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ARTICLE INFO ABSTRACT

Keywords: Recently, the authors introduced some generalizations of the Apostol-Bernoulli polynomi-
Genocchi' numbe'rs and Genocchi als and the Apostol-Euler polynomials (see [Q.-M. Luo, H.M. Srivastava, ]. Math. Anal. Appl.
polynomials of higher order 308 (2005) 290-302] and [Q.-M. Luo, Taiwanese J. Math. 10 (2006) 917-925]). The main
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Apostol-Genocchi numbers and Apostol-
Genocchi polynomials of higher order
Apostol-Bernoulli polynomials and

object of this paper is to investigate an analogous generalization of the Genocchi polyno-
mials of higher order, that is, the so-called Apostol-Genocchi polynomials of higher order.
For these generalized Apostol-Genocchi polynomials, we establish several elementary
properties, provide some explicit relationships with the Apostol-Bernoulli polynomials

Apostol-Euler polynomials of higher order and the Apostol-Euler polynomials, and derive various explicit series representations in
Srivastava’s formula and Gaussian terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) zeta func-
hypergeometric function tion. We also deduce their special cases and applications which are shown here to lead to
Hurwitz (or generalized), Hurwitz-Lerch the corresponding results for the Genocchi and Euler polynomials of higher order. By
and Lipschitz-Lerch zeta functions introducing an analogue of the Stirling numbers of the second kind, that is, the so-called

Lerch’s functional equation
Stirling numbers and the /-Stirling numbers
of the second kind

J-Stirling numbers of the second kind, we derive some basic properties and formulas
and consider some interesting applications to the family of the Apostol type polynomials.
Furthermore, we also correct an error in a previous paper [Q.-M. Luo, H.M. Srivastava, Com-
put. Math. Appl. 51 (2006) 631-642] and pose two open problems on the subject of our
investigation.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction, Definitions and Motivation

Throughout this paper, we use the following standard notations:
N:={1,2,3,...}, Np:={0,1,2,3,...} =NU{0} and 7z :={-1,-2,-3,...} =7, \ {0}

Also, as usual, Z denotes the set of integers, R denotes the set of real numbers and C denotes the set of complex numbers.
Furthermore,

{i}o=1 and {1}, =A(A-1)---(A—k+1) (ke Ng; 2€0C)
denotes the falling factorial and

(A)o=1 and (A)y=2(A+1)---(A+k-1) (k€ Ng; 2€C)
denotes the rising factorial.
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The classical Bernoulli polynomials B,(x), the classical Euler polynomials E,(x) and the classical Genocchi polynomials
Gn(x), together with their familiar generalizations B (x), E* (x) and G (x) of (real or complex) order o, are usually defined
by means of the following generating functions (see, for details, 41, pp. 532-533 and 43, p. 61 et seq; see also [44] and the
references cited therein):

(2 )“.eﬂ:iw(x)g (|2l <275 1% :=1) (1)
er—1 £ nl T
2 1~e"2:§:5(°‘)(x)z—" (|2 < m; 1%:=1) ()
er+1 £ nl o
and
2z ! xz_OC ) z' R A
(&%) - = G0% (< 1= ), 3)

so that, obviously, the classical Bernoulli polynomials B,(x), the classical Euler polynomials E,(x) and the classical Genocchi
polynomials G,(x) are given, respectively, by

Bu(x) :=BV(x), E.(x):=EM(x) and G,(x):=G(x)  (neNy). (4)

For the classical Bernoulli numbers B, the classical Euler numbers E, and the classical Genocchi numbers G, of order n, we
have

B, := B,(0) =B (0), E,:=E,(0)=E"(0) and G, :=G,(0)=G"(0), (5)

n

respectively.
Some interesting analogues of the classical Bernoulli polynomials and numbers were first investigated by Apostol [2, p.
165, Eq. (3.1)] and (more recently) by Srivastava [42, pp. 83-84]. We begin by recalling here Apostol’s definitions as follows.

Definition 1 (Apostol [2]; see also Srivastava [42]). The Apostol-Bernoulli polynomials
Ba(x;2) (4€C)

are defined by means of the following generating function:

)ezil Zan; (6)

(2 < 27 when .=1; |z| < |log | when 7 # 1)

with, of course,
Bu(x) = Bp(x;1) and  By(7) := Ba(0; 2), (7)

where B, (1) denotes the so-called Apostol-Bernoulli numbers.
Apostol [2] not only gave elementary properties of the polynomials B, (x; 1), but also obtained the following interesting
recursion formula for the numbers B,(1) (see [2, p. 166, Eq. (3.7)]):
-1

Z ﬂilAkH (n—1,k) (neNo;zeC\{1}), (8)

k=0

where S(n, k) denotes the Stirling numbers of the second kind defined by means of the following expansion (see [9, p. 207,
Theorem BJ):

n __ : X
X ,;<k>kz s, k), 9)

so that

S(1,0) = 60, S(n,1)=S(n,n) =1 and S(n,n—l):(Z), (10)

dnx being the Kronecker symbol.

Recently, Luo and Srivastava [35] further extended the Apostol-Bernoulli polynomials as the so-called Apostol-Bernoulli
polynomials of order «. Luo [29], on the other hand, gave an analogous extension of the generalized Euler polynomials as the
so-called Apostol-Euler polynomials of order o

Definition 2 (cf. Luo and Srivastava [35]). The Apostol-Bernoulli polynomials
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BP(x;)) (LeC)

of (real or complex) order care defined by means of the following generating function:

( z )“.eﬂ:il%ﬁ“)(x;/l)%j (1)

107
rez —1 e

(Jz2l <2m when A=1; |z] < |log /| when 1 # 1)

with, of course,

BM(x) =B¥(x;1) and BY (1) := B (0; 1), (12)
where BY (1) denotes the so-called Apostol-Bernoulli numbers of order o.
Definition 3 (cf. Luo [29]). The Apostol-Euler polynomials
EXx; 1) (LeC)
of (real or complex) order « are defined by means of the following generating function:
(o) e =Termns (i <1tog-2) (13
et 41 A n!
with, of course,
EP(x)=&P(x;1) and EW(2) := EX(0;7), (14)

where £% (/) denotes the so-called Apostol-Euler numbers of order .

Remark 1. The constraints on |z|, which we have used in Definitions 1-3 above, are meant to ensure that the generating
functions in (6), (11) and (13) are analytic throughout the prescribed open disks in the complex z-plane (centred at the origin
z=0)in order to have the corresponding convergent Taylor-Maclaurin series expansions (about the origin z = 0) occurring on
their right-hand sides (each with a positive radius of convergence). Moreover, throughout this investigation, logz is tacitly
assumed to denote the principal branch of the many-valued function log z with the imaginary part 3(logz) constrained by
-1 < 3(logz)<m. More importantly, throughout this presentation, wherever [log /| and [log(—)| appear as the radii of the
open disks in the complex z-plane (centred at the origin z = 0) in which the defining generating functions are analytic, it
is tacitly assumed that the obviously exceptional cases when 2=1 and /= —1, respectively, are to be treated separately.
Naturally, therefore, the corresponding constraints on |z| in the earlier investigations (see, for example, [2,29,35,36,42])
should also be modified accordingly.

Remark 2. The classical Euler numbers E, are usually defined by means of the following generating function (see, for
example, [43, p. 64, Eq. 1.6 (40)]):

2e? == Z" T
W:sechz:%Enm (|z| <j>’ (15)

which, when compared with the generating function in (2), yields the following relationships [cf. Eq. (5)]:

T n 1 n 1
E,=2"E, <§> =2 EEP(i) (16)

with the Euler numbers E, and the Euler polynomials E¥(x) used in this paper. For the Apostol-Euler numbers
EY (4) (4 € C) of order o, which correspond to the classical Euler numbers E,, Luo [29] made use of the following definition:

(o) -y (i <3 itosa). 7)

However, for the sake of simplicity of the results presented in this paper, we find it to be convenient to use the Apostol-
Euler numbers €% (1) () € C) of order a, corresponding to the Euler numbers E,, which are defined by means of the following
generating function [cf. Eq. (14)]:

( — ])1 - gsa“><z>f1—'; (|z| < |log<—A>|). (18)

Of course, if and when it is needed, the interested reader will find it to be fairly straightforward to apply the following explicit
relationships between the Apostol-Euler numbers
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EY() (heC) and  EW(A) (1eC)

in order to convert any of these results into their desired forms.

&P ) = £9(0;4) EW () =2"EN (% 2) E9 (1) = i ( >2kan kel (1)
En(2) = €n(0; 2) En(2) =2"En(4;7) En(2) = (k > ke, (2
k:O
E® = E)(0) EyY = 2"E) (%) <n)2"d” “Ey)
T \k
En = Ex(0) Ey =2"En(3) En= <n>2"5
o\ k

Since the publication of the works by Luo and Srivastava (see [28,29,35,36]), many further investigations of the above-
mentioned Apostol type polynomials have appeared in the literature. Boyadzhiev [4] gave some properties and representa-
tions of the Apostol-Bernoulli polynomials and the Eulerian polynomials. Garg et al. [11] studied the Apostol-Bernoulli poly-
nomials of order « and obtained some new relations and formulas involving the Apostol type polynomials and the Hurwitz
(or generalized) zeta function {(s,a) defined by (21) below. Luo (see [30,31]) obtained the Fourier expansions and integral
representations for the Apostol-Bernoulli and the Apostol-Euler polynomials, and gave the multiplication formulas for
the Apostol-Bernoulli and the Apostol-Euler polynomials of order «. Prévost [39] investigated the Apostol-Bernoulli and
the Apostol-Euler polynomials by using the Padé approximation methods. Wang et al. (see [47,48]) further developed some
results of Luo and Srivastava [36] and obtained some formulas involving power sums of the Apostol type polynomials. Zhang
and Yang [50] gave several identities for the generalized Apostol-Bernoulli polynomials. On the other hand, Cenkci and Can
[5] gave a g-analogue of the Apostol-Bernoulli polynomials B, (x; 4). Choi et al. [7] gave the g-extensions of the Apostol-Ber-
noulli polynomials of order « and the Apostol-Euler polynomials of order « (see also [8]). Hwang et al. [16] and Kim et al.
[21] also gave g-extensions of Apostol’s type Euler polynomials.

On the subject of the Genocchi polynomials G,(x) and their various extensions, a remarkably large number of investiga-
tions have appeared in the literature (see, for example, [6,8,13-15,17-20,22-24,27,32-34,38,49]; see also the references ci-
ted in each of these works). Moreover, Luo (see [32,34]) introduced and investigated the Apostol-Genocchi polynomials of a
(real or complex) order o, which are defined as follows.

Definition 4. The Apostol-Genocchi polynomials
Gl(x4) (2eC)

of (real or complex) order o are defined by means of the following generating function:

(o) e = Soaronly (a1 <o) (19)

with, of course,

GY(0) =G0 (x 1), G2 =G (0;4),
Ga(x;2) =GV (x;2) and  Gy(1) == G (4),

where G,(2), G (%) and Ga(x; 2) denote the so-called Apostol-Genocchi numbers, the Apostol-Genocchi numbers of order o
and the Apostol-Genocchi polynomials, respectively.

The main object of this paper is to first present some elementary properties of the Apostol-Genocchi polynomials ¢ (x; 1)
of order o in Section 2. We derive several explicit series representations of G (x; 1) in terms of the Gaussian hypergeometric
function in Section 3. We find some relationships between the various Apostol type polynomials in Section 4. We obtain the
series representations for the Apostol type polynomials involving the Hurwitz (or generalized) zeta function {(s,a) in Sec-
tion 5. We introduce the A-Stirling numbers S(n, k; 2) of the second kind, which aid us to prove some basic properties and
formulas in Section 6 in which we also pose two interesting open problems related to our present investigation. Finally,
in Section 7, we give some interesting applications of the 1-Stirling numbers S(n, k; 1) of the second kind to the family of
the Apostol type polynomials. For example, by closely following the work of Srivastava [42] dealing with the special case
o =1, we will derive various explicit series representations for

p ic p i p i¢ p ¢
g;ot) <a : €2m'>, g)(1l) (a ; e2m,>7 gl(la) (a7 e2m,> and E (q Zm )

(q,leN; pez; EeR; ael),

(20)

involving either the Stirling numbers S(n, k) of the second kind defined by (9) or the A-Stirling numbers S(n, k; 1) of the second
kind defined below by (97) and the Hurwitz (or generalized) zeta function {(s,a) defined by (cf. [3, p. 249] and [43, p. 88])
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{(s,a) ::Z(nla)s (R(s)>1; aeC\zyp), (21)
so that
e ) 22)

for the Riemann zeta function (s).

2. Elementary properties of the Apostol-Genocchi polynomials G (x; 1) of order o

The following elementary properties of the Apostol-Genocchi polynomials G (x; 2) of order o are readily derived from
(19). We, therefore, choose to omit the details involved.

Property 1. Special values of the Apostol-Genocchi polynomials (or the Apostol-Genocchi numbers) of order o:

gy (2) =G0 2), G (x:4) =X,

(0) (o) (%) ( (23)
GV (A) =06no and Gy’ (x;2) =Gy (A) =ds0 (M€ Ng; ae€C),
where d, denotes the Kronecker symbol.
Property 2. Summation formulas for the Apostol-Genocchi polynomials of order o:
. /n
(%) (y. 1) — (%) ( 9\ y—k
G (x;7) = k; ( k)g,j‘ (2)x" (24)
and
n n 5
Gl =Y ( k)gffi S ()G (x; 7). (25)
k=0
Property 3. Difference equation:
IGP(x+1;7) + 69 (x;2) = 206"V (x;7)  (neN). (26)
Property 4. Differential relations:
9 (x5 @ (.
a1 x: )} =g, (x:2) (neN) (27)
and
ﬁ{9“‘)(% N} = g (x;4) (n,p € No; 0=p=n) (28)
OXP n ’ - (Tl _p)! n— ’ ) 0 =V = .
Property 5. Integral formulas:
b (0r) (o)
Grn(b;2) — Gy (a5 2)
(%) (. _ Zn+1 n+1
IS T (29)
and
/b g(i) (X' ))dx _ Zn: # n g(fx)(/l)(b"—k-ﬂ _ an—k+1) (30)
. T _kzon—k+1 k)7k '
Property 6. Addition theorem of the argument:
. /n
(o+5) ) — (%) (4. (B) (v).
G (X +y; ) = kz:; (k)g" (X 2)G", (v; 2). (31)
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Property 7. Complementary addition theorems:

(o) 1 (_1)"+1 (o) -1
G0 =x0) =—5— G () (32)
and
n+o
6 -+ x:) = DG (i), (33

Property 8. Recursion formulas:
(n— )G (x; 1) = nxG™, (x; 1) — 0(2) G (x4 1;4) (34)
and

G (x; 2) = n(er — X)G%, (%) + (1 — 0GP (1), (35)

NI R

When we set =1, 4=1 and « = A=1 in the formulas (23) to (32), we get the corresponding formulas for the Apostol-
Genocchi polynomials G,(x; 1), the generalized Genocchi polynomials G (x) and the classical Genocchi polynomials Gp(x),
respectively.

3. Explicit representations involving the Gaussian hypergeometric function

By using Definition 4 in conjunction with the generating function (3), we have

00 n ” 1 i ~ kel
0. N2 _ oxlogs (2(2 +10g 2) z xz+log) _ xlog) o (Z2+log )7
nzzog" T <€Z+‘°g’- +1) \z+1ogz) € ety G (%) o

k=0

-n

Sl k o ~ » L
= g*log/ Y k-1 Z”(lOgiA e X log /. g n+ k —1 n+k (I (log )“)
- ; Gk (X) ; <n - l) k! B Z n! ZO k Gn+k(x) kK

n=0

which yields Lemma 1 below asserting a relationship between the Apostol-Genocchi polynomials G (x; 1) of order [ € Ny
and the Genocchi polynomials G (x) of order I € N.

Lemma 1. The following relationship holds true:

00 -1 k
D (5. 7y — p—xlog/ n+k—1\/n+k o .. (log2) .
Gl(x;2) =e ; < v p ) G® T (LIeNo e ). (36)

By (13) and (19) (with a = € Np), we readily obtain Lemma 2 below.

Lemma 2. The following relationship holds true:

|
V(X 2) = {nhEy) (% 2) = (n'i' GrEnia) (n1€Nos OIS 4eC) (37)
or, equivalently,
EV06A) = G 2) = G G 2) (n1€ Nos 2€.©) (38)

between the Apostol-Genocchi polynomial of order | and the Apostol-Euler polynomial of order n — L

Moreover, since the parameter /. € C, by comparing Definition 4 with our Definition, we are led easily to Lemma 3 below.

Lemma 3. The following relationship holds true:

GW(x; 1) = (=2)"BP (x;=2) (2,4 €C; 17 :=1) (39)
or, equivalently,
B (x; 2) = ;)ag;”(x; -1) (xeC; 1*:=1) (40)

between the Apostol-Genocchi polynomials G\ (x; 2) and the Apostol-Bernoulli polynomials BY (x; 1).
Lemma 4 below follows easily from Lemma 2 and 3.
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Lemma 4. The following relationship holds true:

n!

B (x; 1) = Wa}j{,(x; 1) (mleNg; 0<I<n; ieC) (41)
n—1N(-
or, equivalently,
0 n(=2)'
EV(x;:2) = mBnH(X?*Z) (n,l € Ng; 1 € C) (42)

between the Apostol-Bernoulli polynomial of order | and Apostol-Euler polynomial of order L.

In order to prove the main assertions in this section, we recall each of the following known results (see also the earlier
investigations on the subject of explicit hypergeometric representations by Todorov [46] and Srivastava and Todorov [45]).

Lemma 5 (Luo and Srivastava [35, p. 293, Lemma 1 (13)]). The Apostol-Euler polynomials £ (x; A) of order a.are represented
by

(1 )
£ (x; 2) = e~¥og’ ZEM Og (n e No; 4,0 ¢€C) 43)
in terms of the Euler polynomials of order o.

Theorem A (Luo [29, p. 920, Theorem 1]). Each of the following explicit series representations holds true:

£V (x:2) = 2“Z<l<>(a+t_l>()+’l—:)mz 1)J<) x+1)""2F1<k—nkk+1Lﬂ)

Jj=0
meNp; aeC; 1eC\{-1}) (44)

and

s k n+k I -1 r .
£0(x; ) = e 187 3 (lol%"l) Zzlr('”“ <><“+r > 1)f< > (X +j)" T, F (r—n—k,r;r+1;7] )
I =

k=0 r r pary X+j

(n € Ng; a,4€C), (45)

where 5F;(a, b; c;z) denotes the Gaussian hypergeometric function defined by (cf., e.g., [1, p. 556 et seq.])

JFi(a,b;c;z) = 5F(b,a;c;2) : Z (46)
n=0 ”

(a,beC; ceC\Zy; |z <1; z2=1 and ‘R(c—a—b) >0; z=-1and R(c—a-b)>-1).
We now state the main result in this section as Theorem 1 below.

Theorem 1. The following explicit series representations hold true:

n-I| 2K
O (x: 7) = 21 n n—l)<l+k—1> ¢ ( ) ekl < 3 L)
GV (x; 2) 21.<l>z< ‘ " T Z XA+ (T4 k—n ks k+1; y

k=0 j=0
(n,le Ng; AeC\{-1}) (47)

k=1 n+k\ kN Dlog ) 1 ma k=1 /1471
atosn = (") ()RS 2 ()0

k=0

and

r

-Z(fl)j(]r) X+ )" TLF, <r+lfnfk,r;r+1;xi+j> (n,l € Ng; 7 €C), (48)

j=0

where >F;(a,b;c;z) denotes the Gaussian hypergeometric function defined by (46).

Proof. We make use of the relationship (37) in conjunction with (44) and (45) with, of course,
o=I1 and n—n-1 (n,l € Ng; 0 1< n).

We thus readily obtain the assertions (47) and (48) of Theorem 1. O
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Corollary 1. The following explicit formula for the Apostol-Genocchi polynomials G\ (x; 7.) involving the Stirling numbers S(n, k) of
the second kind holds true:

O (x: ) = 2! ~(n k& I+j-1 j!(ffl)j ] f\yn—k . _
GV (x; )_2l!§<k>(l>;( j >7(H1)H,5(k Ljx"* (n,leNg; AeC\{-1}). (49)

Further, by setting Z=1 in (49), we obtain the following explicit formula for the generalized Genocchi polynomials
G (x)(I € No) involving the Stirling numbers S(n, k) of the second kind:

-5 et i

j=0

By setting 4 =1 in (47), we obtain an explicit formula for the Genocchi polynomials Gﬁl’) (x) of order | € Ny in terms of the
Gaussian hypergeometric function.

Corollary 2. The following series representation holds true:

n—I| k .
P AL 1 nfl>(l+k—1>. B j<k>.k ok ( R ] )
G, (x) l.(l)gzo 2k< K K E (1) j X+ o F (k41 n,k,k+1,x—+j (n,1 € Np).

j=0
(51)
By setting x = 0 in (47), we obtain the explicit series representation given by Corollary 3 below.
Corollary 3. The following explicit series representation holds true:
5 2 Lk -1\ ki(=2)
V(2 n—l' ( )m (n—Lk) (nleNg; 2€C\{-1}). (52)

If we set 2 =1 in (52), then we obtain the following formula for the Genocchi numbers Gﬁf) of order | € Ny involving the
Stirling numbers of the second kind:

G n71~2<l+k ><f%)k5(nfl,k) (n,1 € No). (53)

Corollary 4. The following explicit series representation holds true for the Apostol-Genocchi polynomials G, (x; 1):

n-1 n-1 n
i):anz:< K ) k+1z ]y( > X+] k-1 2F1<k*n+1kk+1x]7]>
=0

(neNg; AeC\{=1}). (54)

Finally, we calculate a few values of the Apostol-Genocchi numbers G,(Z) by applying the formula (52) (with I=1) as
follows:

2 , 4 L 6aA-1)
) =0 J) = i - ) o=
%1 =0, G =777, G +1)% G:(%) (i+1)°
8A(2 —4i+1) 102(2° =112 +112-1)
=L T J) = ,
Ga(2) ) Gs(2) TSI (55)
1220 =263 + 662 — 26/ +1
Go(l) = — (4 + ; + )7
(A+1)
and so on.

By applying (38) (with [=1 and x = 0) in conjunction with (55), we have the corresponding values of the Apostol-Euler
numbers &, (1) given by

. 2 . 27 24(4—1)
EoA)=——, EN)=——C10 &) =221
W BV s By

, 20072 — 4 +1 2P =112 41151
53(A):—(74)7 ealr) =24 s 3

(A+1) (A+1)

. 2404 =263 + 6642 —264+1

£5(2) = - 2 +661 - 260+ 1) (56)
(A+1)

and so on.



5710 Q.-M. Luo, H.M. Srivastava/Applied Mathematics and Computation 217 (2011) 5702-5728
4. Relationships involving the Apostol-Genocchi polynomials G\ (x; 1) of order «

In this section, we prove an interesting relationship between the generalized Apostol-Genocchi polynomials G (x; 1) and
the Apostol-Bernoulli polynomials B;(x; 2).

Theorem 2. The following relationship holds true:
Y (x+y:) Z e < )[k+1)9“ Vi) - G 2] Buk(2) (2,0 € € ne No) (57)

between the generalized Apostol-Genocchi polynomials and the Apostol-Bernoulli polynomials.

Proof. By applying an analogous method (see the proof given by Luo and Srivastava [36, p. 636, Theorem 1]), we can obtain
the explicit formula (57) asserted by Theorem 2. The details involved are being omitted here. O

In terms of the generalized Apostol-Genocchi numbers {G® (1)}, by setting y = 0 in Theorem 2, we obtain the following
explicit relationship between the generalized Apostol-Genocchi polynomials G (x; ) of order o and the Apostol-Bernoulli
polynomials By(x; ).

Corollary 5. The following relationship holds true:
Z k+ 1 < ) [ k+ 1)g[<a R ( ) - gl(cajr)l (}) Bn—k(x§ )) ((17 reE C; ne NO) (58)

between the Apostol-Genocchi polynomials of order o and the Apostol-Bernoulli polynomials.
By noting that
GV (y;2) =y" (neNo; i€C)

and using the assertion (57) (with o =1), we deduce Corollary 6 below.

Corollary 6. The following relationship holds true:
Gn(X+Y;2 Z o1 < ) [(k+ 1)y = Gee1 (v; )] Bai(x;2) (0 € No; 2 € C) (39)

between the Apostol-Genocchi polynomials and the Apostol-Bernoulli polynomials.
By taking y = 0 in (59), and in view of the fact that

2

g( ) gl() A+17

we get the following relationship:

ff;%@gm(z) e >+z( +})Bn<x J) (LeC\{-1}: neN). (60)
=1

By setting /=1 in the formula (60), we obtain the following relationship between the classical Genocchi numbers and the
classical Bernoulli polynomials:

Gul(X) = — I; k% (Z)Gkﬂsn,k(x) (neN), 61)

which, in its further special case when x = 0, yields the following relationship between the classical Genocchi numbers and
the classical Bernoulli numbers:

Gy = Zk+1( )Gmn ) (62)
By setting /=1 in (57), we obtain an addition theorem for the Genocchi polynomials of order o given by Corollary 7 below.

Corollary 7. The following relationship holds true:

CH(x+y) = Zk+1< )[k+1) V) = GZh ) [Bak(x) (€ C; neNy). (63)
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Letting y = 0 in (63), we get the following relationship between the Genocchi polynomials of order « and the classical Ber-
noulli polynomials:

@) )
G’ Zk+1< )+ D6 = G JBrat (e Cime No) o
We next recall a potentially useful result due to Luo and Srivastava [36, p. 638, Theorem 2].

Theorem B (Luo and Srivastava [36, p. 638, Theorem 2]). The following relationship holds true:

o) =3 (g [ -6 s o (65)
+(857) (3) Beats) (@eci e\ (-1 ne ) (66)

between the generalized Apostol-Euler polynomials and the Apostol-Bernoulli polynomials.

Remark 3. The following additional term in (65):

-1 2\’ .
<;+ 1) (m) Bni1(x;2),

was first found by Wang et al. (see [47, Corollary 2.6 (2.13)]).
In terms of the generalized Apostol-Euler numbers {£(1)}:2,, by setting y = 0 in Theorem B, we obtain the following
explicit relationship between the generalized Apostol-Euler polynomials and the Apostol-Bernoulli polynomials.

Corollary 8. The following relationship holds true:

Z k+1 < )[ () = &G )}Bn k(X 2) + <i;1) <%>“ B (X; 4)

(oced:, reC\{-1}; neNp) (67)

between the generalized Apostol-Euler polynomials and the Apostol-Bernoulli polynomials.

Corollary 9 below provides the corrected version of each of the five known formulas due to Luo and Srivastava [36, pp.
638-639, Eqgs. (56), (57), (60), (63) and (64)].

Corollary 9. Each of the following relationships holds true:

(X4 ;2 Z o1 ( ) — E1 (V5 )] Br(%;2) + (%) (%) Bt (%; ), (68)
£l ) = - kio o (’,:)smo; Buil ) + (n . 1) (Hil) Bur(x:7), (69)
Ena(X4) =2 ( g)il k: (7) [2"*5’”4(2 ) — Bn,k(z)] Bi(x; 2) + (%) (%) Bui1(x;7), (70)
£ (x. ) = kZ et (et -] + (57) () B (1)
and
o0 =3 B () et () i) )
+ (%) (Hi.l)“lgnﬂ(i) (xeC; 1eC\{-1}; neNp). (72)

5. Explicit representations involving the Hurwitz (or generalized) zeta function {(s,a)

The Lipschitz-Lerch zeta function ¢(¢&,a,s) or L(¢,s,a) defined by (cf. [43, p. 122, Eq. 2.5 (11)]):
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0 ie
eang

$(¢,a,8) == = @™ s,a) =: L(¢,s,a) (73)

< (n+a)
(aeC\Zy; R()>0 when ¢eR\Z R(s)>1 when ¢e€2)

was first studied by Rudolf Lipschitz (1832-1903) and Matyas Lerch (1860-1922) in connection with Dirichlet’s famous

theorem on primes in arithmetic progressions (see also [25] and [26]). Srivastava [42] made use of Lerch’s functional

equation:

¢(&a,1-5)= & {exp Kl s — Zaé) m} ¢(—a,é,s)

(2m)’
+exp (—%s+2a(1 )>m} ¢(a,1- g’,s)} (seC; 0<¢<) (74)
in conjunction with Apostol’s formula [2, p. 164]:
. p2mi
péat—n=o@1-na=-2EE) o) (75)

in order to obtain an elegant formula for the Apostol-Bernoulli polynomials 5,(x; ), which we recall here as Theorem C
below.

Theorem C (Srivastava’s formula [42, p. 84, Eq. (4.6)]). The Apostol-Bernoulli polynomials By,(x; A) at rational arguments are

given by
e R (e (s e L DR Gy (G

meN\{1}; peZ; qeN; LcR) (76)

in terms of the Hurwitz (or generalized) zeta function {(s,a).

Two analogous formulas for the Apostol-Euler polynomials &,(x; 2) and the Apostol-Genocchi polynomials G, (x; 1) at ra-
tional arguments are asserted by Theorems 3 and 4, respectively.

Theorem 3. The following representation of the Apostol-Euler polynomials at rational arguments holds true:

P onic) _ 2:1 4. 264+2j—1 n+1 (26+2j-1)p\ .
5”<q’e > (2qn)"“{-z‘" LT R I q "

j=1

2261 Nl (22— 1)p\ .
+ZC<n+1,T>epr7 5+ a )m

=

} (n,geN; pezZ; (eR) (77)

in terms of the Hurwitz (or generalized) zeta function {(s,a).

Proof. First of all, we recall a useful relationship between the Apostol-Euler polynomials and the Apostol-Bernoulli polyno-
mials given by (see [36, p. 636, Eq. (38)])

Ena(x:7) = 2[Bn( 2) - 23,1(2, )] (neN) (78)

or, equivalently, by
En(X; ) = —— [B (% 2) — 2" 1(512)} (n € No) (79)
n k] n + -l n+ /v n+ 27 .

Taking
x:g and 1=¢e"™ (peZ qeN; éeR)

in the last formula (79), we find from Srivastava’s formula (76) with
n—n+1, q—2q and ¢ 2¢

that



Q.-M. Luo, H.M. Srivastava/Applied Mathematics and Computation 217 (2011) 5702-5728 5713

gn<§;em>%{_ (n+ 1) 2‘1;< l,é+{1_l>exp[(n;1—2(é+é_1)p>m}
+i4m«ﬁﬂwﬂbfr+&%@%ﬂ Ral D G
.eprngrl (2C+]*1 ) +]2q] C<n+1,j;%>exp{ n;lJr(]qu)p)mH}
S R SRR
(15 2] S 1 e[ (15 =297)

q
}. (80)

q P
. j-¢ n+1 2(G-¢p\_.
—Zg(ﬂ-l-], q )epr—TJrT i

=

42"

The first sum in (80) can obviously be rewritten the following form:

2q - s
ZC(HL%) exp Kn;1 _(2c+i] 1)p>m.]

=

. L .
:Z§<n+1,g+{1_]>expKn—glfz(é+é_1)p>ni}

=1
oy 26+2j-1 n+1 (28+2j-1)p\ _.
+Zg(n+1772q )epr 5 ; )m}. (81)
Jj=1
The third sum in (80) can also be rewritten the following form:
2q : ¢
. j—2¢ n+1 (G-2&p\ .
;g<n+1 7 )exp <7T+ q i
q _ _ R -
~3 ¢ n+1721 281 exp 7n+1+(2] 26 -1)p\ .
=1 2q 2 q
q ; .
J—é) K n+1 20—5)p>
+ n+1,——)ex —_——t+———> T
Se(nerd e (52

Jj=1

(82)

Upon first separating the even and odd terms in (81) and (82), and then substituting from (81) and (82) into (80), we are
led eventually to the formula (77) asserted by Theorem 3. O

Theorem 4. The following representation of the Apostol-Genocchi polynomials at rational arguments holds true:

P oonic)  2:n KL 286421 n (2&+2j— 2j — 2g 1
o (5:) = o { (B e (5 )] (50

j=1

-exp{<—3+(2j_2+l)p>ni]} (neN\{1}; peZ; qeN; {eR) (83)

in terms of the Hurwitz (or generalized) zeta function {(s,a).

Proof. We apply the relationship:
Gn(X; A) = NEn_1(X; 2) (84)

with, of course,
x== and A=e*™ (peZ qeN; {eR)

in conjunction with the formula (77). We thus obtain the assertion (83) of Theorem 4. O
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For ¢ € 7, the formula (77) can easily be shown to reduce to the following known result given earlier by Cvijovic and Kli-
nowski [10, p. 1529, Theorem B] (see also [42, p. 78, Theorem B]).

Corollary 10. The following representation of the classical Euler polynomials holds true:

p 4.0 ( 2j — 1) . ((2]’— 1)pw nn)
E.(=) = n+1, sin - nqgeN; peZ 85
(Q> (2qm)™T £ 2 q 2) MAENPED) #

in terms of the Hurwitz (or generalized) zeta function {(s,a).

A special case for the formula (83) when ¢ € 7 is stated here as Corollary 10 below.

Corollary 11. The following representation of the classical Genocchi polynomials holds true:

py_4n {~,( 2-1 (2j-pn nm . .
Gn(‘])_(zqn)";g(n’ 2q >COS( q 2) meNA{y peZigen) (86)

in terms of the Hurwitz (or generalized) zeta function {(s,a).

The following formula for the Apostol-Bernoulli polynomials B (x; 2) of order o was proven by Luo and Srivastava [35].

Theorem D (Luo and Srivastava [35, p. 300, Theorem 2]). The Apostol-Bernoulli polynomials B,(f‘) (x; 4) of order o at rational
arguments are given by

B;“>(§;e2ﬂfé>:n(emf_1)*165;“,}1)(8”‘7)—&%(2) er) {i ( = 1) xp{(%—@)m‘]

= (2qm =1

holds true in terms of the Hurwitz (or generalized) zeta function {(s,a).

For o = 1, the formula (87) reduces to Srivastava’s formula (76). When ¢ € Z in (76), Srivastava’s formula (87) can easily be
shown to reduce to a known result given earlier by Cvijovi¢ and Klinowski [10, p. 1529, Theorem B] (see also [42, p. 78,
Theorem BJ):

Bn<5>— 2-n Eq: ( )cos(zjg”—%) (neN\{1}: pez qeN). (88)

The following formula is a complement of (87) (when ¢ € Z):

@ (B) — gy P Npon N~ 2K (M st d 2jpr_ kn
B, (q)_B” +n<q 2>Bn—] ’Z A B,y Zg k’q cos ; 5

= (2qm)
(neN\{1}; peZ; geN; o€ C). (89)

By applying (77) and (83), we now derive the following represenation formulas for the Apostol-Euler polynomials of or-
der o and the Apostol-Genocchi polynomials of order o, respectively.

Theorem 5. The following representation of the Apostol-Euler polynomials of order o holds true:

@ (P, mic) _ 2 wnygemiry N~ 2K (T oy oy [N, 2+2-1
gn <qye >7eznii+«l(‘:n (e )+Z(2qn)k+l k gn k (e ) Zg k.’.l7 2q

=1

-exp Kk;] —(25+2qj_1)p>m} +ZC<I<+1 2#5) exp K—kgl +(2j_2q£_l)p>ni”

Jj=1

(n,qu;peZ;éeR\A(A:{Ic-i—%:kez});(xeC) (90)
in terms of the Hurwitz (or generalized) zeta function {(s,a).

Proof. We apply the known result [29, p. 919, Eq. (9) with a—~ o — 1 and f=1]:
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E7(x:2) = Z (Z)sﬁﬁ”(z)sk(x;x)

k=0
and the special values of £,(x; 1) given by
Eo(x;4) = &Eo(4) = PR

Upon separating the k=0 term in conjunction with the formula (77), the representation formula (90) follows readily. O

Theorem 6. The following representation of the Apostol-Genocchi polynomials of order o at rational arguments holds true:

@ (P omit) 20 1y, omiey N~ 20K (MY D) (e27it) L, 28421 k (26+2j-1)p\ .
gn (qve >762m5+1gn—] (e )+Z k g (e ) Zé k7 zq exp 2 q T

k=2 (2q7'5) j=1
+qu;é<k,2j_225_1>exp{(§+(2j_2§_1)p>ni]}
<neN\{1}; PEZ; qEN,; g’eR\A(A::{kJr%:keZ}); oce@) (91)

in terms of the Hurwitz (or generalized) zeta function {(s,a).

Proof. We apply the formula (25) and note that
2
Go(X;4) =Go(4) =0 and Gi(x;4) =Gi(2) = i (92)

Upon first separating the k = 0 and k = 2 terms, and then using the formula (83), we arrive at the representation (91) asserted
by Theorem 6. O

In their special cases when ¢ € 7, Theorems 5 and 6 readily yield Corollaries 12 and 13, respectively, which provide the
corresponding representations of the Euler polynomials of order o and the Genocchi polynomials of order o at rational
arguments.

Corollary 12. The following representation of the generalized Euler polynomials at rational arguments holds true:

@ (PY _ pa-1) N~ 4-k (1) a. . 2j-1\ . ((2j-1)prt k=n
En (q>7Eﬂ +Z(2qn)k+l k En k j:]é k+1-, 2q sin q 2

(n,gqeN; peZ; aeC) (93)
in terms of the Hurwitz (or generalized) zeta function {(s,a).

Corollary 13. The following representation of the generalized Genocchi polynomials at rational arguments holds true:

@ (P (a-1) 4.k /n ocl 1 ]*1 (2j71)p7'cik7ﬂ:
n <Q> s +Z (2qm)* \ k ; cos q 2

(neN\{1}; peZ qeN; aeC (94)

in terms of the Hurwitz (or generalized) zeta function {(s,a).

Clearly, by setting oo = 1 in (93) and (94), we again obtain the formulas (85) and (86), respectively. On the other hand, if we
apply the formulas (39) of Lemmas 3 and (42) of Lemma 4 in conjunction with the assertion (87) of Theorem Dof Luo and
Srivastava [35], we obtain the series representations of G (x; 1) and £ (x; 1), respectively, which are given by Theorems 7
and 8 below.

Theorem 7. The following series representation holds true for the Apostol-Genocchi polynomials of reder o:

@ (P . 2 _7”(*2)0( (1) p2mie)y - k! M\ s-1), omicy | S, 26+2i-1
% (q’e )‘ e 10 () Z(an)k ) B e 25 g

=1

e e R e R R s

(neN\{l};peZ;qu;éeR\A<A {k+ keZ});oceC) (95)

in terms of the Hurwitz (or generalized) zeta function.
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Theorem 8. The following series representation holds true for the Apostol-Euler polynomials of order I:

I n+l q .
0 (P g2nic) _ n (=2) (I-1) (_p2mic)y _ k! N+ ity onie ) o, 26+2j-1
gn (qye ) = (n+l_ ‘l) (ezmc + ])Bn+l—1( e ) Z )k k Bn+l—k( e ) Zé k7 72q

= (2qm j=1
(5 BB () [ 00
(n eN\{1}; pez l.qeN; € R\A(A = {k-i-%:ke Z})) (96)

in terms of the Hurwitz (or generalized) zeta function.

Remark 4. It is not difficult to apply the relationships (40) of Lemma 3 and (41) of Lemma 4 in conjunction with the above
formulas (91) and (90), respectively, in order to obtain the corresponding series representations for the Apostol-Bernoulli
polynomials B (x; /) of order o € C.

6. The i-Stirling numbers of the second kind and their elementary properties

In this section, we first introduce an analogue of the familiar Stirling numbers S(n, k) of the second kind, which we choose
to call the A-Stirling numbers of the second kind. We then derive several elementary properties including recurrence relations
for them. We also pose two open problems relevant to our present investigation.

Definition 5. The 2-Stirling numbers S(n, k; Z) of the second kind is defined by means of the following generating function:
(M*] ZSnk} (k € Ng; 4 €C), (97)
n=0

so that, obv1ously,
S(n, k) :=S(n,k; 1)
for the Stirling numbers S(n,k) of the second kind defined by (9) (see [9, p. 206, Theorem A]).

Theorem 9. The /-Stirling numbers S(n, k; 1) of the second kind can also be defined as follows:

00

Pxh — Z <z>k! Sn,k; 1) (ke Np; 1eC). (98)

k=0
Proof. By using (97) and the binomial theorem, we easily obtain the assertion (98) of Theorem 7. O

Theorem 10. The following explicit representation formulas hold true:
S(n.k;2) = Z ( );Jj” (n,k € No; 2€C) (99)

and
k

S(n,k; 2) Z ( )’”k D (n,keNg; 1eQ). (100)

=0

Proof. Just as in our demonstration of Theorem 7, we can easily derive (99) and (100) by using (97) and the binomial
theorem. 0O

Theorem 11. The /-Stirling numbers S(n, k; 1) of the second kind satisfy the following triangular and vertical recurrence relations:

S(nk;2)=8Sn—1,k—1;2) +kS(n—1,k;2) (n,keN) (101)
and
n—1
S(n,k; 2) ( )z“*f*sg, k—1;2) (nkeN), (102)
j=0

respectively.
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Proof. By differentiating both sides of (97) with respect to the variable z, we readily arrive at the recursion formulas (101)
and (102) asserted by Theorem 9. O

Theorem 12. The following explicit relationships hold true:
—n
S(n,k; 7) ,nl2< ) logA SG.k) (n,keNg; 7€) (103)
and
*j )k*j

k
S(n, k; 2 :ZA
j=

between the J-Stirling numbers S(n, k; 2) of the second kind and the Stirling numbers S(n, k) of the second kind.

S(n,j) (n,keNp; 1€C) (104)

Proof. By applying (97), it is failrly straightforward to derive the formulas (103) and (104). O
By means of the formula (99) or (104) in conjunction with (97), we can compute several values of S(n, k; 1) given by
§(0,0;2) =1, S8(1,0;4) =0, S1,1;1)=1, S82,0;1)=0, 8(2,1;1) =4,
8(2,2;2) =AM22-1), 8@3,0;1) =0, S8(3,1;1) =4,
8(3,2;4) = AM441-1), S83.,3;4) = %).(9).2 —-81+1),

S(4,0:0) =0, S(A,1;2)=1 S(4,2;2)=i8.-1),

S(4,3;2) = %1(2712 —16/+1), S(4,4;2) = éz(em — 812424, - 1), (105)
8(5,0;2) =0, S8(5,1;4) =24, 8(5,2;4) =161 1),
S(5,3;2) = %z(suz -32.+1), S85,4;0) = éz(zs(af — 243 148, - 1),
5(5,5;2) = 21—41(625),5 —10247% + 486> — 644+ 1),
and
(- 1) ) ,
S(0,k; 1) = . 8(n,0;4) =6, and S, 1;4) =1 (n,keNp), (106)

k!

and so on, J,,, being the Kronecker symbol.

When /=1, (97) and (98) become the corresponding (rather familiar) definitions for the Stirling numbers S(n,k) of the
second kind (see, for details, [9, p. 206, Theorem A; p. 207 Theorem B]). Similarly, in their special case when /=1, the
formulas (99) to (102) would yield the corresponding well-known results for the Stirling numbers S(n, k) of the second kind
(see, for details, [9, p. 204, Theorem A; p. 208, Theorem A; p. 209, Theorem B]).

Each of the following special values of S(n,k) is known (see [9, pp. 226-227, Ex. 16] and [40, p. 231]):

S(n,n) =1, S(nm—l):(S),
1/n 1/n (107)
S(n,n—2):2<3>(3n—5) and S(n,n—3):§<4>(n2—5n+6),

so that, if we make use of the formula (99) (with 4 =1) in conjunction with these special values of S(n, k), we obtain the fol-
lowing interesting summation formulas:

Sy (M) = 1y

j;( )<j>1 (-1)" n, (108)
- (T n

,;( 1)(].>1 =(=)"(n+ 15, (109)
n M\ o (D" (n+2) nBn+1

Z(_l)]<§l>] 2:( ) (2n+ ) .n( q; ) (110)
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and
u M\ s (=D)"(n+3) n?(n+1)
j=0
More generally, we have the following formula recorded by Gould [12, p. 3, Entry (1.17)]:
n i(n ko /k—n\/n 1
711<.>j””‘= —1)"(n+k)! ( ,)<,>7.Sk+j7j. 112
,;( ) J DX )JZO: k—j)\j (k+])!( ) (112)

Open problem 1. Does there exist an analogue of the sum given below?

n

Z(—l)’(?)if ™ (neN; ke Ny 2eC).

=0

Open problem 2. Can we find a rational generating function for the /-Stiling numbers S(n, k; 1) of the second kind analogous
to a known result [9, p. 207, Theorem C]?

7. Applications of the i-Stirling numbers S(n, k; 1) of the second kind to the family of the Apostol type polynomials

In the section, we give some applications of the /-Stirling numbers S(n, k; 1) of the second kind to the Apostol type poly-
nomials and Apostol type numbers. We obtain some interesting series representations for the Apostol-Genocchi polynomi-
als involving the 2-Stirling numbers S(n, k; 2) of the second kind and the Hurwitz (or generalized) zeta function {(s,a). We
begin by recalling that Wang et al. [47] gave the following results for the Apostol-Euler polynomials of order o using the
2-Stirling numbers S(n, k; /) of the second kind defined by (97)

_om 0 N o
(X +y: ) E:];k'l-i-] ik SUHIE DLW DB %64) - (n,j € Nos k€ C) (113)

and

Z S(l+]] HBY (%;2) (n,j e Ng; 2¢€C). (114)
l:ﬂ

Application 1. First of all, we give some recurrence relationships for the Apostol-Bernoulli numbers of order I (I € N) by
using the /-Stirling numbers of the second kind.

Theorem 13. Let S(n,k; %) denote the A-Stirling numbers of the second kind defined by (97). Then

n+l n+l o
Z( )S(TI-FI—I(,I;A)Bk (A)=0 (nleN; 2€eC). (115)

o k

Proof. By applying (11) (with « =1 € N and x =0) and (97), we find that

’oo l o Z o0 (’ Zn
1=z~ 1) ;B =z l'ZSnlAm;Bn(l)m
0 1 nyl n
_ <"+'> Z("}”) (n+1-k 2BV | 5. (116)
n=| k=0 < n

Now, by comparing the coefficients of z"(n € N) on both sides of (116), we easily obtain the assertion (115) of
Theorem 11. O

Remark 5. By setting A=1 in (115) and observing that

n+l n n+l
=3 +> and Sm+l-k)=0 (n+1=<k<n+l),

k=0 k=0  k=n+1



Q.-M. Luo, H.M. Srivastava/Applied Mathematics and Computation 217 (2011) 5702-5728 5719

we have the following recurrence relation for the Bernoulli numbers of order [ (or, equivalently, the Nérlund numbers [37]):

-1 pn-1
o (n+l n+l> B 0
BY = ( N ) Z( ) S(n+1-k,DB . (117)

k=0

Remark 6. When 4 # 1 in (115), if we apply the following values for the A-Stirling numbers S(n, k; 2):
(i=1)"

S8(0,k; 2) = A

and S(n,1;2) =7 (n,k € Nyp) (118)

in conjunction with (115), we have the following recurrence relation for the Apostol-Bernoulli numbers of order I (or, equiv-
alently, the generalized Norlund numbers [37]):

n ] nl-1 n+l ol
By () ==—"3 > S(n+1-k L 2)BY (). (119)
(-1 i \ k

Remark 7. By setting =1 in (117) and noting that S(n,1) = 1, we deduce the following familiar recurrence relations for the
classical Bernoulli numbers B,:

41
Bo=1 and By=-—— Z('” )Bk (nen). (120)
k=0

Remark 8. By setting [ = 1in (119) and noting that S(n, 1; 1) = 4, we deduce the following known recurrence relations for the
Apostol-Bernoulli numbers B, (1):

Bo(4) =0, Bi(4) =

-1
and By(4) = ( )Bk (ne N\ {1}). (121)

Application 2. If we take oo = —I(l € N) in (11), then Definition 2 assumes the following form:

107 l 0 n
(‘e 1) e =S B A)E (122)
By (122) and (97), we thus have

o0 B . XZ B n 00 zxn
ZB;”(xM) ; zlef - 1) —z’l'ZSnl) =5 Z(m)

n=0 n=0
o0 n+l 1 n4l n+l ok Zn
_; ( | > ’;( . >S(k7[,A)X z (123)

which leads us to Theorem 12 below.

Theorem 14. The following relationship holds true:
oy (AT 4 _—
BV (x; 1) = ( | ) §< v )S(k, L)Xk ()l e N) (124)

between the generalized Apostol-Bernoulli polynomials of order —I (I € N) and the A-Stirling numbers of the second kind.

Remark 9. Taking A1=1 in (124), we have
=1 n4l
B0 = (") (" stenw (125)
=0

which upon setting [ = n, yields

2 2n
1 < ) S(k, m)x>* (126)
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or, equivalently,

B(*n) (X) — (HI)Z‘ n (nz_:lk>s(n 4 k, n)xn—k. (127)

Remark 10. Putting x = 0 in (124), we have

B() = (" N ')71 Sm+1,1 ). (128)
Further, upon letting 2=1 in (128) or setting x = 0 in (125), we obtain

BUD— ("7’)4 St L), (129)
which, for [ =n, yields

B — (zn”)f] s@n.n), (130)
or, equivalently,

B = ((32; s@n,n). (131)

Applying the recursion formula (131) and the known formulas in [37, p. 146]), we can calculate the first five values of B, ™
and B{" (n e N) as given below:

, 1 _ 7 _ 9 _ 243 _ 6075
b pen_ g2 g4 2% pes)
B = 2’ 5 "6’ B 2’ By 10 B 36 (132)
B — 7%7 B2 — g B<33> _ 7% B — % and BY — 41725
Next, by applying (11) (w =1le N) and (97), we have
00 Zn+l 00 Zn o0 7z = Zn
Zx” ;= (e~ ' X;Bﬁ)(x;).)m: I!ZOS(n,l;)v)m-z;Bﬂ>(x;z)m
n= n= n= n=
n
_2{153(”) (k.1 )BY (x: ;_)}Z‘, (133)
n=0 k=0 k n

which leads us to an equivalent version of (114) given by Theorem 13 below.

Theorem 15. The following expansion formula holds true:

-1 q
n-l __ n n ) S
i 7(1) ,;(k> (k kDB () (n.1€Nos n2 . (134)
Remark 11. When 4 =1 in (134), we have
-1 n
o (1 " 0 n>
o= ([) E;(]()S(kJ)ank(X) (n,l€Ng; nz1). (135)

Remark 12. Upon setting [ =1 in (134), if we apply (106), we deduce the following known difference equation:
X" = 0By (x + 154) — Ba(x; 2), (136)

which, in the further special case when 4= 1, is a well-known (rather classical) result.

Application 3. We here obtain some series representations of the Apostol-Genocchi polynomials of higher order by apply-
ing the /-Stirling numbers of the second kind. Indeed, by using (11), (19) and (97), we obtain

Zg DE (%)1 (et — 1) ZB (7))(22')n-.28(n,l;}.)%
-y {ll 3 (Z)z’sm L A)BY (z,az)} z (137)

n=0 r=0

which leads us to the following lemma.
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Lemma 6. The following relationship holds true:

Ghx:2) =1y (';)fsm r,l: )BY (Z,A ) (n,l€ No: 7 €C) (138)

r=0
between the generalized Apostol-Genocchi polynomials and the /-Stirling numbers of the second kind.

By applying (87) and (138), we easily obtain the following series representation for the generalized Genocchi polynomials
Gy (x).

Theorem 16. The Apostol-Genocchi polynomials g,&” (x; A)of order lat rational arguments are given by

"r-1-2" /n ~ " . K20 nN (1 n
o (Be) =3~ ey (7 )@ - ) 3 5 T (1) (1) B e )stn - e

2 2 (497)
{ZC( 2:+J >exp{<’2_< (25+_(1171 )m+25< )exp{(—g—&-@)m}}

(n,leN\{l};peZ;qu;g“eﬂ%i\A(A:_{’z(:keZ})) (139)

in terms of the 2-Stirling numbers S(n, k; 2) of the second kind and the Hurwitz (or generalized) zeta function {(s,a).

By applying (138) (with A=1) and (89), we can obtain the following series representation for the generalized Genocchi
polynomials fo) (x), which is actually a complement of (139) for ¢ € 7.

Corollary 14. The generalized Genocchi polynomials G,(q” (x) of rational arguments are given by
n

0(PY_p. S — p_ M\ or e a1, (P 1\po-1)
G, (q) I'-S(n,l)+n-I'-S(n 1,1)(q l+r:2 . 2" S(n—-r)|B " +r1 2 23rl

21 ki A 2 j jpn_ km
- B"Vsm —r,1 (Ig—) cos (— - —)
22:,; (4qm)* < ><k> i S )];C 2q q 2

meN\{1}; ¢,leN; pe2) (140)
in terms of the Stirling numbers S(n, k) of the second kind and the Hurwitz (or generalized) zeta function {(s,a).

By letting [ = 1 in (140), we obtain the following explicit series representation for the classical Genocchi polynomials.

Corollary 15. The classical Genocchi polynomials G,(x) at rational arguments are given by
p p 2.kl (n) 24 j ipmt km
Gl = :l+n<——1>— (| k=) cos [— — = neN\{1}; qleN; pezZ 141
(q) q ; (an)k k FZ] 2q q 2 ( \ {1} q p ) (141)
in terms of the Hurwitz (or generalized) zeta function {(s,a).

Remark 13. It is not difficult to derive the corresponding formulas for the Apostol-Euler polynomials and the Apostol-Ber-
noulli polynomials at rational arguments by applying the relationships (38) and (40) in conjunction with (139)-(141). The
details are being omitted here.

8. Further results and observations

In this section, we apply Srivastava’s formula (Theorem C above) and some relationships in order to obtain several differ-
ent series representations for the Genocchi polynomials of order o and the Euler polynomials of order o
We first rewrite the formulas (58) and (67) in convenient forms given by Lemmas 7 and 8, respectively.

Lemma 7. The following series representation holds true:

no 2
G06A) = <Z> [(n —k+1)6%0 () - g;@k“(;v)}sk(x; ) (2,4 €C; neNy). (142)
k=0

Lemma 8. The following series representation holds true:
X " 2 n _
ENA) =D ( k) e () = €0, ()] Bux 2)

k=0

i=1 2 \*
+ <m> <) +1> Bnii(x;4) (0,2 € C; n e Np). (143)
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Theorem 17. The Apostol-Genocchi polynomials G (x; /) of order o at rational arguments are given by

@ (P, omie\_ 2 (1) p2miey A p2micy] . 2 k! n B 2mié () 2ric
Gn <q,€ )_ezm\;,][”gnq (ec™) -G (e )] ;n*k+](2qn)k k {( k+1)g Y (e?m) — On k(e )]

(A ool 525 )] (e o420

Jj=1

(neN\{1};qeN; peZ; (ecR\Z; 2e€C) (144)

n terms of the Hurwitz (or generalized) zeta function {(s,a).

Proof. Upon separating the k=0 and k=1 terms in (142) and applying Srivastava’s formula (76) (with n € N\ {1}), if we
note that

Bo(xi2) = Bo(2) =0 and Bi(x:2) = Bi(2) = =1 (145)

we arrive at the formula (144) asserted by Theorem 15. O

—

Theorem 18. The Apostol-Euler polynomials £ (x; 2)of order aat rational arguments are given by

o (P omic\ 2 (a-1) p2micy _ o) (p2mic\] - 2 k! n
e <q’e >*e2m‘<—1[5" (e75) - &™) ;n—kﬂ(zqn)k k

. [8(9‘*1) (eZTCi.:) _ E(O()k 1(62111'5)]

n—k+1

{6 4o 32654 12)
*124("—%“[(—’2—‘#“%’”’)7?,}}
S ) o)
.epr”;l_Z(Héq)p)m}
+ji:g<n+1’qu“> exp K_”JZF_HFZO'*T&)IJ)M } »

(neN\{l}; geN; pez feR\{ZuA}(A:: {k+%:kez}>; ae@)

in terms of the Hurwitz (or generalized) zeta function {(s,a).

Proof. Just as in our demonstration of Theorem 16, the representation formula (146) can be proven by applying (143) and
(76). O

By means of (142) (with 2=1) and (143) (with 2 =1) in conjunction with the formula (88), we can deduce Corollaries 16
and 17 below asserting series representations for the Genocchi polynomials of order  and the Euler polynomials of order o,
respectively.

Corollary 16. The generalized Genocchi polynomials G(“)( X) of order o at rational arguments are given by

” 2 p 2 2] W 4 k! o oc
cﬁ)(%) rriler e *Gﬂlh(qp 1>[G -6 2 —I<+1(2q<7r) (112){(””‘“)G(n—k”*q—)kﬂ]

q . .
~Zt§<k,é> cos <2]%_k7n> (neN\{1}; geN; peZ; acC) (147)
=1
in terms of the Hurwitz (or generalized) zeta function {(s,a).

Corollary 17. The generalized Euler polynomials E™ (x) of order « at rational arguments are given by

@ (P __2 [pe1_ g (1) ~_ 4 kU (e g
En <q> - n+1 [Enﬂ EnH] ( )[E } Z n— ]<+1 (an)k k [Enfkﬂ En—k+1

k=2

q :
.Zg(k,%) cos (2]%7’%) (neN\{1}; geN; peZ; ae€C) (148)
j=1

in terms of the Hurwitz (or generalized) zeta function {(s,a).
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Remark 14. The series representation formulas (147) and (148) are, respectively, the complement of (144) and (146) for

¢ € Z. Furthermore, by letting o = 1 in (147) and (148), we obtain the following explicit series representations for the classical
Genocchi polynomials and the classical Euler polynomials, respectively.

Corollary 18. The classical Genocchi polynomials G,(x) at rational arguments are given by

py_ 2 2p 4G K 2ipn kn
6(§) = (- 1)o St e (o) (k) = (- 5)
(neN\{1}; qeN; pez) (149)

in terms of the Hurwitz (or generalized) zeta function {(s,a).

Corollary 19. The classical Euler polynomials E,(x) at rational arguments are given by

p 2 2p ) ~ 4E,_in ( ) ( ) (21'p7r kn)
E(2)=-_“_E, L _1)E, }:— }: k2 |
<q) B (q +k n—k+1 ]]C “q) q 2

(meN\{1}; geN; pe2) (150)

in terms of the Hurwitz (or generalized) zeta function {(s,a).

Remark 15. It is fairly easy to apply the relationships (40) of Lemma 3 and (41) of Lemma 4 in conjunction with the above
formulas (144) and (146), respectively, in rder to obtain the corresponding series representations for the Apostol-Bernoulli
polynomials B{ (x; /) of order « at rational arguments. The details involved are being left as an exercise for the interested
reader.

We now separate the even and odd terms of the formula (150). By noting that

1
—Gon (neN),

E;n =0 and Eyp1 = n

we thus obtain

P\ (2p " 4Ey g (—D)FT(2Kk—1)! d B . (2jpm
Eznq (q) = (q )EZn 1 +Z M— k41 (2qmFT 2k71 ZC 2k 1 sin “q

j=1

meN\{1}; geN; pe2) (151)
and
p\ 2 " 4Eyn g (—1)F (2k a 2jpm
Eau(g) = (g 1) P X kT g " (%) 2. (20) cos ()
(meN\{1}; geN; pe2). (152)

On the other hand, by separating the even and odd terms of the formula (85), we get (see [10, p. 1529, Theorem B] and [42, p.
78, Theorem BJ; see also Corollary 10 above)

Eon_1 (g) =(-1) 227;1 qu; ( J ) cos ((Zj fql)pn> meN\{1}; geN; pe 2) (153)
and
152”(%’) —(-1)" 2qn _A@mt Z¢<2n+1 q1>sin (Qj*ql)p”) (neN\{1}; geN; pe 2). (154)

Finally, by comparing the formulas (153) and (151) and the formulas (154) and (152), respectively, we obtain the
following interesting relationships involving the even and odd Hurwitz (or generalized) zeta functions:

no(—1 k+1 2 2n-2k+1 g 2i
> ( (;n _( 2qknJ)r 1! Z ¢ (2" ) sin < J§n>52n72k+1
’ Jj=

k=2

q P _ 2n
_1)";€<2n,212q1> cos ((2] ql)pn) +5 ((22(1:)_ 0 <g—%>E2n 1 (MeN\{1} geN; pez) (155)
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and

(D R IS i 2jpr oy 2j -1\ . ((2i-1pn
’; Gn2ki T 2 ¢ 2k,q cos q Eon_aki1 = (—1) j;( 2n+1, 2 sin J
(2qn)2n+l . .
togni it MENV{TE aeN pe). (156
We now recall the following interesting integral representations for the Apostol-Bernoulli polynomials and the Apostol-
Euler polynomials, which were given recently by Luo [30].

Lemma9 Luo [30, p. 2198, Theorem 3.1 (3.1); p. 2199, Theorem 3.2 (3.3)]). The following integral representation holds true for
the Apostol-Bernoulli polynomials:
omize [ (U(n;z,t) cosh(2mét) +iV(n; z, t) sinh(2wét) |,
L p2TIE . _ 2mizé | iadl 34 n-1
Ba(z;€™) = —Aa(z;¢) —ne /0 < cosh(27t) — cos(27x) e de

(neN; 0<RE@<1; g <1 (éeR)), (157)
where An(z; &) is given by
0 (€=0)
An(z;8) = { (=1)"n!
(2mig)" e2mize (£#0),

U(miz,t) = [cos (2nz - 5F) — cos () e 2]

AN

and

V(n;z,t) = [sin (an - nz—n> + sin (nz—n>e‘2’"].

Furthermore, the following integral representation holds true for the Apostol-Euler polynomials:

omize [T (X(n;x,t) cosh(27ét) + 1Y (n; z, t) sinh(27ét)
L p2TIE\ 2mizé n
En(z;€7) = 2e /0 ( cosh(27t) — cos(2nz) et

(nemosme=n <1 cen). (158)
where
. _ [p-nt o nrw at o _nrw
X(n7z,t)_[e sm(nz+ 2)+e sm(nz 2)]
and

Y(n;z,t) = [e*m cos (nz + nz_n> —e™ cos (nz - %)]

We apply the relationships (37) of Lemma 2 and (39) of Lemma 3 in conjunction with the above formulas (157) and (158),
respectively. We thus obtain the corresponding integral representations for the Apostol-Genocchi polynomials G (z; 2).

Theorem 19. The following integral representation holds true for the Apostol-Genocchi polynomials:

omize [ (M(n;z,t) cosh(2mét) + iN(n; x, t) sinh(2ée)\ |,
L p2WiEN 2mizé n-1
Un(z;€7) = 2ne /0 < cosh(2mt) — cos(27z) et

(nensosm@ <t < em) (159)
where
. _ [omt LA " nn
M(n,z7t)_[e cos(nz 2) e cos(nz+2>]
and

N(n;z,t) = [e’” sin (nz - %) +e ™ sin (nz + nz—n)]

Remark 16. Upon letting ¢ € Z in (157) and (158), we easily deduce that

_ > (cos (2mz — ) — e~2™ cos (9) ., 4 0< <
Ba(2) _7n/0 ( oSt —cos e >t dt (ne N; 0 < R(z) < 1) (160)
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and

_ 2/ (e’” sin (mz — &) + e~™ sin (7x + )

cosh(2mt) — cos(27z) )t”dt (n <N 0= R = l) (e

for the classical Bernoulli polynomials and the classical Euler polynomials, respectively. Moreover, by setting z = g in (160)
and (161), and noting the formulas (88) and (85), we can get the following integral representations for the Hurwitz (or gen-
eralized) zeta function {(s,a):

g 2jpn nm any e (0 (F ) s
Z ( )COS <T—7> 2-(n-1)! /o ( cosh(2mt) — cos (21377!) )t Tdt

Jj=1

(meN\{1}; peNo; geN; p=q) (162)

and

q P P nl oo fe™sin (B —1T) 4 e sin (BT 41X
S¢ n+1,2] 1 sin (2j—Dpm_nm\ _ (2qm) / (q 2) (q 2) i
P 2q q 0

2 2-n cosh(27t) — cos (2”7“)
(meN; peNg; geN; p<q). (163)

Remark 17. By letting n+— 2n in (162) and (163), we obtain the following interesting integral representations involving the
even Hurwitz (or generalized) zeta function {(2n,a) and the odd Hurwitz (or generalized) zeta function {(2n+1,a),
respectively:

2‘7: V<2 J> <21p7t> (2qm)™" / (_eos(E) e L
{{2n,=) cos ="t de
= q q 2-(2n-1)! cosh(27t) — cos (2"”)

(meN\{1}; peNo; geN; p=q) (164)
and
d - 2qm)* ' sin (B7)
ZC<2n+1 2j — 1) sin <(2] 1)p7‘5> :( qm) | <q> / cosh(mt) 2 e
= 2q q (2n)! o \cosh(27t) — cos (%‘)
(meN; peNg; geN; p=q). (165)

Remark 18. The formulas (76), (77) and (83) lead us easily to the following representations for the Apostol-Bernoulli poly-
nomials, the Apostol-Euler polynomials and the Apostol-Genocchi polynomials at rational arguments:

Bﬂ(g;_em): 2q7r {ZC< 2g+21 1)exp{<g_w>m}

(32220

meN\{1}; peZ qeN; {eR), (166)
) ) o)
.exp[<f”;1+2(’*2*])p>ni” (n,qeN; peZ; ¢€R) (167)

and

(Do) - 22, {ZC( ) o (giz(é;rj)p%i}+.Z";C<n,j—z—1>exp (gﬁﬁi—é‘q—ﬂl’)m}}

(neN\{1}; peZ; qeN; £€R), (168)

respectively.
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By applying Lemmas 2 to 4 and the above formulas (166) to (168) in conjunction with the results of this paper and of the
earlier works (see, for example, [28,35,29,36,34,30-33]), we can also derive a large number of interesting formulas and
relationships. For example, if we apply the relationships (37) and (39) in conjunction with the known Fourier expansions of
the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials (see, for details, [30, p. 2195, Theorem 2.1 (2.2) and
(2.3); p. 2196, Theorem 2.2 (2.8) and Theorem 2.2 (2.9)]), we obtain the corresponding Fourier exponential series expansions
for the Apostol-Genocchi polynomials Gy (x; 4) as follows.

Theorem 20. The following Fourier exponential series expansions hold true for the Apostol-Genocchi polynomials G, (x; 1):

o2 X e(2k-Tymix (2" exp [(F — 2k + 1)7x)i] & exp [(— 2+ (2k + 1)7x)i]
Gn(%:4) = =52~ ,Zx (2k—)mi—logi" 7 (,; (2k+ Tymi+log " ; 2k Ty~ Tog "
(neN; 0<x<1; 2eC\{0,~1)). (169)

9. A unified presentation of the generalized Apostol type polynomials

The mutual relationships among the families of the generalized Apostol-Bernoulli polynomials, the generalized Apostol-
Euler polynomials and the Apostol-Genocchi polynomials, which are already asserted by Lemmas 2 to 4, can be appropri-
ately applied with a view to translating various formulas involving one family of these generalized polynomials into the cor-
responding results involving each of the other two families of these generalized polynomials. Nevertheless, we find it to be
useful to investigate properties and results involving these three families of generalized Apostol type polynomials in a unified
manner. In fact, the following interesting unification (and generalization) of the generating functions of the three families of
Apostol type polynomials was recently investigated rather systematically by Ozden et al. (cf. [38, p. 2779, Equation (1.1)]):

21- Kzlcexz
Bez —av :0

(|z|<27r when p=agq; |z|<‘blog<g>' when p#a; 1*:=1; K, € C; a,be@\{O}),

n

x;cab (170)

Mx

where we have not only suitably relaxed the constraints on the parameters x, a and b, but we have also strictly followed
Remark 1 regarding the open disk in the complex z-plane (centred at the origin z = 0) within which the generating function
in (170) is analytic in order to have the corresponding convergent Taylor-Maclaurin series expansion (about the origin z = 0)
occurring on the right-hand side (with a positive radius of convergence).

Here, in conclusion of our present investigation, we define the following unification (and generalization) of the generating
functions of the above-mentioned three families of the generalized Apostol type polynomials.

Definition 6. The generalized Apostol type polynomials
FP X2 ) (2,2, 14,V € C)

of (real or complex) order « are defined by means of the following generating function:

n

207y \* ) a
(" ) e = Aty (21 < log(-A)k 1*=1), (171)

rez+1 —

so that, by comparing Definition 6 with Definitions 2, 3 and 4, we have

BY(x;2) = (=1)"F P (%, —40; 1), (172)

EW(x;0) = FO(x;2;1;0) (173)
and

G (% 2) = FP (% 2:151). (174)

Furthermore, if we compare the generating function (170) and (171), we have
g B\’
Yap(X;K,a,b) = f@j’-‘; i—\g -k . (175)

We thus see from the relationships (172)-(175) that the generating function of F(* (x; /; &t; v) in (171) includes, as its spe-
cial cases, not only the generating function of the polynomials Y, 4(x; c,a, b) in (170) and the generating functions of all three
of the generalized Apostol type polynomials BY (x; 2), £ (x; /) and G (x; 2), and indeed also the generating functions of their
special cases B (x),E® (x) and G (x).
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The various interesting properties and results involving the new family of generalized Apostol type polynomials
F@(x; 4; 1; v) can also be derived in a manner analogous to that of our presentation in this paper.
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