomial is

AXe) = > Xavy Y.  (CD)MR Xy
vVc{l,...,n} welnt(V°)
(m,V)eENC(n)

Proof. From the proof of the preceding theorem,
(1—x-w)™' = (1+Mw)(1+ ) Az (x)2)
where
z = w; (1 4+ M(w)).
But
(1—x-w) 1—1+ngwu

Soz; is the coefficient ofv; in

DY Ap (%) (14 M(W))wury (1+ M(W)) w1+ M(w)).

k=0 yeNk
The first line of equatiof{25) follows. The second line, utihg the fact thaB is outer, follows
from the definition of the free cumulants.

The recursion relation follows by expanding the identity
(1-x-z+R(2)(1+ Z Az

The final expansion follows by combining the precedlng teeowith LemmaDb. 0
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3.4. Free binomial. Supposer € P(n) has the property that the collectiofX; : i € B}, are
freely independent. Then the basic relation between frdepandence and free cumularits! [44]
says that

(27) R(z) =) R(z:i€ B).

Ber

More precisely, ifR is the free cumulant generating function foX1, ..., X,,} (and so a function
of z1,..., 2,), and for each subsét C {1,...,n}, R is the free cumulant generating function for
{X; :i € B} (and so a function ofz; : i € B}), thenR =3 ,_ Rp.

Now letw € Ay ,. It can be written uniquely a8 = (v, v, . . ., ) With eacht; longest consecu-
tive sequence from the same classrof

Proposition 13. In the setting above,

The proof is based on the following lemma due to Franz Lehfke lemma deals with bounded
operators, but it applies equally well to formal power s&rie

Lemma 14. [33] Let Sy,..., Sy € B(H) be arbitrary operators and assume that the sum of
alternating products

I+i > S8,

n=1 i1 #£io#...%in
(the sum over all products where neighboring factors arted#ht) converges, then it equals

(I — ZSZ(] + Si)_1> .

Proof of Propositiol 3L et = have classe®;, B,, ..., By. From [ZT),

=2

(28) 1—X-z+R(z)zl—Z[ZXizi—RBj]

Denote

andforj=1,...,N,
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Using LemmdI¥ witts; = H; — 1 and equatiorl{28), we get

1+i > (Hy —1)(Hy—1)...(H, —1) = <1—Z(Hi—1)Hi‘1>

n=1 21752275752»@ i=1
N -1
= (1 =) (- H;l)> — H.

=1

Equating coefficients of; on both sides of this equation gives the proposition. O

As a consequence, we get the “non-commutative binomiathtda: for X, Y freely independent,

ANX4+Y)=A(X+Y,..., X +Y)
=3 ¥ [ A@D) () A (Y) 4B (X)), ARD) () A@@) (X)) | ] ‘
k=1 ﬁEAkm

This is the extension to the free Appell polynomials of thedonial expansion of X + Y')" for
X, Y non-commuting variables.

A different analog of the commutative binomial expansiof) (it the “co-multiplication” property
of the free Appell polynomials: it easily follows from Defiitin[@4 that for generat, y,

A (2) —

xr —

n n—1
Al )(y) _ ZA(k)(.T)A(n_k_l)(y),
Yy k=0

where ther andy-dependent polynomials correspond to possibly differentfionals. In particu-
lar,

n—1
0, AM (z) = AW (2) A (),
k=0

3.5. Martingale property. The martingale property of free Appell (and, more gener&heffer)
polynomials for processes with freely independent increisy@as shown previously by Biarie [15].
The following is an alternative proof for distributions afl whose moments are finite, which uses
the binomial property above.

Lemma 15. Let {x,} be a free convolution semigroup with all moments finft&,¢)} the corre-
sponding free &vy process, an@AW} the corresponding free Appell polynomials. Then for each
n, the proces§ A™ (X (t))} is a martingale with respect to the filtration induced y (¢)}.

We again note thatl™ (X (¢)) = Ag?()t)(X(t)), and the polynomiang?()t) depends ort, so the
short-hand notation should be handled with care.

Proof.

B, [AP(X(8)] = B, |4 (X(s) + (X (1) = X(5))) ]

= E, i > AMO(X () AP (X () = X (s)) ... | = AW (X(s))

k=1 ﬁeAk’n
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sinceE [A®) (X (t) — X(s))] = E[A®(X(s))] = 0 for k > 0, and using the definition of free
independence and properties of conditional expectation. O

Theorem 16. Letw; € N°®), i = 1,2,... k, N = S s(i), and@ = (@), @, . . ., W;). Each of
the quantities

(29) M([Xz, Xa,, ..., Xa] = M[X4]
(30) M[A(Xa,), < n), o A(Xa,)]
(31) R[(Xa,), (Xa,), .- (Xg,)]
(32) R[A(X#),A(Xg,),....A(Xzg,)]

is equal to the sum aR,[X ] over partitionsr € NC(N) which are:
(@) Equation(Z9). arbitrary,
(b) Equation(@0): non-homogeneous,
(c) Equation(@1): connected,
(d) Equation(@2): connected and non-homogeneous

with respect to the interval partition, ) s(2),....sx)- Note that@0) is the linearization coefficient
for the free Appell polynomials.

There is a similar theorem for the usual Appell polynomialstained by replacing the lattice of
non-crossing partitions with the lattice of all partitiorihe following proof is also very similar to
the one in[[25].

Proof. Equation [[ZD) is the basic relation between moments andduesulants. Equatiori(B1)
was proven in[[30,-45]. We prove equatiénl(32); the proofd) (3 similar, and also implied by
equation[(34) below. In fact, we will prove a more generdestent, that

(33) R[A(Xa),....A(Xg), Xaj),- -5 (Xa)]

is equal to the sum o[ X;] over all non-crossing connected partitions with no homegess
classes inty(1) s(2)....s;j)- The proof will proceed by induction o#(1), ..., s(j), starting with the
statement for

R[Xoy, - Xog)s (Xayir)s -5 (Xay)]
which is valid by equation{31). Suppodgel(33) holds for aleBer ; or, for the samej, for all

shorteri, . . ., u;. Substituting the recursion relation
A(ng) = X, — Z ZA H RX(“J
WGNC(S(_]) ) Bem Cerm,
£l C;EB

into equation[(3B) breaks it up into the difference of twartsr The first term contains on{y — 1)
Appell entries. Itis the sum over all non-crossing conngp@rtitions with no homogeneous classes
in 7rs( )55(2),08(—1) . The second term contaifg\ppell entries, the firstj —1) of which have indices
Uy, ..., Uj_1, and the last one is a proper sub-indexiaf For each choice of a proper subset

BC {isum,...,zsm},

=1 i=1
the second term contains the sum over all non-crossing ctesh@artitions such that the comple-
ment of B in this subset consists of homogeneous classesy drad no homogeneous classes with
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respect tary1) 4(2),....5. In other words, the second term is the sum over all non-trgg®nnected
partitions which have no homogeneous classes with respectt ;2) .. sj—1) but have some ho-
mogeneous classes in thigh class ofr) s9),..sx)- Clearly the difference of these terms is the

.....

sum over all non-crossing connected partitions with no hgeneous classes ) s2)....s¢j)- U
The following proposition is a generalization 6f130). lt®pf is similar.
Proposition 17. Products of free Appell polynomials have an expansion
(34)  A(Xa)A(Xz).. . AXz)= > > ReXavolA (Xav)) -
vc{i,.,N} weNC(V°)

non-homogeneous

(7,V)ENC(N),

Ve Outer(m,V)
Here, “non-homogeneous” is with respect to the restrictiqn) s2),... s [ V.
Proposition 18. Fix {X;, X,,..., X,,} with the moment generating functidvi, free cumulant

generating functioR, and free Appell polynomial§A;}. With respect to the joint distribution
functionalpx,

(a) {Az} are pseudo-orthogonal iffX;, X, ..., X,,} form a semicircular family.
(b) {Az} are orthogonal iff{ X7, X, ..., X, } form a free semicircular family.

Proof. Supposg A;} are pseudo-orthogonal. By formulal30), for- 2,
o [A(Xuw) A X, - Xuw)] = RIXu): Xu@) - -, Xuw] = 0.

So all the joint cumulants of X, X5, ..., X, } of order greater tha are zero, and these random
variables form a semicircular family. In particular, infioula (30) only pair partitions make a non-
zero contribution. If in additioq A;} are orthogonal, from this formula it follows in addition tha
R[X;, X;] = 0 unless; = j. Therefore
R(z) = ) (R[X;, Xi]z] + R[Xi] ).
=1

So{Xi, X,,...,X,} are freely independent, and form a free semicircular family O

Remark 8. | thank Dima Shlyakhtenko for bringing to my attention théldaing observation.
Given a family of self-adjoint elementsX} } whose free Appell polynomials are pseudo-orthogo-

nal, there need not exist a linear change of variaBlesich that Y; = > 7, B;; X ¢ is a family of

self-adjoint elements whose free Appell polynomials atbagonal. Indeed, one can always find
such a linear transformation witR[Y;, Y;| = ¢,;, but theY;’s need not be self-adjoint. As a result,
¢ [Y;*Y;] need not bé). In other words, while the joint free cumulants of thgs are0, the joint
free star-cumulants of thé’s need not bé, so theY;’s need not be freely independent.

If © has the trace property[ab] = ¢ [ba], then onecanalways orthogonalize pseudo-orthogonal
polynomials.

3.6. Free Sheffer and Meixner families. Sheffer families are martingale polynomials for the cor-
responding Lévy processes. Based on this idea and the afsfil5], in [/] we proposed the
definition of free Sheffer families, which are families of rimagale polynomials with respect to
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free Lévy processes. Specifically, free Sheffer familiesfamilies of monic polynomials whose
ordinary generating functiofl (z,¢, z) = >~ , P,(z,t)z" has the form

1 1 1
G- UEe T+ TG 1— 6

We also described all the free Meixner families, that isg fefeffer families consisting of orthogo-
nal polynomials. They are given by the recursion relations
Pi(z,t) =,
xP(x,t) = Py(x,t) + ax + ¢,
xP,(z,t) = Pyy1(z,t) + aPy(z,t) + (t + b) Py_1(x, t)
forn > 2. Fora = b = 0, the polynomials are the Chebyshev polynomials of the sg&ord. For

generala € R, b € R,, such polynomials have been considered by a number of aytbee the
discussion in pages 26—28 0f[12], and alsd [24].

Definition 6. Let R be a free cumulant generating function, dfiz) ann-tuple of non-commuta-
tive power series such thét(z) = z; + higher-order terms. Multivariate free Sheffer polynorsial
are defined via their generating function

H(x,2) = (1-x-U(z) + R(U(z))) " =1+ Z Pa(x) 2.

Define a linear operatdp; (left partial derivative) on non-commutative power senis

0, u(l) # j,
Wy(2),...u(n), (1) = 7.

Theorem 19. Suppose that for a family of multivariate free Sheffer poiygrals, P; and P, are
orthogonal for alli and || > 2. In particular, this is the case if the polynomials are pseud
orthogonal. Suppose also that the covariance maffX;, X;| is non-degenerate. Then

U(z) = F< 1> (Z RIXi. XJz..... > RIX,. Xi]zl-> .
i=1 i=1
Here Fi(z) = (D;R)(z) — ¢ [X;], and for ann-tuple of power serie¥, G = F<~!> is the inverse
of F under composition,
Fi(G(z)) = 2.

In the classical case, the corresponding condition defirexssely the natural exponential families.
The proof below is inspired by the one [n[38].

Proof. Using the substitutio;(z) = w;(1 + M(w)) leads toR(U(z)) = M(w). Then
1 1

H(x,z) = (1 —x-w(l+M(w)) + M(W)>_ (1+M(w)) ' (1-x-w) .

It follows thaty [H (X, z)] = 1. Suppose the conditions of the theorem are satisfied. Byitiefin
P; = X; — ¢ [X;], soP; = P;. Then

@ [PizH(X, 2)] = ¢ =Y ¢[PP]zx.
i=1

Z P]PQ'Z]Zg
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The covariance ok ; and.X; is
P [(X5 = o (X)X = ¢ [Xi])] = RIX;, Xi.
So

> RIX; X2z = ¢ [Pz H(X,2)] = ¢ [X;2H(X,2)] — ¢ [X)] 2
=1
and

0[X;zH(X,z)] = Z R[X;, Xi|zjzi + 0 [Xj] 2;.
i=1

On the other hand, using the substitution above,
22 H(x,2) = 2;2;(1 — x - U(z) + R(U(2))) "
=2z (1 —x-w(l+M(w))+M(w)) "

= 2;(1+M(w)) la;(1 —x-w) ' =21+ M(w))™! (xj + ij:cgwﬁ>,

1

and so
@ (X2 H (X, 2)] = 2 (1 + M(w)) ™ (MIX;] + 3 MIX;, Xelwg ).

—

u

Since
D,M(w) = D, (Z M[Xﬁ]wﬁ> = M[X;] + Z M[X;, Xa|wa,
it follows that
v [Xj2H(X, z)] = 2(1 + M(w)) "' D;(M(w)).
Sincel;(z) = w;(1 + M(w)) andR(U(z)) = M(w),
(1+M(w))™' Dy, (M(w)) = (D:,R)(U(z)).

We conclude that
¢ [X;2;H (X, z)] = z;(D;R)(U(z))

and
(DR)(U() = 3 R, X2 + RIX]
Thus .
Fi(U(z)) = zn: RIX;, X124,
Since a

Fj(z) = ) _ R[X;, Xi]z + higher-order terms
=1

and the covariance matrix is non-degenerate, this sergearmmverse under composition.
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3.7. Free Kailath-Segall polynomials. We only list three results in this section; all the other re-
sults from Sectiofi 2]18 have free analogs, which will be pnavegreater generality in Sectibn’¥.4.
Free Kailath-Segall polynomials are thdailath-Segall polynomials from that section fpe 0.

First, free Kailath-Segall polynomials have explicit enpens
W(fluf???"'?fn): Z Z <_1)n_|7r|+‘s‘H<fB> H X(fC)
w€Int(n) SCSing(r) BeS Cese
Second, the product of free Kailath Segall polynomials caexpanded as

k
HW (fuz(1)7 fui(2)7 R fuz(s(z)))
=1
- > > (fas) W(fae : C€9)

TENC(N) _SCm,  BeSe
TATS(1),8(2),....a (k) =0 S&(5)=0

(the proof is similar to the one in Propositibh 1). Third grappell polynomials can be expressed
in terms of the free Kailath-Segall polynomials.

Proposition 20. For z; = «z,

n

AM(@) =" > Walx).

k=1 ’LTEAk,n

Proof. The proof is similar to Propositidd 5. We show that

n k
AW (X)) 1= Z Z H%(i)

k=1 Gy, i=1

by induction, with the induction step being to verify that

n+1 k k k k
A(n+1)(X) 1= Z Z [xl H Tu(i) T Tu(1)+1 H Tu(s) T Tu(1)+1 H Tu() T T1 H xu(i)]
k=1 €Ak ni1 i=1 i=2 i=2 i=1
n 7 k
- Tnd1—j Z Z H Lo(4) - O
J=0 k=1 veA, ; i=1

4. q-INTERPOLATION

We saw in the preceding two sections that both the Appell &edKailath-Segall polynomials
are related to probability theory (they are martingale polyials), and that they have analogs
performing the same functions in free probability theoryn fBe other hand, there is also a very
clear relationship between these classes and the thirdfmmhogonal polynomials. In the light of
this, itis interesting to look at thejrdeformations. For orthogonal polynomials, such deforomast
are given by the members of the Askey scheme of basic hypagfeic orthogonal polynomials
[29]. On the other hand, a possihjedeformed probability theory was initiated by Bozejko and
Speicher[[16]. We show that the Kailath-Segall polynoméals be extended to this context, with
the same relation to the deformed probability theory antagnal polynomials as in the =
0,1 cases. As a consequence, we obtain combinatorial formaiasofme basic hypergeometric
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orthogonal polynomials, and Wick product formulas for Foekresentations. In contrast, the
extension of the Appell polynomials is not satisfactory. p¥epose a definition in the one-variable
case which fits well with the orthogonal polynomials pict{ttee analogs of the Meixner families
are the Al-Salam and Chihara polynomials). However, thitnd®n does not fit well with the
g-deformed Lévy processes (see the Appendix), and an atiedefnition in the multivariate case
IS missing.

4.1. Notation. Fix ¢ € (—1,1). A few standard pieces gfnotation are]0], = 0,

n

=3¢ = —L

i=1 1—¢

nooq: n nlq!
forn > 1, (0], = 1, [n]y! = [T, [, forn > 1, (), = gt

Define theg-cumulants for a single measure via the relation
ma(p) = Y ¢ T risi(w)-
weP(n) Ber
Define the cumulant generating function for this sectiongo b

Ry(2) = o)

n=1
More generally, for a-tuple of random variables, define the jointumulants via

MXzl= > ¢ ] RX@n)

TeENC(n) Berw

4.2. q-Appell polynomials. There is a number of different possible definitionsdekppell poly-
nomials. For example, twg-deformations of the relatiofi, A,, = nA,,_;, leading to such defini-
tions, were considered inl[L} 4]. We prefer, instead, to usmterpolation between the recursion
relations in the classical and the free cases.

Definition 7. Theg-Appell polynomials are defined via the recursion relation

) =)= Y (1) remsoito)

k=0
where{r,} are some-cumulant sequence.

Proposition 21. The generating function gtAppell polynomials has the form

o0 o0

1 1
A ()2 = H(x,2) = .
; [n]! (@) (@2) ,EO 1= (1 - q)zzq* + R(2¢") — R(z¢"*1)
Proof. DenoteD,, .z" = [n],2" ", so that
f(z) — f(q2)
D,.(f) = =222
) = 2
is the standarg-derivative operator. By definition,
1 1 & 1 1
— A2 =g A, — —  rpa1o—— A2
[n],! o [n]4! kz:% [n — k]! o [£]q!
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Divide by [n + 1], to get
1

7[71 n 1]q!An+1Z"+1 = x[n n 1]q!Anz"+1 _ CEmIp 2 - k]q‘rn+1_k [k]q‘Akz"-H
Apply D, . to get
1 1 = 1 1
Dq,z[n%_71](1!14%1,27”rl = x[n—]q!Anz” — ; mrnﬂ_kz" k[k—]q!Akzk.
So
D,.H=zH—-D,,(R)H.
It follows that |
H(z,z) = H(z,qz). O

1—(1-q)zz+R(2) — R(q2)

Example 9. Since orthogonal polynomials satisfy three-term recursaations, the only orthogo-
nal polynomials among thgAppell are those with, = 0 for k£ > 2. ThusR.(z) = az + b2%. By
adding a constant to and re-scaling the polynomials, we may take= d,.t, R(2) = =22, in

: 1+q
which case 1
H = H .
(z,2) 1—(1—qzz+ (1 —q)tz? (z,2)

Up to further re-scaling, this is the generating functiontfee continuous (Rogerg}Hermite poly-
nomials.

Example 10. Consider the polynomial family defined by the recursion
xP, = Pyy1 + (t — [n]y) Pn + [n]gzPo-1.

It has the generating function satisfying
1
H(z,t z2) = H(x,t,qz).
(h2) = T gt = (1 - gz ot e)
So this is a family of;-Appell polynomials forR(z) =t~ ﬁz” r, =tn —1],l. Asqg — 0,
H converges to

1
L+ &t —za
the generating function for the free Appell polynomials tioe free Poisson process. On the other
hand, forq — 1, H converges to
emz(l . Z)t,
the generating function for the Appell polynomials for thar@ma process. This can be considered
as an extension of a well-known property that foe= 1, a square of a normal random variable

has a Gamma distribution, while a square of a semicirculadom variable has a free Poisson
distribution.

Proposition 22. Let { A,,} be theg-Appell polynomials for thg-cumulant generating functioR..
Then

n—1

sl =Y (1) A,

k=0
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where{ A%} are defined via their generating function

1 0 n 1
2 [n]q!An(x)Z T 1-(1-quz+R(z) —R(qz)

n=0

Proof. By Propositiori. 21,

- 1
9. H(w,2) amkl_lo 1—(1—q)rzg" + R(2¢*) — R(z¢**1)
= i H(z,z) ! (1—q)2q"
e~ 1 — (1 - q)rzgt + R(zq") — R(2¢H1)
=Y 5 Au(@)2" > ﬁA?(x)(qu)l(l —q)2q"
n=0 g k=0 1=0 74!
=1 =1 1—gq
= A, (x)z" — A (x bl
2 i 2 A T
[e.e] [e.e] 1
— A (r AO T Zn+l+1 0
Example 11.If {P,(z)} are the continuoug-Hermite polynomials, then
n—1
_ [1),!

where

1
;@Q"(@ T 1- (gt (g2

SoQy,(z)2" = U,(v/1 — qx)(v/1 — qz)", whereU,, are the Chebyshev polynomials of the second
kind. Therefore

n—1

= Z %(ﬂ)k—lP/ﬁ(l’)Un_k_l(mx)
k=0

q*

4.3. Al-Salam-Chihara polynomials. In this section we consider@deformation of the Meixner
families. One such deformation has been considered In [Rig]based on the exponential function
for the operator calculus for the Askey-Wilson operator][2Breviously, Al-Salam showed that
under this approach, the unique orthogonal Appell famigoatonsists of (multiples of) Rogers
g-Hermite polynomials(]4]. Under the more elementary apphnoaf [1], the unique orthogonal
Appell family are the Al-Salam-Carlitz polynomials.

However, we have an extra requirement to put on our familiesddition to the correct limiting
behavior agy — 1, we also require a correct limiting behavior@s- 0. Specifically, in this limit
we should obtain the free Meixner families.

Define orthogonal polynomials by the recursion relation
(35) xP, = Poi1 + an]yPn + [n]y(t + b[n — 1],) Pu—y
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fora € R, b € R, (cf. [4, Remark 6]). Then the free Meixner families are thésailies of
polynomials forg = 0, while the classical Meixner families are these familiasgfe-= 1.

Lemma 23. Up to re-scaling, the polynomials defined by recurg@8) are the Al-Salam-Chihara
polynomials.

Proof. Define the generating functialf (z, ¢, z) = >°°° | - P,(x,t)2". Then

n=0 [n],!
1
xz(H(z,t,z) — 1) = 1—_(}[]—[ — P(z,t)z — H(z,t,qz) + Pi(z,1)qz]
az
+ 1—[H(J}, i Z) - H(J}, t qz)]
—4q

2

b
12 H (2, 2) + ——[H(a,t,2) = H(z, t,42)].

—dq
SinceP; (z,t) = x,

1 bz? 1 b2
H(z,t,2) <1——xz+i+tzz+ : ):H(x,t,qz)(l +1az + = )
—q

—q l—q l—q —q l—gq
Therefore
(1+ az + bz?)
H(x,t,z) = H(x,t
(ZE’, 72) (1+CI,Z—|—622)+(1—Q)(tZQ—ZL’Z) (ZE’, ,qZ)
(1+ az + bz?)
= H(z,t,
I+fa—(1—q)x]z+[b+ (1 —q)t]z? (z,£,42)
1
= — H(x,t,qz).
1+ m(tﬁ — x2)
. . . — _ (1—q)z—a .
Affine transformationsy = /b + (1 — q)tz, y = /ot (g bring H to the standard form of the
generating function for the Al-Salam-Chihara polynom[2E, 3.8]
1 —dw)(1—-"bw)
H ! b/ — ( H . b/
(y, w;d', ') T (v, qu; a’,b'),
whered', b’ are the roots of the quadratic polynomidl+ ﬁz +D. d
—q

In particular, the Hermite case = b = 0 corresponds to the Rogers (continuoyshiermite
polynomials, while the Charlier cage= 0 corresponds to what are usually called the continuous
big g-Hermite polynomials. Note also that thekrawtchouk polynomials defined in [41] are, up to
a shift, of this form, witha = 1 — 2p, b = —p(1 — p), 2t = Np(1 — p), except that in this case, as
expected) is negative.

Al-Salam-Chihara polynomials were defined(in [2] as all paignials other than the Meixner fam-
ilies characterized by a certain convolution property. if h@easure of orthogonality was found
explicitly in [11]]. The interpretation of these polynonsalsg-analogs of the Meixner families was
explicitly conjectured in[[5], and proved inl[3]. We foundetifollowing proof independently, and
in our particular case it is also somewhat simpler. For a niaeresting characterization using
stochastic processes, seel[18].
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00 1

Theorem 24. Suppose the generating functiéf(z, ) = > >~ qupn(l")zn of the monic orthog-
onal polynomials defined by the recursion relation
2P, (2) = Poy1 () + an Pp() + B Poa ()

has the form

o0

H(z,z)=F(2) ]|

k=0

1 _ F(z) 1
1—(1-q)U(¢bz)x  F(gz)1— (1 —q)U(2)x

H(z,qz),
whereF, U are formal power series with'(z) = 1+ higher-order termsl/(z) = z+ higher-order
terms. Then the polynomials are a re-scaling of the Al-SaCirhara polynomials, with

a, = o + c1[n),

and
B = [n]g(B1 + ca[n — 1],).

Proof. By assumption,

(1= (1 - q)U(2)x)H(z,2) ]f((qzz))ﬂ(x, 0z).
Therefore
%0) oi,2) = ey (009 = a9 )

Define the lowering operatdp onR|z] by D(F,) = [n],FP,—: and extend linearly. TheP(H) =
zH and equation{36) implies

D(zH)(z,z) = m <zH(x, z) — F]T(((;)) qu(:L',qz))
(37)
B z F(2)
=zxH(x,z) + 00 F(qz)H(x,qz).
Expandﬁ ﬁ% into the formal power seri€s. >~ c¢,z", with ¢ = 1. Equation[[3F7) says
u nl,!
(38) D(xP)(x) = [n]@Pu (@) + Yy [n[ _]qk]! R

Applying the lowering operator to the recursion relationes
(39) D(zP,)(x) = [n+ 1],P(x) + ann]gPo1(x) + Bun — 1] Pu—2(2).
The recursion relation fag — 1 is

xP,_1(z) = P(2) + ap_1Pr1(z) + Bro1Po_a(x).
Multiplying it by [n], gives
(40) (g Par (2) = [0y Pa(@) + [)g0tu1 Paoi (2) + [2]ofa1 Paa().
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Combining Equation§(38)_(B9), arld140), we obtain

nl,!
]y Pa + ot [0 Pact + B[]y Paa + > - [_]2 R
k=0 T

— [n+1],P, — ann|g Py — Bu[n — 1], P—2 = 0.

Collecting coefficients of,_; gives
(41) an—l[n]q +a [n]qqn_l - O‘n[n]q = 0;
collecting coefficients of?,_, gives

(42) Br-1[n]q + can]qn — 1]qqn_2 — Buln — 1], =0,
and collecting coefficients a?,_,, for k£ > 2 gives
c, =0fork > 2.

Equation[[41l) gives
ap — Qp—1 = clqn_17
while equation[(4R) gives

ﬁn ﬁn—l 2

DA

We conclude that,, = ag + ¢1[n], andg, = [n],(61 + c2[n — 1],). O

Thus it appears reasonable to define¢tgheffer polynomials via their generating function

— 1 _ 1
@ Lt = rem e —moey

4.4. g-Kailath-Segall polynomials. The origin of these polynomials is in theLévy processes
defined in[6/9].

Definition 8. Let.A, be a complex star-algebra without identity, drida star-linear functional on it.
Let A be the complex unital star-algebra generated by non-comgsymbols{ X (f) : f € A"}
(and1) subject to the linearity relations

X(af + Bg) = aX(f) + BX(g).

Equivalently, A is the tensor algebra od,. The star-operation on it is determined by the require-
ment that allX (f), f € A{® are self-adjoint. For sucl, define the;-Kailath-Segall polynomials
by W (f) = X(f) —(f) and

W (Ffoforoo f) = XUOW (i for oo ) = D0 FFIW (Froos fooe s o)
(44) =

_iqi—lw<ffi,...,ﬁ-,...,fn> — (YW (f1, fa, -, f) -

This map has &-linear extension, so that eaéh is really a multi-linear map fromd, to A.
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In the particular casél, = Co[z] (polynomials without constant term), we may denote= X (z?).
The functional can be taken to be treumulant functional of a measurg (x*) = r;(1). Then

Wa(x) =W (x“(l), v ,x“("))
are multivariate polynomials ifi; : i € N}.

Proposition 25. The Kailath-Segall formul@) takes the following form.

H_)—Z X (VWL S )~ AW S )

n—k n
The proposition can be proven directly by induction, or dedlfrom Theore 26(b).
Many of the following formulas appear in[21] in theGaussian casd, = Cy(x) and(zz) = Jjq2-

Theorem 26. The following expansions hold.
(a) A monomial inX (f)’s can be expanded in terms of thailath-Segall polynomials:

X(f)X(f2)- = > D> ¢ e W(fe:CeS).
m€P(n) SCm BeSe
(b) For a permutatioro € Sym(n), write its standard cycle decomposition as
o= (u(1,1),...,u(l,s1)) ... (u(k,1),...,u(k,sp)).

Herewu(i, 1) = min; {u(7, )}, and the cycles af are ordered according to the order of their
smallest elements(1,1) < u(2,1) < ... < u(k,1). LetSing(o) be the one-element cycles
of o, and lets(o) the number of inversions of the permutation

F(U)Z(u(ll,U u(l:sk))

(F' is almost, but not quite, the fundamental transformatiofradta[23]). Finally, for a
subsetS C Sing(c), denote

Xso)(frs fos oo o) = H X (fui) fuG,2) - - Jugis)-
i:(u(3,1),...,u(i,s4))€SC

Note that in fact,X (s, depends only oRf; : {i} ¢ S}. With this notation, the-Kailath-
Segall polynomials are

W (fi, foronfu) = D D (1) OSIE TT () Xiso) (1, far - f)-

c€Sym(n) SCSing(o) :{i}€S

Proof. Part (a) was proven in the appendix [af [9] using the Fock spameesentation; one can also
use the defining recursion relation. For part (b), by debniti

W(fvflafZa'--afn):X(f)w(f17f27"'7fn)_Zqi_l<ffi>W<f17“'7fi7"'vfn)
i=1

_qu_lw<ffz7vfzaafn) _<f>W(f17f2a7fn)
i=1
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Using the defining recursion and inductionothis is

Z Z ) HSlge H<fy> 5.7 (s, fa)

T€Sym(n) SCSing(7) jeSs
- Z ¢ D) > (=TSO T () Xsmy (1 fir oo )
i=1 TESym({l,i,n}) SCSing(7) Jjes
- ¢! > > (=) TSl GO T () Xisry (F i i fin s )
i= TESym({O,l,%,n}) SCS;_?S%(T) Jjes
- Z qi—l Z Z (_1)n—cyc( )+IS| s(T <ff > H <fy>
i=1 resym({0,1,in}) chiensg(ﬂ ;iﬁ

xX(ST<ffz-,f1,...,f- s f)
Z Z n cyc(T) +|S‘q8(7—)H(fj>X(S,7)(f1>---afn)

TESym(n) SCSing(T) jeS

Since in the fourth term) € Sing(7), the second and the fourth terms cancel. So we obtain

Z Z YD —(eye(r)+1)+IS] g(7) H ) X(H)Xsm)(fry s fn)

T€Sym(n) SCSing(T) jes

_|_Z Z Z (_1)(n+l) CYC(T)+|S| T)+i— 1H f] X(Sq— (ffzafly---afia"'yfn)
i=1 TESym({O,l,%,n}) SCS;?Sg(T) Jjes

oy Y (@S g () TT(f) X (frs- oo fu):
T€Sym(n) SCSing(T) jes

The three terms in the preceding equation correspond te (#ir), o € Sym ({0, 1,...,n}) such
that

0 € Sing(0),0 € S (first term)
0 ¢ Sing(o),0(0) =i (second term)
0 € S C Sing(o) (third term)

It remains to match up the powers@fSuppose that

o= (u(l,1),...,u(l,s1)) ... (u(k,1),...,u(k,sk)),
s(o) = i(F(0)) for

F("):<u(10,1) N u(l:sk))'

In the first and the third terms,
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andi(F(o)) =i(F (1)) for

In the second term,

andi(F (o)) =i(F(r)) +i—1for

F(r) = <0 u(l,3)oru(2,1) ... u(k,sk))'

Define a unital linear functionat on A by
@[W(flvf%'-'vfn)] =0

foralln >0, fi,..., f, € A.

Corollary 27. The functionaly is given by

(45) e [X(f1)X(f2) .. . X(fn)] = Z T H (fB)-

mEP(n) Ber

That is, with respect t@, theg-cumulants of such an-tuple are

R[X(f1)>X(f2)a ce »X(fn)] = <f1f2 . fn>

Corollary 28. The linearization coefficient for theKailath-Segall polynomials is

k
P HW(fui(l)ufui(Z)a---ufui(s(i))) = Z g™ H (fan)) -
i=1

TE€P(N) Bernm
7'(/\7'(5(1),5(2) ,,,,, s(k):07
Sing(m)=0

In other words, it is the sum of partitiongdcumulants over all inhomogeneous partitions with no
singletons, with weighig(™),

4.5. Fock space realization. The ¢g-Kailath-Segall polynomials form a monic polynomial faynil
in infinitely many variables. So we can construct a Fock sfachem as in Section2.5; this space
will be infinite-dimensional. Instead, we will construcetRock space directly from the multi-linear
mapsWW. As a vector space, it will be the space of all polynomialslemesnts ofA4,, modulo the
linearity relations. Equivalently, it €D, .A5". The induced inner product is determined by

k n n
(46) <®fu(i),®fv<j)>=5nk > ]I feein) -

o€Sym(n)

If (-) is a faithful state on4,, for ¢ € (—1, 1) this inner product is positive definite_[[16]. Henge
is a state.

For the classical case= 1, this inner product is only positive semi-definite ever:jfis positive
definite. The quotient by the kernel pfgives precisely the symmetric Fock space.
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From the defining recursion relation, the action of the ojper (f) is

XNHARL®..0L)=fRARALR...Q f
+Zqi‘1<ffi>f1®...®ﬁ®---®fn

+) ¢ ®fiv...0f
=1
+(NHHRFa®...® fa

Thus it is a sum of a creation operator
a(f) iR fh®. . @fi—fRADHL®...Of,

an annihilation operator

Wf): @ [H®..Ofa—> ¢ HfA®.. ©Li.. 0 f
i=1

a preservation operator

p(f) h©he . ®fh—=Y ¢ ' fi®. . 0fie. &f,
=1

and a scalar operator
he@fhe . @fh—{1®Le. &fu

Now consider the case whér) is positive semi-definite but not faithful. For simplicitye will
also assume that it has the trace property,) = (gf) for all f,g € Ay. Note that this does not
imply thaty is a trace. Denote by

Iy={f€eA:(ff)=0}
the kernel of(-). Denote byH, the Hilbert space obtained by completing the vector sp&cg.,
with respect to the norm induced ljy|| = (f*f), with the induced inner product. Suppaseg is
in fact an ideal, so that
(47) Vf e IWVg € Ao, (f"g"gf) = 0.
This is the case, for example, whely is aC*-algebra. Note that

[(fa)l <V A{f*f)(gg),

and so{ A1 .,) = 0. It follows that the Fock representation dffactors through to the representa-
tion on@P” , H* with the inner product induced fror {46).

Note thatA,/I., is an algebra. In the examples below, we will observe th@fahg situations.
Let C1 & A, be the standard unital extension of the non-unital algehra

(a) If the functional-) can be extended 181 @& A, in a positive way, thef( f)|> < (f*f) (1),
and so(/(,) = 0. Thus the action o (f) in the Fock representation depends only on the
class off in Ay/Iy. So we may replacel, by A,/ throughout.
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(b) If the functional(-) has no such positive extension, it is natural to tAkg') to be the sum
of only three operatorsY (f) = a*(f) +a(f) +p(f). The formulas for thg-Kailath-Segall
polynomials need to be modified accordingly; this approaels wsed in[[9]. Under this
construction, again the action a&f( f) in the Fock representation depends only on the class
of fin Ay/1y, and so we may replacé, by A,/ throughout.

(c) A particular case of part (b) is when

(48) .AQ.A() C ](.>.
In this case in the representationd§/I .y, X (f) = a*(f) + a(f).

Example 12. Throughout this exampled, = Cy[z].

(@) Letr be a positive measure dh all of whose moments are finite, arid’) = m;(v) for
¢ > 1. Then we are in the context of part (a) of the preceding alt&re, and so may replace
Ao by Ay/I, throughout. This is the case of compoupBoisson distributions.

More specifically, lefz?) = ¢ fori > 1, so thatv = t§,. Then
Iy ={P: P(1) = 0}

is an ideal. This is the-Poisson case. Iiy/I.y, = = « for all . So theg-Kailath-Segall

polynomials in this case can be considered as single-Varfadynomials. Specifically,
they are the continuous bigHermite polynomials; the recursion relation for their ed

version is a particular case of equatiénl(35). Thedrem 26Gordllary[Z8 provide combi-
natorial identities for these polynomials.

(b) Letv be a positive measure dh with all moments finite, andz) = 0, (') = m;_»(v).
Then(-) is positive onCy[z], but in general has no positive extension to all@f]. So
we are in the context of part (b) of the preceding alternate a result, we may replace
Ao by Ay/I., throughout, as long as the operatéf$z’) without the scalar part are used.
This is theg-Kolmogorov case (se&l[9]), which includes all the centeradinitely divisible
measures (all of whose moments are finite).

(c) Let Ay = Cola], (z) = td;i2 = tm;_o(dy). Note that this functional is positive dy[z], but
not onC[z]. Then

[<.> = {P S CO[.TJ] : P/(O) = 0}
is an ideal, and conditiofL{#8) is satisfied. This isgi@aussian case. lA,/I, z' = 0 for
1 > 2. It follows that theg-Kailath-Segall polynomials in this case can also be carsidl
as single-variable polynomials. Specifically, they aredbitinuous;-Hermite polynomials
of Example[®. Theorerhi 26 and Corolldryl 28 provide combinakadentities for these
polynomials as well.

4.6. Differences from theq = 0, 1 cases.Binomial families of polynomials are Sheffer families
for ¢t = 0. In particular, for any Appell polynomials the binomial fayns always{z"}.

In [[7], we investigated-analogs of binomial families, which have generating fiores

o0

1
(49) exp,(U(z)zr) = kl:IO =0

We showed (Proposition 18) that the theory of such binonaalifies for various values af is
exactly parallel to the theory considered by Rota et al. ¢foe 1. In particular, the lowering
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operator (in the sense of Theorém 24) for such a sequerice'id),). In fact, these results were
surely known before.

However, the following is one difference between the clzdsand free Sheffer (or even Appell)
families. For a classical (single variable) Sheffer famjliy, (z,¢)} with generating functions
f(Z)te:cU(z)'

(50) U_l(ax)Pn(xa t) = Pn—l(xv t)
However, for a corresponding free Sheffer family with gextieilg function
sponding property is

1
T oo the corre-

(]‘1(55)F2(x,t):::ii<F%(x,t)F;_k_¢(x,t)
k=0

In other words, the lowering operator for the classical fansi U1 (9,) independently of. In the
free case, fot = 0 the lowering operator i& ~'(D,), but it changes fot > 0.

Forg # 0, 1, the binomial families corresponding to theSheffer sequencels{43) of this paper, with
generating functions

" 1
kl:IO 1-U(gkz2)z’
are different from the binomial familie§_(#9). For binomfamilies of this paper, the lowering
operator need not be a function B, (which is the lowering operator for the famify:"}). For
example, the binomial family for the continuous lgigHermite polynomials is

{ﬂthx—ma}

k=0
and the lowering operator for this family is

¢ @) = fO+ar)

r — (14 qx)
This operator does not commute with.

Another property which still holds in the free case is that fire Sheffer family can be expressed
as a linear combination of the corresponding Appell familyllemma 1]. This property does not
hold in theq case: see the appendix.

APPENDIXA. ¢g-APPELL POLYNOMIALS ARE NOT MARTINGALE POLYNOMIALS FORq-Ll’EVY
PROCESSES

All the calculations below are performed with Maple

A.1l. Relation betweeng-Appell and ¢-Sheffer polynomials. Let { P, (z, t)} be the centered con-
tinuous bigg-Hermite polynomials, anflA,,(z, t)} theq-Appell polynomials for; = 0, r, = ¢ for
k > 1. Note that{ P, } areq-Sheffer for this cumulant sequence. Then

Py(x,t) — <A4(x, t) — (34 2q+ ¢*)As(z,t) + (3 + 4q + 3¢° + ¢*) Az (x, 1)
— (1 +2q +2¢* + ¢°) Ay (, t))
= t[zq(q — 1)].
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It follows that ¢g-Sheffer polynomials need not be-@ndependent linear combination of the corre-
spondingg-Appell polynomials. In particular, sincgP, (x,t)} are known to be martingale poly-

nomials for theg-Poisson proces$][8], it follows that tleAppell polynomials, in this case, are

not.

A.2. Generic case.Take A, to be the polynomial algebra generated by symBol$) : ¢t € R, },
and the functional on it be given by

(x(t1)z(te) ... x(ty)) = (ml_in i)k

DenoteX (t) = X (z(t)) as in the case (b) of Sectibn ¥.5. Thek (¢)} is ag-Lévy process in the
sense of[[6]. For each fixetd definelV;(t) using the recursion relatiofi_{44) involving only the
X ((z(t))F), for that specifi¢. The conditional expectations onto the subalgebras geteby the
g-Lévy procesq X (¢)} are determined by

E, [Wa(t)] = Wa(s).

In particular, for eachi the Kailath-Segall family1’;(¢) is a martingale. In a number of situations,
these processes also have single-variable martingalagmilials families. That is, for eachthere
is a family of polynomial§ P(z, t)},¢( ., Of degreen in z such that

(51) B, [P(X(1),1)] = P(X(s),s).

This is the case fog = 1, ¢ = 0, if the process is g-Brownian motion, and if the process is a
g-Poisson process. In all of these cases, from the existdrsteb martingale polynomials one can
deduce the Markov property for the corresponding proceasdL

We show that generically, there is no degsgeolynomial which is a martingale for suchjeLévy
process. This is a strong indication that generhévy processes do not have the Markov property.
For a fixedt, explicit Maple calculations (see the author’'s web pagewsthat there is a monic
degrees polynomial P5(z), whose coefficients depend only eny, and the free cumulants of the
process, such that

Ps(X (1)) 4+ ¢*(1 — )t (rsWa(t) — roaWa(t))
= time-independent linear combination of the Kailath-Skegalynomials

Since a linear combination of Kailath-Segall polynomialaimartingale, the expression above is a
martingale. Suppose there is a degsamartingale polynomial inc. Further explicit calculations
show that there definitely are martingale polynomials ofrdegd and less. It follows from equa-
tion (1) that the leading coefficients of such polynomiaséto be independent 6fso we may
assume them to be monic. By subtracting fré¥rthe degreé martingale polynomial, we obtain a
martingale

Py(X (1)) + ¢*(1 — q)t (rsWa(t) — raWa(t)),

where the polynomiaP, has degree at modt P,(X(t)) - 1 contains a term of degregg P,
while (rsWa(t) — reW3(t)) - 1 = (rsz(t)* — rqz(t)?), so if deg P, > 1, P, also has to have a
time-independent leading coefficient. Proceeding in thghion, we obtain a martingale of the
form

Y(t) = a(t,q,r)X(t) +b(t, q,7) + ¢*(1 — q)t(rsWa(t) — raWa(t))
Since

Y(t)-1=alt,qr)z(t) +bt,qr)+ (1 — @)t(rsz(t)? — ryz(t)?),
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b is independent of, and may be taken to be zero. First assume 0. This can occur only in the
following cases.

() ¢ = 1. This is the classical Lévy process case.

(b) ¢ = 0. This is the free Lévy process case.

(c) r3sWh(t) = roWs(t). Suppose that conditiof (47) holds. From the “creation’t paithe
representation of the operata(¢) in Section(4.b, it follows thatsz(t)* — roz(t)* € I,
and in particular that

(2O (rsa(t)® = rox(t)*)) = t(rarpre — rariys) =0

for k > 0. This is the case only when, = o*~2 for &k > 2 (we may taker; = 0, 7, = 1).
ThenW,(t) = o*72X(t). These arg-Poisson processes with stepand the degenerate
casex = 0 gives theg-Brownian motion.

For generak, andq # 0, 1,
B [Y(#)] 1= alt,q,r)z(s) + ¢*(1 — @)t(rsa(s)” — raa(s)?),
and the martingale condition implies
(a(t,q,7) — a(s,q,7))2(s) + ¢*(1 — q)(t — 5)(rsa(s)” — ra2(s)*) = 0.
As above, this implies

(a(t.q,7) = a(s,q,7))ree + ¢*(1 = @)(t = 8)(PsTasz — T27is3) = 0
for £ > 0. By fixing s and varying, it follows thata(¢, ¢, ) is linear int, and may be taken to be
a(q,r)t. With ro = 1, r3 = «, this means that
a

Th43 = QTky2 + 57— Tkt1-
7*(1 - q)

For generak, «, this says tha{r;} is a sum of two geometric sequences, corresponding to the
g-Lévy measure being supported at two points.

Corollary 29. The Markov processes [if8] are notg-Lévy processes.

Proof. Proposition 3.3 ofi[118] shows that the processes of thatijagee martingale polynomials.
O
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