q-Extensions for the Apostol-Genocchi Polynomials ${ }^{1}$
 Qiu-Ming Luo

Abstract

In this paper, we define the Apostol-Genocchi polynomials and q -Apostol-Genocchi polynomials. We give the generating function and some basic properties of q-Apostol-Genocchi polynomials. Several interesting relationships are also obtained.

2000 Mathematics Subject Classification: Primary 05A30; Secondary 11B83, 11M35, 33E20.
Key Words and Phrases: Genocchi polynomials, q-Genocchi polynomials; Apostol-Genocchi polynomials , q-Apostol-Genocchi polynomials; Hurwitz-Lerch Zeta function; q-Hurwitz-Lerch Zeta function;

Goyal-Laddha-Hurwitz-Lerch Zeta function; q-Goyal-Laddha-Hurwitz-Lerch Zeta function.

1 Introduction, definitions and motivation

Throughout this paper, we always make use of the following notation: $\mathbb{N}=$ $\{1,2,3, \ldots\}$ denotes the set of natural numbers, $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ denotes the set of nonnegative integers, $\mathbb{Z}_{0}^{-}=\{0,-1,-2,-3, \ldots\}$ denotes the set of

[^0]nonpositive integers, \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of real numbers, \mathbb{C} denotes the set of complex numbers.

The falling factorial is $\{n\}_{0}=1,\{n\}_{k}=n(n-1) \cdots(n-k+1)(n \in \mathbb{N})$; The rising factorial is $(n)_{0}=1,(n)_{k}=n(n+1) \cdots(n+k-1)$; The q-shifted factorial is $(a ; q)_{0}=1 ;(a ; q)_{k}=(1-a)(1-a q) \cdots\left(1-a q^{k-1}\right), k=1,2, \ldots$; $(a ; q)_{\infty}=(1-a)(1-a q) \cdots\left(1-a q^{k}\right) \cdots=\prod_{k=0}^{\infty}\left(1-a q^{k}\right),(|q|<1 ; a, q \in \mathbb{C})$. Clearly, $(a ; q)_{k}=\frac{(a ; q)_{\infty}}{\left(a q^{k} ; q\right)_{\infty}}$.

The q-number or q-basic number is defined by $[a]_{q}=\frac{1-q^{a}}{1-q}, q \neq 1, \quad(|q|<$ $1 ; a, q \in \mathbb{C})$; The q-numbers factorial is defined by $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q},(n \in$ $\mathbb{N})$. The q-numbers shifted factorial is defined by $\left([a]_{q}\right)_{n}=[a]_{q ; n}=[a]_{q}[a+$ $1]_{q} \cdots[a+n-1]_{q}(n \in \mathbb{N}, a \in \mathbb{C})$. Clearly, $\lim _{q \rightarrow 1}[a]_{q}=a, \lim _{q \rightarrow 1}[n]_{q}!=$ $n!, \lim _{q \rightarrow 1}\left([a]_{q}\right)_{n}=(a)_{n}$.
The usual binomial theorem

$$
\begin{equation*}
\frac{1}{(1-z)^{\alpha}}=\sum_{n=0}^{\infty}\binom{-\alpha}{n}(-z)^{n}:=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}}{n!} z^{n}, \quad(z, \alpha \in \mathbb{C} ;|z|<1) \tag{1.1}
\end{equation*}
$$

The q-binomial theorem

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} z^{n}=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}}, \quad(z, q \in \mathbb{C} ; \quad|z|<1,|q|<1) \tag{1.2}
\end{equation*}
$$

A special case of (1.2), for $a=q^{\alpha}(\alpha \in \mathbb{C})$, can be written as follows:

$$
\begin{gather*}
\frac{1}{(z ; q)_{\alpha}}=\frac{\left(q^{\alpha} z ; q\right)_{\infty}}{(z ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{\left(q^{\alpha} ; q\right)_{n}}{(q ; q)_{n}} z^{n}:=\sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!} z^{n} \tag{1.3}\\
(z, q, \alpha \in \mathbb{C} ;|z|<1,|q|<1) .
\end{gather*}
$$

The above q-standard notation can be found in [2].
The Genocchi numbers G_{n} and polynomials $G_{n}(x)$ together with their generalizations $G_{n}^{(\alpha)}$ and $G_{n}^{(\alpha)}(x)$ (α is real or complex), are usually defined by means of the following generating functions (see [5, p. 532-533]):

$$
\begin{equation*}
\left(\frac{2 z}{e^{z}+1}\right)^{\alpha}=\sum_{n=0}^{\infty} G_{n}^{(\alpha)} \frac{z^{n}}{n!} \quad(|z|<\pi) \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{2 z}{e^{z}+1}\right)^{\alpha} e^{x z}=\sum_{n=0}^{\infty} G_{n}^{(\alpha)}(x) \frac{z^{n}}{n!} \quad(|z|<\pi) \tag{1.5}
\end{equation*}
$$

Obviously, for $\alpha=1$, Genocchi polynomials $G_{n}(x)$ and numbers G_{n} are

$$
\begin{equation*}
G_{n}(x):=G_{n}^{(1)}(x) \quad \text { and } \quad G_{n}:=G_{n}(0) \quad\left(n \in \mathbb{N}_{0}\right), \tag{1.6}
\end{equation*}
$$

respectively.
We now intrduce the following extensions of Genocchi polynomials of higher order based on the idea of Apostol (see, for details, [1]).

Definition 1.1. The Apostol-Genocchi numbers and polynomials of order α are respectively defined by means of the generating functions:

$$
\begin{array}{ll}
\left(\frac{2 z}{\lambda e^{z}+1}\right)^{\alpha}=\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(\alpha)}(\lambda) \frac{z^{n}}{n!} & (|z|<|\log (-\lambda)|) \\
\left(\frac{2 z}{\lambda e^{z}+1}\right)^{\alpha} e^{x z}=\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(\alpha)}(x ; \lambda) \frac{z^{n}}{n!} & (|z|<|\log (-\lambda)|) . \tag{1.8}
\end{array}
$$

Clearly, we have

$$
\begin{array}{r}
G_{n}^{(\alpha)}(x)=\mathcal{G}_{n}^{(\alpha)}(x ; 1), \quad \mathcal{G}_{n}^{(\alpha)}(\lambda):=\mathcal{G}_{n}^{(\alpha)}(0 ; \lambda), \tag{1.9}\\
\mathcal{G}_{n}(x ; \lambda):=\mathcal{G}_{n}^{(1)}(x ; \lambda) \quad \text { and } \quad \mathcal{G}_{n}(\lambda):=\mathcal{G}_{n}^{(1)}(\lambda),
\end{array}
$$

where $\mathcal{G}_{n}(\lambda), \mathcal{G}_{n}^{(\alpha)}(\lambda)$ and $\mathcal{G}_{n}(x ; \lambda)$ denote the so-called Apostol-Genocchi numbers, Apostol-Genocchi numbers of order α and Apostol-Genocchi polynomials respectively.

It follows that we give the following q-extensions for Apostol-Genocchi polynomials of order α.

Definition 1.2. The q-Apostol-Genocchi numbers and polynomials of order α are respectively defined by means of the generating functions:
$W_{\lambda ; q}^{(\alpha)}(t)=(2 t)^{\alpha} \sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n} e^{[n]_{q} t}=\sum_{n=0}^{\infty} \mathcal{G}_{n ; q}^{(\alpha)}(\lambda) \frac{t^{n}}{n!}, \quad(q, \alpha, \lambda \in \mathbb{C} ;|q|<1)$.

$$
\begin{align*}
& W_{x ; \lambda ; q}^{(\alpha)}(t)=(2 t)^{\alpha} \sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n+x} e^{[n+x]_{q} t} \tag{1.11}\\
& \quad=\sum_{n=0}^{\infty} \mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda) \frac{t^{n}}{n!}, \quad(q, \alpha, \lambda \in \mathbb{C} ;|q|<1) .
\end{align*}
$$

Obviously,

$$
\lim _{q \rightarrow 1} \mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda)=\mathcal{G}_{n}^{(\alpha)}(x ; \lambda), \quad \lim _{q \rightarrow 1} \mathcal{G}_{n ; q}^{(\alpha)}(\lambda)=\mathcal{G}_{n}^{(\alpha)}(\lambda)
$$

and

$$
\lim _{q \rightarrow 1} G_{n ; q}^{(\alpha)}(x)=G_{n}^{(\alpha)}(x), \quad \lim _{q \rightarrow 1} G_{n ; q}^{(\alpha)}=G_{n}^{(\alpha)}
$$

We recall that a family of the Hurwitz-Lerch Zeta function $\Phi_{\mu, \nu}^{(\rho, \sigma)}(z, s, a)$ [4, p. 727, Eq. (8)] is defined by

$$
\begin{gather*}
\Phi_{\mu, \nu}^{(\rho, \sigma)}(z, s, a):=\sum_{n=0}^{\infty} \frac{(\mu)_{\rho n}}{(\nu)_{\sigma n}} \frac{z^{n}}{(n+a)^{s}}, \tag{1.12}\\
\left(\mu \in \mathbb{C} ; a, \nu \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; \rho, \sigma \in \mathbb{R}^{+} ; \rho<\sigma \quad \text { when } \quad s, z \in \mathbb{C} ;\right. \\
\rho=\sigma \quad \text { and } \quad s \in \mathbb{C} \quad \text { when } \quad|z|<1 ; \rho=\sigma \quad \text { and } \\
\mathfrak{R}(s-\mu+\nu)>1 \quad \text { when }|z|=1),
\end{gather*}
$$

contains, as its special cases, not only the Hurwitz-Lerch Zeta function

$$
\begin{equation*}
\Phi_{\nu, \nu}^{(\sigma, \sigma)}(z, s, a)=\Phi_{\mu, \nu}^{(0,0)}(z, s, a)=\Phi(z, s, a):=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s}}, \tag{1.13}
\end{equation*}
$$

but also the following generalized Hurwitz-Zeta function introduced and studied earlier by Goyal and Laddha [3, p. 100, Eq. (1.5)]

$$
\begin{equation*}
\Phi_{\mu, 1}^{(1,1)}(z, s, a)=\Phi_{\mu}(z, s, a):=\sum_{n=0}^{\infty} \frac{(\mu)_{n}}{n!} \frac{z^{n}}{(n+a)^{s}} \tag{1.14}
\end{equation*}
$$

which, for convenience, are called the Goyal-Laddha-Hurwitz-Lerch Zeta function.

It follows that we introduce the following definitions.

Definition 1.3. The q-Goyal-Laddha-Hurwitz-Lerch Zeta function is defined by
$\Phi_{\mu ; q}(z, s, a):=\sum_{n=0}^{\infty} \frac{\left([\mu]_{q}\right)_{n}}{[n]_{q}!} \frac{z^{n} q^{n+a}}{[n+a]_{q}^{s}}, \quad\left(\mu, s \in \mathbb{C} ; \mathfrak{R}(a)>0 ; a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right)$.
Setting $\mu=1$ in (1.15), we have
Definition 1.4. The q-Hurwitz-Lerch Zeta function is defined by

$$
\begin{equation*}
\Phi_{q}(z, s, a):=\sum_{n=0}^{\infty} \frac{z^{n} q^{n+a}}{[n+a]_{q}^{s}}, \quad\left(s \in \mathbb{C} ; \mathfrak{R}(a)>0 ; a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right) \tag{1.16}
\end{equation*}
$$

The aim of this paper is to give another generating function of q-ApostolGenocchi polynomials. Some basic properties are also studied. We obtain several interesting relationships between these polynomials and the generalized Zeta functions.

2 Generating functions of the q-Apostol-Genocchi polynomials of higher order

By (1.3) and (1.11), yields

$$
\begin{align*}
W_{x ; \lambda ; q}^{(\alpha)}(t) & =(2 t)^{\alpha} \sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n+x} e^{[n+x]_{q} t} \tag{2.1}\\
& =(2 t)^{\alpha} e^{\frac{t}{1-q}} \sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n+x} e^{-\frac{q^{n+x}}{1-q} t} \\
& =(2 t)^{\alpha} e^{\frac{t}{1-q}} \sum_{k=0}^{\infty} \frac{(-1)^{k} q^{(k+1) x}}{(1-q)^{k}} \frac{t^{k}}{k!} \sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}\left(-\lambda q^{k+1}\right)^{n} \\
& =(2 t)^{\alpha} e^{\frac{t}{1-q}} \sum_{k=0}^{\infty} \frac{(-1)^{k} q^{(k+1) x}}{\left(-\lambda q^{k+1} ; q\right)_{\alpha}}\left(\frac{1}{1-q}\right)^{k} \frac{t^{k}}{k!} .
\end{align*}
$$

Therefor, we obtain the generating function of $\mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda)$ as follows:

$$
\begin{equation*}
W_{x ; \lambda ; q}^{(\alpha)}(t)=(2 t)^{\alpha} e^{\frac{t}{1-q}} \sum_{k=0}^{\infty} \frac{(-1)^{k} q^{(k+1) x}}{\left(-\lambda q^{k+1} ; q\right)_{\alpha}}\left(\frac{1}{1-q}\right)^{k} \frac{t^{k}}{k!}=\sum_{n=0}^{\infty} \mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda) \frac{t^{n}}{n!} \tag{2.2}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
W_{\lambda ; q}^{(\alpha)}(t)=(2 t)^{\alpha} e^{\frac{t}{1-q}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\left(-\lambda q^{k+1} ; q\right)_{\alpha}}\left(\frac{1}{1-q}\right)^{k} \frac{t^{k}}{k!}=\sum_{n=0}^{\infty} \mathcal{G}_{n ; q}^{(\alpha)}(\lambda) \frac{t^{n}}{n!} \tag{2.3}
\end{equation*}
$$

Setting $\lambda=1$ in (2.2) and (2.3) respectively, we deduce the generating functions of $G_{n ; q}^{(\alpha)}(x)$ and $G_{n ; q}^{(\alpha)}$ as follows:

$$
\begin{equation*}
W_{x ; q}^{(\alpha)}(t)=(2 t)^{\alpha} e^{\frac{t}{1-q}} \sum_{k=0}^{\infty} \frac{(-1)^{k} q^{(k+1) x}}{\left(-q^{k+1} ; q\right)_{\alpha}}\left(\frac{1}{1-q}\right)^{k} \frac{t^{k}}{k!}=\sum_{n=0}^{\infty} G_{n ; q}^{(\alpha)}(x ; \lambda) \frac{t^{n}}{n!} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{q}^{(\alpha)}(t)=(2 t)^{\alpha} e^{\frac{t}{1-q}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\left(-q^{k+1} ; q\right)_{\alpha}}\left(\frac{1}{1-q}\right)^{k} \frac{t^{k}}{k!}=\sum_{n=0}^{\infty} G_{n ; q}^{(\alpha)}(\lambda) \frac{t^{n}}{n!} \tag{2.5}
\end{equation*}
$$

It follows that we derive readily the following formulas by (2.2) and (2.3) for $\alpha=\ell \in \mathbb{N}$.

$$
\begin{equation*}
\mathcal{G}_{n ; q}^{(\ell)}(\lambda)=\frac{2^{\ell}}{(1-q)^{n-\ell}} \sum_{k=\ell}^{n}\binom{n}{k} \frac{(-1)^{k-\ell}\{k\}_{\ell}}{\left(-\lambda q^{k-\ell+1} ; q\right)_{\ell}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{G}_{n ; q}^{(\ell)}(x ; \lambda)=\frac{2^{\ell}}{(1-q)^{n-\ell}} \sum_{k=\ell}^{n}\binom{n}{k} \frac{(-1)^{k-\ell}\{k\}_{\ell} q^{(k-\ell+1) x}}{\left(-\lambda q^{k-\ell+1} ; q\right)_{\ell}} \tag{2.7}
\end{equation*}
$$

Setting $\lambda=1$ in (2.6) and (2.7) respectively, we deduce the explicit formulas as follows:

$$
\begin{equation*}
G_{n ; q}^{(\ell)}=\frac{2^{\ell}}{(1-q)^{n-\ell}} \sum_{k=\ell}^{n}\binom{n}{k} \frac{(-1)^{k-\ell}\{k\}_{\ell}}{\left(-q^{k-\ell+1} ; q\right)_{\ell}} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{n ; q}^{(\ell)}(x)=\frac{2^{\ell}}{(1-q)^{n-\ell}} \sum_{k=\ell}^{n}\binom{n}{k} \frac{(-1)^{k-\ell}\{k\}_{\ell} q^{(k-\ell+1) x}}{\left(-q^{k-\ell+1} ; q\right)_{\ell}} . \tag{2.9}
\end{equation*}
$$

3 Some properties of the q-Apostol-Genocchi polynomials of higher order

In this Section, we shall derive some basic properties of the q-ApostolGenocchi polynomials.

Proposition 3.1. The special values for q-Apostol-Genocchi polynomials and numbers of higher order $(n, \ell \in \mathbb{N} ; \alpha, \lambda \in \mathbb{C})$

$$
\begin{array}{r}
\mathcal{G}_{n ; q}^{(\alpha)}(\lambda)=\mathcal{G}_{n ; q}^{(\alpha)}(0 ; \lambda), \quad \mathcal{G}_{n ; q}^{(0)}(x ; \lambda)=q^{x}[x]_{q}^{n}, \tag{3.1}\\
\mathcal{G}_{0 ; q}^{(\alpha)}(x ; \lambda)=\mathcal{G}_{0 ; q}^{(\alpha)}(\lambda)=\delta_{\alpha, 0}, \quad \mathcal{G}_{n ; q}^{(\ell)}(x ; \lambda)=0 \quad(0 \leqq n \leqq \ell-1)
\end{array}
$$

$\delta_{n, k}$ being the Kronecker symbol.
Proposition 3.2. The formula of q-Apostol-Genocchi polynomials of higher order in terms of q-Apostol-Genocchi numbers of higher order

$$
\begin{equation*}
\mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda)=\sum_{k=0}^{n}\binom{n}{k} \mathcal{G}_{k ; q}^{(\alpha)}(\lambda) q^{(k-\alpha+1) x}[x]_{q}^{n-k} \tag{3.2}
\end{equation*}
$$

Proof. By (1.11) and (1.10), yields

$$
\begin{aligned}
(3.3) W_{x ; \lambda ; q}^{(\alpha)}(t) & =\sum_{n=0}^{\infty} \mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda) \frac{t^{n}}{n!}=(2 t)^{\alpha} \sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n+x} e^{[n+x]_{q} t} \\
& =(2 t)^{\alpha} q^{x} e^{[x]_{q} t} \sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n} e^{[n]_{q} q^{x} t} \\
& =\sum_{n=0}^{\infty}\left[\sum_{k=0}^{n}\binom{n}{k} \mathcal{G}_{k ; q}^{(\alpha)}(\lambda) q^{(k-\alpha+1) x}[x]_{q}^{n-k}\right] \frac{t^{n}}{n!} .
\end{aligned}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ on both sides of (3.3), we lead immediately to the desired (3.2).

Proposition 3.3 (Difference equation).

$$
\begin{equation*}
\lambda q^{\alpha-1} \mathcal{G}_{n ; q}^{(\alpha)}(x+1 ; \lambda)+\mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda)=2 n \mathcal{G}_{n-1 ; q}^{(\alpha-1)}(x ; \lambda) \quad(n \geqq 1) . \tag{3.4}
\end{equation*}
$$

Proof. It is easy to observe that

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{\left([\alpha-1]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n+x} e^{[n+x]_{q} t}= & \lambda q^{\alpha-1} \sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n+x+1} e^{[n+x+1]_{q} t} \tag{3.5}\\
& +\sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n+x} e^{[n+x]_{q} t}
\end{align*}
$$

By (1.11) and (3.5), we obtain the desired (3.4).
Proposition 3.4 (Differential relationship).

$$
\begin{equation*}
\frac{\partial}{\partial_{x}} \mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda)=\mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda) \log q+n \frac{\log q}{q-1} q^{x} \mathcal{G}_{n-1 ; q}^{(\alpha)}(x ; \lambda q) \tag{3.6}
\end{equation*}
$$

Proof. By (2.7), it is not difficult.

Proposition 3.5 (Integral formula).

$$
\begin{array}{r}
\int_{a}^{b} q^{x} \mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda q) \mathrm{d} x= \tag{3.7}\\
\frac{1-q}{n+1} \int_{a}^{b} \mathcal{G}_{n+1 ; q}^{(\alpha)}(x ; \lambda) \mathrm{d} x+\frac{q-1}{\log q} \frac{\mathcal{G}_{n+1 ; q}^{(\alpha)}(b ; \lambda)-\mathcal{G}_{n+1 ; q}^{(\alpha)}(a ; \lambda)}{n+1} .
\end{array}
$$

Proof. It is easy to obtain (3.7) by (3.6).
Proposition 3.6 (Addition theorem).

$$
\begin{equation*}
\mathcal{G}_{n ; q}^{(\alpha)}(x+y ; \lambda)=\sum_{k=0}^{n}\binom{n}{k} \mathcal{G}_{k ; q}^{(\alpha)}(x ; \lambda) q^{(k-\alpha+1) y}[y]_{q}^{n-k} \tag{3.8}
\end{equation*}
$$

Proof.By (1.11), yields

$$
\begin{align*}
W_{x+y ; \lambda ; q}^{(\alpha)}(t) & =\sum_{n=0}^{\infty} \mathcal{G}_{n ; q}^{(\alpha)}(x+y ; \lambda) \frac{t^{n}}{n!}=(2 t)^{\alpha} \sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n+x+y} e^{[n+x+y]_{q} t} \tag{3.9}\\
& =(2 t)^{\alpha} q^{y} e^{[y]_{q} t} \sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n+x} e^{[n+x]_{q} q^{y} t} \\
& =\sum_{n=0}^{\infty}\left[\sum_{k=0}^{n}\binom{n}{k} \mathcal{G}_{k ; q}^{(\alpha)}(x ; \lambda) q^{(k-\alpha+1) y}[y]_{q}^{n-k}\right] \frac{t^{n}}{n!} .
\end{align*}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ on both sides of (3.9), we can arrive at formula (3.8) immediately.

Proposition 3.7 (Theorem of complement).

$$
\begin{align*}
& \mathcal{G}_{n ; q}^{(\alpha)}(\alpha-x ; \lambda)=\frac{(-1)^{n-\alpha}}{\lambda^{\alpha}} q^{\alpha-\binom{\alpha}{2}-n} \mathcal{G}_{n ; q^{-1}}^{(\alpha)}\left(x ; \lambda^{-1}\right), \tag{3.10}\\
& \mathcal{G}_{n ; q}^{(\alpha)}(\alpha+x ; \lambda)=\frac{(-1)^{n-\alpha}}{\lambda^{\alpha}} q^{\alpha-\binom{\alpha}{2}-n} \mathcal{G}_{n ; q^{-1}}^{(\alpha)}\left(-x ; \lambda^{-1}\right) . \tag{3.11}
\end{align*}
$$

Proof. It follows that by (2.7).

Proposition 3.8 (Recursive formulas).
$(n-\alpha) \mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda)=n[x]_{q} \mathcal{G}_{n-1 ; q}^{(\alpha)}(x ; \lambda)-\frac{\lambda}{2}[\alpha]_{q} q^{x} \mathcal{G}_{n ; q}^{(\alpha+1)}(x+1 ; \lambda)$,

$$
\begin{equation*}
[\alpha]_{q} q^{x-\alpha} \mathcal{G}_{n ; q}^{(\alpha+1)}(x ; \lambda)=2 n\left([\alpha]_{q} q^{x-\alpha}-[x]_{q}\right) \mathcal{G}_{n-1 ; q}^{(\alpha)}(x ; \lambda)+2(n-\alpha) \mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda) . \tag{3.13}
\end{equation*}
$$

Proof. We differentiate both side of (1.11) with respect to the variable t
yields

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} W_{x ; \lambda ; q}^{(\alpha)}(t)=\sum_{n=0}^{\infty} n \mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda) \frac{t^{n-1}}{n!} \tag{3.14}\\
& =2 \alpha(2 t)^{\alpha-1} \sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n+x} e^{[n+x]_{q} t}+(2 t)^{\alpha}[n+ \\
& +x]_{q} \sum_{n=0}^{\infty} \frac{\left([\alpha]_{q}\right)_{n}}{[n]_{q}!}(-\lambda)^{n} q^{n+x} e^{[n+x]_{q} t} \\
& =\alpha \sum_{n=0}^{\infty} \mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda) \frac{t^{n-1}}{n!}+[x]_{q} \sum_{n=0}^{\infty} \mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda) \frac{t^{n}}{n!}- \\
& -\frac{\lambda}{2}[\alpha]_{q} q^{x} \sum_{n=0}^{\infty} \mathcal{G}_{n ; q}^{(\alpha+1)}(x+1 ; \lambda) \frac{t^{n-1}}{n!} \\
& =\sum_{n=0}^{\infty}\left[\alpha \mathcal{G}_{n ; q}^{(\alpha)}(x ; \lambda)+n[x]_{q} \mathcal{G}_{n-1 ; q}^{(\alpha)}(x ; \lambda)-\frac{\lambda}{2}[\alpha]_{q} q^{x} \mathcal{G}_{n ; q}^{(\alpha+1)}(x+1 ; \lambda)\right] \frac{t^{n-1}}{n!} .
\end{align*}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ on both sides of (3.14), we get the desired (3.12).

We derive easily equation (3.13) by (3.4) and (3.12). The proof is complete.

Remark 3.1. When $q \rightarrow 1$, then the formulas in Proposition 3.1-Proposition 3.8 will become the corresponding formulas of Apostol-Genocchi polynomials of higher order. Further, letting $q \rightarrow 1, \alpha=1$, then these formulas will become the corresponding formulas of Apostol-Genocchi polynomials.

Remark 3.2. When $\lambda=1$, then the formulas in Proposition 3.1-Proposition 3.8 will become the corresponding formulas of q-Genocchi polynomials of higher order. Further, letting $\lambda=1, \alpha=1$, then these formulas will become the corresponding formulas of q-Genocchi polynomials.

4 Some explicit relationships between the q Genocchi polynomials of higher order and q-Goyal-Laddha-Hurwitz-Lerch Zeta function

In this section, we give several interesting relationship between the Genocchi polynomials and Hurwitz-Lerch Zeta function.

We differentiate both side of (1.11) with respect to the variable t, for $\alpha=l \in \mathbb{N}$.

$$
\begin{align*}
\mathcal{G}_{n ; q}^{(l)}(a ; \lambda) & =\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} W_{a ; \lambda ; q}^{(l)}(t)\right|_{t=0}=\left.2^{l} \sum_{k=0}^{\infty} \frac{\left([l]_{q}\right)_{k}}{[k]_{q}!}(-\lambda)^{k} q^{k+a} \frac{\mathrm{~d}^{n}}{\mathrm{~d} t^{n}}\left\{e^{[k+a]_{q} t} t^{l}\right\}\right|_{t=0} \tag{4.1}\\
& =2^{l}\{n\}_{l} \sum_{k=0}^{\infty} \frac{\left([l]_{q}\right)_{k}}{[k]_{q}!}(-\lambda)^{k} q^{k+a}[k+a]_{q}{ }^{n-l}=2^{l}\{n\}_{l} \sum_{k=0}^{\infty} \frac{\left([l]_{q}\right)_{k}}{[k]_{q}!} \frac{(-\lambda)^{k} q^{k+a}}{[k+a]_{q}^{l-n}},
\end{align*}
$$

we obtain the following theorem.
Theorem 4.1. The following relationship
$\mathcal{G}_{n ; q}^{(l)}(a ; \lambda)=2^{l}\{n\}_{l} \Phi_{l ; q}(-\lambda, l-n, a), \quad\left(n, l \in \mathbb{N} ; n \geqq l ; \quad|\lambda| \leqq 1 ; a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right)$,
holds true between the q-Apostol-Genocchi polynomials of higher order and q-Goyal-Laddha-Hurwitz-Lerch Zeta function.

Taking $l=1$ in (4.2), yields
Corollary 4.1. The following relationship

$$
\begin{equation*}
\mathcal{G}_{n ; q}(a ; \lambda)=2 n \Phi_{q}(-\lambda, 1-n, a), \quad\left(n \in \mathbb{N} ; \quad|\lambda| \leqq 1 ; a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right) \tag{4.3}
\end{equation*}
$$

holds true between the q-Apostol-Genocchi polynomials and the q-HurwitzLerch Zeta function.

Letting $q \rightarrow 1$ in (4.2), we have
Corollary 4.2. The following relationship
$\mathcal{G}_{n}^{(l)}(a ; \lambda)=2^{l}\{n\}_{l} \Phi_{l}(-\lambda, l-n, a), \quad\left(n, l \in \mathbb{N} ; n \geqq l ; \quad|\lambda| \leqq 1 ; a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right)$,
holds true between the Apostol-Genocchi polynomials of higher order and Goyal-Laddha-Hurwitz-Lerch Zeta function.

Setting $l=1$ in (4.4), we deduce the following interesting relationship
Corollary 4.3. The following relationship

$$
\begin{equation*}
\mathcal{G}_{n}(a ; \lambda)=2 n \Phi(-\lambda, 1-n, a), \quad\left(n \in \mathbb{N} ; \quad|\lambda| \leqq 1 ; a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right) \tag{4.5}
\end{equation*}
$$

holds true between the Apostol-Genocchi polynomials and Hurwitz-Lerch Zeta function.

Acknowledgements

The present investigation was supported, in part, by the PhD Program Scholarship Fund of ECNU 2009 of China under Grant \# 2009041, PCSIRT Project of the Ministry of Education of China and Innovation Program of Shanghai Municipal Education Committee of China.

References

[1] T. M. Apostol, On the Lerch Zeta function, Pacific J. Math. 1 (1951), 161-167.
[2] G. Gasper, M. Rahman, Basic Hypergeometric Series (2nd edition), Cambridge University Press, 2004.
[3] S. P. Goyal, R. K. Laddha, On the generalized Riemann Zeta function and the generalized Lambert transform, Gan. ita Sandesh, 11 (1997), 99-108.
[4] S.-D. Lin, H. M.Srivastava, Some families of the Hurwitz-Lerch Zeta function and associated fractional derivative and other integral representations. Appl. Math. Comput., 154 (2004), 725-733.
[5] J. Sándor and B. Crstici, Handbook of Number Theory II, Kluwer Academic Publishers, Dordrecht, Boston and London, 2004.

Qiu-Ming Luo
Department of Mathematics, East China Normal University
Dongchuan Road 500, Shanghai 200241, People's Republic of China
Department of Mathematics, Jiaozuo University
Henan Jiaozuo 454003, People's Republic of China
E-Mail: luomath2007@163.com

[^0]: ${ }^{1}$ Received 20 September, 2008
 Accepted for publication (in revised form) 27 November, 2008

