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Abstract

The main object of this paper is to give analogous definitions of Apostol type (see [T.M. Apostol,
On the Lerch Zeta function, Pacific J. Math. 1 (1951) 161-167] and [H.M. Srivastava, Some formulas
for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc.
129 (2000) 77-84]) for the so-called Apostol-Bernoulli numbers and polynomials of higher order.
We establish their elementary properties, derive several explicit representations for them in terms of
the Gaussian hypergeometric function and the Hurwitz (or generalized) Zeta function, and deduce
their special cases and applications which are shown here to lead to the corresponding results for the
classical Bernoulli numbers and polynomials of higher order.
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1. Introduction, definitionsand preliminaries
The classical Bernoulli polynomialg, (x) and the classical Euler polynomials, (x),
together with their familiar generalizatioris(,“) (x) and E,(f‘)(x) of (real or complex) or-

dera, are usually defined by means of the following generating functions (see, for details,
[8] and [10, p. 61 et seq.]):

<
el —

(ez + 1) ZE(Q)(X) (|Z| <7 1% .= 1)’ (2)

so that, obviously,

o o n
1) e = X(:)B,E"‘)(x)% (Izl <27; 1%:=1) (1)

and

B,(x):=BY(x) and E,(x):=EP(x) (neNp), ©)
where
No:=NU{0} (N:={1,2,3,...}).

For the classical BernoullinumbeBs and the classical Euler numbefts, we readily find
from (3) that

B,:=B,0)=BY©0) and E,:=E,0)=EP©0) (neNp). (4)

Some interesting analogues of the classical Bernoulli polynomials and nhumbers were
investigated by Apostol [2, Eq. (3.1), p. 165] and (more recently) by Srivastava [9, pp. 83—
84]. We begin by recalling here Apostol’s definitions as follows.

Definition 1 (Apostol [2]; see also Srivastava [9])he Apostol-Bernoulli polynomials
B, (x; ») are defined by means of the following generating function:

T ZB (x; k) (Iz +log x| < 27) (5)
n=0

with, of course,
By(x)=Bu(x;:1) and B,(A) :=B,(0; 1), (6)

whereBB, () denotes the so-called Apostol-Bernoulli numbers.

Apostol [2] not only gave elementary properties of the polynomfglé; A), but also
obtained the following recursion formula of the numbBjgA) (see [2, Eq. (3.7), p. 166]):

)k
B,(A) = ”Z G ki( 1)2+1 ~1,k) (neNg reC\{1}), 7)
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where S(n, k) denotes the Stirling numbers of the second kind defined by means of the
following expansion (see [4, Theorem B, p. 207]):

x"=z<;)k!5(n,k), (8)

k=0
so that

Sn,0)=6,0, S 1)=Smn =1 and S(n’n_1)=<;>’

8,.1 being the Kronecker symbol.
Motivated by the generalizations in (1) and (2) of the classical Bernoulli polynomials
and the classical Euler polynomials involving a real or complex pararaetee introduce
and investigate here the so-called Apostol-Bernoulli polynonﬁé‘fé(x; A) of ordera
and the Apostol-Euler polynomiafé"‘)(x; A) of ordera, which are defined as follows.

Definition 2. The Apostol-Bernoulli polynomialﬁ,(l"‘)(x; A) of ordera are defined by
means of the following generating function:

()\.67 ) ZB(U‘)(X )‘)_ (IZ + |Og)\.| < 27; 1% .= 1) (9)

n=0
with, of course,

B®(x)=B"(x;1) and BYW():=BY(0; 1), (10)

whereB,ﬁ“)(A) denotes the so-called Apostol-Bernoulli numbers of oader

Definition 3 (cf. Luo [7]). The Apostol-Euler polynomialé,(,“)(x; A) of ordera are de-
fined by means of the following generating function:

(@) (. " A T2
(kez—i-l) Ze 32 (Iz +loga| < 7; 1% :=1) (11)
with, of course,
EYx)=E9(x;1) and £Y(0) :=EY(0; 1), (12)

Where€,§°‘) (1) denotes the so-called Apostol-Euler numbers of osder
By using Definition 3 in conjunction with (2), it is easily observed that

2 o
() e~ logi x(z+loga)
25 (x; )‘) (ez+log/\+1> €
n=0

00 k
_ o—xlogi Z E/Ea) ) (z +loga)

pard k!

ot logx Z E(a)( )Z Zfz(logk)k n

—n)ln!
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rlogrh e 2 o @ . (logh)F
=e Z E Z En-‘rk(x) k! ’
n=0 " k=0 .

which yields the following representation for the Apostol-Euler ponnonﬂﬁf%{x; A) of
ordera in series of the familiar Euler ponnomiaE,(,"‘)(x) of ordera.

Lemma 1. The Apostol-Euler polynomia‘{éo‘) (x; A) of ordera is represented by

(log )
k!

o
E (1) =e 9NN E (1) (n € No) (13)
k=0

in series of the familiar Euler ponnomiaE,ﬁ“)(x) of ordera.

In precisely the same manner, Definition 2 would yield the following result.

Lemma 2. The Apostol-Bernoulli ponnomiaB,(f)(x; A) of order! are represented by

BO (x; ) = 1094 Y <n e l) (n Zk> B0, () 109

= k!
(n,1 € No) (14)
in series of the familiar Bernoulli polynomiaB,(,” (x) of orderl.

Recently, Luo [7] derived several interesting properties and explicit representations
for the Apostol-Euler polynomialé,g"‘)(x; A) of ordera, including (for example) an ex-
plicit series representation fé?;f“)(x; A) involving the Gaussian hypergeometric function
F(a, b; c; z) defined by (cf., e.g., [1, p. 556 et seq.])

o0

F(a,b;c;z) =2F1(a,b;c; z) =2F1(b,a; c; 2) = Z
n=0

(C¢Z6; Izl <1, z=1andR(c—a—b)>0; z=-1 and

R(c—a—>b) > —1), (15)

(@)n(D)n 2"

©)n n!

where

Ly =7Z"U{0} (2~ :={-1,-2,-3,...})
and (), denotes the Pochhammer symbol defined by

I'(A
Mo=1 and (1), = ro+n =AA+1---(A+n—-1 (neN).
(%)

The main object of the present paper is to investigate the corresponding problems for the
Apostol-Bernoulli ponnomiaIiS,(l"‘)(x; A) of ordera. And, by closely following the work
of Srivastava [9] dealing with the special case= 1, we also derive an explicit series
representation for

Bﬁ”(ﬁ; e27“'5> (p€Z; geN; §€R)
q
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involving the Hurwitz (or generalized) Zeta functiaris, a) defined by (cf. [3, p. 249]
and [10, p. 88])

’(s,a):= nZ:c:) oty (ER(S) >1 a¢ Za), (16)

so that
= g(s) = — ! 17
6.0 =60) = ¢ (5.5 a7)

for the Riemann Zeta functioq(s).

2. Explicit formulasinvolving the Gaussian hypergeometric function
We begin by stating our main result in this section as Theorem 1 below.

Theorem 1. For n,l € Ng andA € C\{1}, the following explicit series representation holds

true:
n—l k
YT B n—1I I+k-1 A
B} (x,)»)—l.(l>k2:c:)< . )( ! oD

. .
IC (") Ja+ j)"_k_lF<k +l—nkk+ 1 L) (18)
j=0 / i

X

where F(a, b; c;z) denotes the Gaussian hypergeometric function defined15y.
Furthermore, fom, [ € N,

[e'e) -1 x
Dy yy — ,—xloga n+k—1\(n+k (logx)
B, (x;1)=e kZ_(:J( X ' o

.’§<n+k)(l+r—l> r! r(_l)j<”.>
par AN r @n= J

J

~j2r(x+j)"+k_rF<r—n—k,r—l;Zr—i—l; L) (29)
X+ J
in terms of the Gaussian hypergeometric functit(a, b; c; z) defined by(15).

Proof. Making use of Taylor's expansion and Leibniz’s rule, we find from (9) with [

(I € Np) that
(»-=)
D,=—
z=0 dz

i
n Z X
B,(ll)(x; A) = DZ{(AeZ — 1) e z}

D S0\ (kN ks
=<A—1y§:(k)(l>x 0.
k=l
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{(itae-o) |

Now, by settingr =1 (I € Np) and
A
w =
A—1
in the binomial expansion:

(1+w)—“=2<“+’_1) —w)" (Jwl <1), (21)

r
r=0

and using the following known definition (see [10, Eq. 1.5 (15), p. 58]):

(20)

z=0

(-1

o r
(-1 =) s, (22)
r=I ’
we find from (20) that

n k—l r
Bg)(XQ 2) ZZ'Z (Z) (];)xnk . Z (l +:‘— 1) %S(k —1,r). (23)
k=l r=0

Upon interchanging the order of summation in (23), if we apply (see [10, Eq. 1.5 (20),
p. 58])

1& 4
S0,k = = Y (D (") J
! ) ]

and the elementary combinatorial identity:

(1) ()= G=)

we readily obtain
n-l ko .n—k—I
Y TN RL l+k—-1 n—I Ax
B ("’”_l(z)Z( k k) G DiH
k=0
k k .
'Z(—l)’<j>ij<k+l—n,l;k+1;—i>. (24)
X
j=0

Finally, we apply the known Pfaff-Kummer hypergeometric transformation [1, Eq. (15.3.4),
p. 559]:

F(a,b;c;z):(1—z)_aF<a,c—b;c; < >
z—1
(c¢Zg; |largl—2)|<m—e O<e<m)) (25)

in (24). We are thus led immediately to the assertion (18) of Theorem 1.




296 Q.-M. Luo, H.M. Srivastava / J. Math. Anal. Appl. 308 (2005) 290-302

The assertion (19) of Theorem 1 can be proven similarly (or, alternatively, by applying
Lemma 2 in conjunction with the special case- [ (I € Np) of a known result given earlier
by Srivastava and Todorov [11, Eq. (3), p. 510]; see also Eq. (26) belaw).

Remark 1. By settingr = 1 in (19), we obtain apecialcasex =/ (I € Ng) of the afore-
mentioned known result due to Srivastava and Todorov (see [11, Eq. (3), p. 510]):

n k
(@) N n a+k—1 L _ (k) .2k n—k
& (x)_z<k>( k )(Zk)!;)( D) T

k=0

-F(k—n,k—a;Zk—i—l; J ) (26)
X+

Remark 2. For the Apostol-Bernoulli numbets(,“)(k), by settinge = 0in (18), we obtain
the following explicit representation:

n—I k
) —7 n I+k—-1 k!(_)‘) _
BY () 1<l>k§( ' —(A_l)kHS(n 1,k),
(n.1€No; »eC\{1}), (27)
where we have made use of the Gauss summation theorem [1, Eq. (15.1.20), p. 556]:
I'(c)I'(c—a—D>b)

F(a,b;c;1) = -l =0 (c¢Zy; R(c—a—b)>0)

for
a=k+1—n, b=k, and c=k+1,

so that

-1
F(k+l—n,k;k+1;1):(n]:l>
(k=0,1,...,n—1; n,l € Np). (28)

Remark 3. Apostol's formula (7) is an obvious special case of our formula (27) when
=1

Remark 4. The following explicit formula for the Bernoulli numbe® of ordera was
given by Todorov [12, Eq. (3), p. 665]:

n -1
Br(la):Z(—l)k(Zi_Z)<a+]]§_l> (”Zk) S(n+ k. k). (29)
k=0

Obviously, as already observed by Srivastava and Todorov [11, p. 513], Todorov’s formula
(29) is contained in the relatively more general Srivastava—Todorov result (26) above (and
hence also in the assertion (19) of Theorem 1, but only for the special caseswhén

(I € Np)).



Q.-M. Luo, H.M. Srivastava / J. Math. Anal. Appl. 308 (2005) 290-302 297

Remark 5. The proof of Theorem 1 can be applietutatis mutandisn order to obtain

a new explicit formula for the Apostol-Bernoulli polynomidﬂé"‘) (x; 2) involving the
Stirling numbers of the second kind as follows:

Oy _ - n k n_kk_l I+j—-1
BP i =01y IE > f
k=l j=0

JI=0/

ok LD (n.1€Ng; »eC\{1}). (30)

Coroallary. The following explicit representation holds true for the Apostol-Bernoulli
polynomialsB3,, (x; A):

n—1 n_1 )\k k k
X _ - Y -k n—k—1
Bn(x,m_n];( f )—(k_l)kﬂg( D (j>1 (x+ )

-F(k—n+1,k;k+1; L) (n e No; » e C\{1}). (31)
X+

3. Explicit representationsinvolving the Hurwitz (or generalized) Zeta function

A general Hurwitz—Lerch Zeta functio? (z, s, a) defined by (cf., e.g., [10, p. 121 et
seq.])

0 n

z
[ = R

(Za S, a) ’; (n +a)s

(a e C\Zg; s € C when|z| < 1; R(s) > 1 when|z| =1) (32)

contains, as itspecialcases, not only the Riemann and Hurwitz (or generalized) Zeta
functions (cf. Egs. (16) and (17)):

s)=@(1,s5,1) and ¢(s,a)=D(,s,a) (33)
and the Lerch Zeta function:
0 eZnniS ) )
LE) =) —— = EP(e?E 5,1) (5 eR; R(s) > 1), (34)
r
n=1

but also such other functions as the polylogarithmic function;

X n
. Z
Lis (2) :=X_;n—s=z¢(z,s,l)
(s € C when|z| < 1; R(s) > 1 when|z| = 1) (35)

and the Lipschitz—Lerch Zeta function (cf. [10, Eq. 2.5 (11), p. 122]):
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00 .
eanS

o&,a,s) ::Z . ZCD(EZMS,S,CZ):ZL(E,S,LI)
n=0 (n+a)

(a € C\Zy; M(s) > 0 when& e R\Z; R(s) > 1 whené& ¢ Z), (36)

which was first studied by Rudolf Lipschitz (1832-1903) and Matyas Lerch (1860-1922)
in connection with Dirichlet’'s famous theorem on primes in arithmetic progressions.

For the general Hurwitz—Lerch Zeta functidr(z, s, a) defined by (32), itis easily seen
by using the elementary series identity:

Zf(k) ZZf(qurJ) (qeN) (37)
j=1k=0
that
o a+j—1\ .
D(z,5,a)=q° Zdﬁ(zq, s, T)z’l, (38)
i=1

which, in the special case when

2pmi
z=expl — | (p€Z; geN),
q

yields the following summation formula for the Lipschitz—Lerch Zeta functy@#, a, s)
defined by (36):

(B Bl

in terms of the Hurwitz (or generalized) Zeta functio@, a).
Forz =1, (38) reduces at once to the following familiar identity:

{(s,a)=¢q Zc( ““_1>, (40)

which, fora = 1, yields a well-known result for the Riemann Zeta functigm). On the
other hand, by setting = % in (38) and (39), we have

e¢]

Z(z,, T ‘ZQD( qu)z“ (41)

and

e tDpmi/q 2j—1 (2j — D pmi

— = § 42
; CE Z§< e ) “2
respectively. Lastly, in their special cases whesa 1, (38) and (39) yield the following
companions of the summation formulas (41) and (42), respectively:

e¢]

n 9 1 .
Zi_s: Lis(z)quZ@(zq,s, é)z’ (43)
j=1

n=1
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and

o0 2np7'ri/q q . . .
e S o )
n q P

n=1 4

For the Lipschitz—Lerch Zeta functiah(&, a, s) defined by (36), waowrecall Lerch’s
functional equation:

_I'(s) 1 .
¢E,a,1—5)= 2n) {exp|:<§s — 2a$)m:|¢(—a,§,s)

+6Xp[<—%s +2a(1—§))m':|¢(a, l—é,s)}
(s€eC;0<&<], (45)

which was applied recently by Srivastava [9] in conjunction with Apostol’s formula
[2, p. 164]:

. L2miE
p(E.a,1—m = — @)

with a view to deriving the following explicit representation for the Apostol-Bernoulli
polynomialsB, (x; 1) defined by (5) (cf. [9, Eq. (4.6), p. 84]; see also [10, Eq. 6.1 (27),

p. 341)):
q . .
$+J—1> [(g_2(€+1—1)p) }
{jZ:;{(n, p exp, > p T

(n eN) (46)

P, 2nig) _ n!
Bﬂ ) -
(q ‘ ) (2qm)"

q . .
j—é& n 2(j—&p\_.
(58 o] (-5 + 2520

meN\{1}; peZ; geN; £ eR), (47)

which holds true whenever each side exists. Indeed, ispéezialcase wherf € Z, the
summation formula (47) can easily be shown to reduce to a known result given earlier by
Cvijovit and Klinowski [5, Theorem A, p. 1529].

Remark 6. Srivastava’s formula (47) as well as Srivastavdédailed derivation of his
series representation (47) were subsequently reprodierbdtimby Luo [6, p. 513 et seq.]
without rightfully attributing the series representation (47) to Srivastava [9] (see also [10,
Eqg. 6.1 (27), p. 341]). Moreovehoth [9] and [10] were actually included in the list of
citations at the end of Luo’s paper [6, p. 515].

With a view to applying Srivastava's formula (47) for our present objective, we turn
once again to Definition 2, which yields

00 n a—1
@y 2 _ 2 . 2z Xz
nzz;)B" (x’k)n! _(kez—1> (kez—1>e
= (Z&S"“”(M%) : (Zosn(x;m%). (48)

n=0
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Upon recognizing the last member in (48) as the Cauchy product of two series, we imme-
diately arrive at Lemma 3 below.

Lemma 3. The following relationship

n

B (x; 2) = Z( )B(“ YWBi(x; 1) (neNo) (49)

k=0

holds true between the Apostol-Bernoulli polynomiﬁfg)(x; A) of order o and the
Apostol-Bernoulli numberB,(l"‘_l) (1) of ordera — 1.

Theorem 2. For the Apostol-Bernoulli ponnomialS,ﬂ“) (x; A) of orderc,

Br(,a)<£§ ezmg) — n(e?mié — 1)—1Blga:1) (e27%) k! <n) B (¢27%)
q ! I;(an)k k k
. ié“(k §+j—1> eXng ~ 2<s+j—1>p>m}
=\ e 2 q
E) [( 2(1—5)17) }
+ K125 i 2
,Zf( p exp p i

(n eN\{1l}; peZ; geN; &€ R\Z). (50)

Proof. The proof of Theorem 2 is fairly straightforward. Indeed, by making use of
Srivastava’s formula (47) in Lemma 3 above, the assertion (50) of Theorem 2 follows
immediately upon noting that [10, Eq. 2.5 (46), p. 126]

Bo(x; ) =0 and Bi(x;A) = A—i:l_ A#£1). (51)
Since
BP0 :=BP0; 1) =80 (neNo), (52)

Srivastava’s formula (47) can be recovered at once from Theorem 2 by setting) in
(50). More importantly, in thexceptionalcase of the representation formula (50) when
& € Z, we can apply the assertion (49) of Lemmavdtil » = 1) in conjunction with
Srivastava’s formula [9, Eq. (2.3), p. 79]:

p 2.n & j 2jpr  nmw
B,|\=)=- , L )cod =/ — —
(7) (2qn)",2_;§<" Do

(neN\{1}; peNg; ¢eN; 0= p<gq) (53)

with a view to deriving the followinggomplemenof (50) for & € Z:
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p 1 P_1\pe-
e (5) = (G - 5o

Ly () e ) o 27 - 5)

(neN\{1}; peNp; geN; 0Sp<gq). O (54)

4. Miscellaneousresults

The following further properties of the Apostol-Bernoulli ponnomiaBé“)(x; A) of
ordera are readily derived from Definition 2. We, therefore, choose to omit the details
involved.

Theorem 3. Letn € Ng. Suppose also that and A are suitable(real or compleX parame-
ters. Then

n

BO(i =Y (Z) BEOGox" and B (xix) =", 3)
k=0
AB@ (x4 15 2) — B (x5 2) = nB P (x: 1), (56)
aiB,ﬁ"‘)(x; 2 =nBY (x;h), (57)
X
b
B, (b 1) — B (a; 1)
@), +1 +1
[ B = o : 9
n
Bt yiy=3 ( ) B (s B (i), (59)
k=0
-1
B (o — x; ) = ul?ff‘) (x:271), (60
B (@ +x; 1) = ( ) — B (=x a7, (61)
nxB& (x; 1) = (n — a)B,(f)(x; 2 +arBEtY (x +1;:1),  and (62)
Br(la+1)(x; A) = (1 — E)Br(l“)(x; A+ n(f - l)B,(la_)l(x§ A). (63)
o o
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