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Abstract

The main object of this paper is to give analogous definitions of Apostol type (see [T.M. Ap
On the Lerch Zeta function, Pacific J. Math. 1 (1951) 161–167] and [H.M. Srivastava, Some for
for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos
129 (2000) 77–84]) for the so-called Apostol–Bernoulli numbers and polynomials of higher
We establish their elementary properties, derive several explicit representations for them in t
the Gaussian hypergeometric function and the Hurwitz (or generalized) Zeta function, and
their special cases and applications which are shown here to lead to the corresponding result
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1. Introduction, definitions and preliminaries

The classical Bernoulli polynomialsBn(x) and the classical Euler polynomialsEn(x),
together with their familiar generalizationsB(α)

n (x) andE
(α)
n (x) of (real or complex) or-

derα, are usually defined by means of the following generating functions (see, for d
[8] and [10, p. 61 et seq.]):(

z

ez − 1

)α

exz =
∞∑

n=0

B(α)
n (x)

zn

n!
(|z| < 2π; 1α := 1

)
(1)

and (
2

ez + 1

)α

exz =
∞∑

n=0

E(α)
n (x)

zn

n!
(|z| < π; 1α := 1

)
, (2)

so that, obviously,

Bn(x) := B(1)
n (x) and En(x) := E(1)

n (x) (n ∈ N0), (3)

where

N0 := N ∪ {0} (
N := {1,2,3, . . .}).

For the classical Bernoulli numbersBn and the classical Euler numbersEn, we readily find
from (3) that

Bn := Bn(0) = B(1)
n (0) and En := En(0) = E(1)

n (0) (n ∈ N0). (4)

Some interesting analogues of the classical Bernoulli polynomials and numbers
investigated by Apostol [2, Eq. (3.1), p. 165] and (more recently) by Srivastava [9, pp
84]. We begin by recalling here Apostol’s definitions as follows.

Definition 1 (Apostol [2]; see also Srivastava [9]). The Apostol–Bernoulli polynomial
Bn(x;λ) are defined by means of the following generating function:

zexz

λez − 1
=

∞∑
n=0

Bn(x;λ)
zn

n!
(|z + logλ| < 2π

)
(5)

with, of course,

Bn(x) = Bn(x;1) and Bn(λ) := Bn(0;λ), (6)

whereBn(λ) denotes the so-called Apostol–Bernoulli numbers.

Apostol [2] not only gave elementary properties of the polynomialsBn(x;λ), but also
obtained the following recursion formula of the numbersBn(λ) (see [2, Eq. (3.7), p. 166])

Bn(λ) = n

n−1∑ k!(−λ)k
S(n − 1, k)

(
n ∈ N0; λ ∈ C\{1}), (7)
k=0
(λ − 1)k+1
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whereS(n, k) denotes the Stirling numbers of the second kind defined by means o
following expansion (see [4, Theorem B, p. 207]):

xn =
n∑

k=0

(
x

k

)
k!S(n, k), (8)

so that

S(n,0) = δn,0, S(n,1) = S(n,n) = 1 and S(n,n − 1) =
(

n

2

)
,

δn,k being the Kronecker symbol.
Motivated by the generalizations in (1) and (2) of the classical Bernoulli polynom

and the classical Euler polynomials involving a real or complex parameterα, we introduce
and investigate here the so-called Apostol–Bernoulli polynomialsB(α)

n (x;λ) of orderα
and the Apostol–Euler polynomialsE (α)

n (x;λ) of orderα, which are defined as follows.

Definition 2. The Apostol–Bernoulli polynomialsB(α)
n (x;λ) of order α are defined by

means of the following generating function:(
z

λez − 1

)α

exz =
∞∑

n=0

B(α)
n (x;λ)

zn

n!
(|z + logλ| < 2π; 1α := 1

)
(9)

with, of course,

B(α)
n (x) = B(α)

n (x;1) and B(α)
n (λ) := B(α)

n (0;λ), (10)

whereB(α)
n (λ) denotes the so-called Apostol–Bernoulli numbers of orderα.

Definition 3 (cf. Luo [7]). The Apostol–Euler polynomialsE (α)
n (x;λ) of orderα are de-

fined by means of the following generating function:(
2

λez + 1

)α

exz =
∞∑

n=0

E (α)
n (x;λ)

zn

n!
(|z + logλ| < π; 1α := 1

)
(11)

with, of course,

E(α)
n (x) = E (α)

n (x;1) and E (α)
n (λ) := E (α)

n (0;λ), (12)

whereE (α)
n (λ) denotes the so-called Apostol–Euler numbers of orderα.

By using Definition 3 in conjunction with (2), it is easily observed that

∞∑
n=0

E (α)
n (x;λ)

zn

n! = e−x logλ

(
2

ez+logλ + 1

)α

ex(z+logλ)

= e−x logλ
∞∑

k=0

E
(α)
k (x)

(z + logλ)k

k!

= e−x logλ
∞∑

E
(α)

(x)

k∑ zn(logλ)k−n
k=0
k

n=0
(k − n)!n!
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s

= e−x logλ
∞∑

n=0

zn

n!
∞∑

k=0

E
(α)
n+k(x)

(logλ)k

k! ,

which yields the following representation for the Apostol–Euler polynomialsE (α)
n (x;λ) of

orderα in series of the familiar Euler polynomialsE(α)
n (x) of orderα.

Lemma 1. The Apostol–Euler polynomialsE (α)
n (x;λ) of orderα is represented by

E (α)
n (x;λ) = e−x logλ

∞∑
k=0

E
(α)
n+k(x)

(logλ)k

k! (n ∈ N0) (13)

in series of the familiar Euler polynomialsE(α)
n (x) of orderα.

In precisely the same manner, Definition 2 would yield the following result.

Lemma 2. The Apostol–Bernoulli polynomialsB(l)
n (x;λ) of order l are represented by

B(l)
n (x;λ) = e−x logλ

∞∑
k=0

(
n + k − l

k

)(
n + k

k

)−1

B
(l)
n+k(x)

(logλ)k

k!
(n, l ∈ N0) (14)

in series of the familiar Bernoulli polynomialsB(l)
n (x) of order l.

Recently, Luo [7] derived several interesting properties and explicit represent
for the Apostol–Euler polynomialsE (α)

n (x;λ) of orderα, including (for example) an ex
plicit series representation forE (α)

n (x;λ) involving the Gaussian hypergeometric functi
F(a, b; c; z) defined by (cf., e.g., [1, p. 556 et seq.])

F(a, b; c; z) = 2F1(a, b; c; z) = 2F1(b, a; c; z) :=
∞∑

n=0

(a)n(b)n

(c)n

zn

n!(
c /∈ Z

−
0 ; |z| < 1; z = 1 andR(c − a − b) > 0; z = −1 and

R(c − a − b) > −1
)
, (15)

where

Z
−
0 := Z

− ∪ {0} (
Z

− := {−1,−2,−3, . . .})
and(λ)n denotes the Pochhammer symbol defined by

(λ)0 = 1 and (λ)n = Γ (λ + n)

Γ (λ)
= λ(λ + 1) · · · (λ + n − 1) (n ∈ N).

The main object of the present paper is to investigate the corresponding problems
Apostol–Bernoulli polynomialsB(α)

n (x;λ) of orderα. And, by closely following the work
of Srivastava [9] dealing with the special caseα = 1, we also derive an explicit serie
representation for

(α)

(
p 2πiξ

)

Bn q

; e (p ∈ Z; q ∈ N; ξ ∈ R)
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ds
involving the Hurwitz (or generalized) Zeta functionζ(s, a) defined by (cf. [3, p. 249
and [10, p. 88])

ζ(s, a) :=
∞∑

n=0

1

(n + a)s

(
R(s) > 1; a /∈ Z

−
0

)
, (16)

so that

ζ(s,1) =: ζ(s) = 1

2s − 1
ζ

(
s,

1

2

)
(17)

for the Riemann Zeta functionζ(s).

2. Explicit formulas involving the Gaussian hypergeometric function

We begin by stating our main result in this section as Theorem 1 below.

Theorem 1. For n, l ∈ N0 andλ ∈ C\{1}, the following explicit series representation hol
true:

B(l)
n (x;λ) = l!

(
n

l

) n−l∑
k=0

(
n − l

k

)(
l + k − 1

k

)
λk

(λ − 1)k+l

·
k∑

j=0

(−1)j
(

k

j

)
jk(x + j)n−k−lF

(
k + l − n, k; k + 1; j

x + j

)
, (18)

where F(a, b; c; z) denotes the Gaussian hypergeometric function defined by(15).
Furthermore, forn, l ∈ N0,

B(l)
n (x;λ) = e−x logλ

∞∑
k=0

(
n + k − l

k

)(
n + k

k

)−1
(logλ)k

k!

·
n+k∑
r=0

(
n + k

r

)(
l + r − 1

r

)
r!

(2r)!
r∑

j=0

(−1)j
(

r

j

)

· j2r (x + j)n+k−rF

(
r − n − k, r − l;2r + 1; j

x + j

)
(19)

in terms of the Gaussian hypergeometric functionF(a, b; c; z) defined by(15).

Proof. Making use of Taylor’s expansion and Leibniz’s rule, we find from (9) withα = l

(l ∈ N0) that

B(l)
n (x;λ) = Dn

z

{(
z

λez − 1

)l

exz

}∣∣∣∣
z=0

(
Dz = d

dz

)

= l! n∑(
n

)(
k
)

xn−kDk−l
(λ − 1)l
k=l

k l z
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(20),

.3.4),
·
{(

1+ λ

λ − 1
(ez − 1)

)−l}∣∣∣∣∣
z=0

. (20)

Now, by settingα = l (l ∈ N0) and

w = λ

λ − 1

(
ez − 1

)
in the binomial expansion:

(1+ w)−α =
∞∑

r=0

(
α + r − 1

r

)
(−w)r

(|w| < 1
)
, (21)

and using the following known definition (see [10, Eq. 1.5 (15), p. 58]):

(
ez − 1

)l = l!
∞∑
r=l

S(r, l)
zr

r! , (22)

we find from (20) that

B(l)
n (x;λ) = l!

n∑
k=l

(
n

k

)(
k

l

)
xn−k ·

k−l∑
r=0

(
l + r − 1

r

)
r!(−λ)r

(λ − 1)r+l
S(k − l, r). (23)

Upon interchanging the order of summation in (23), if we apply (see [10, Eq. 1.5
p. 58])

S(n, k) = 1

k!
k∑

j=0

(−1)k−j

(
k

j

)
jn

and the elementary combinatorial identity:(
n

k

)(
k

r

)
=

(
n

r

)(
n − r

n − k

)
,

we readily obtain

B(l)
n (x;λ) = l!

(
n

l

) n−l∑
k=0

(
l + k − 1

k

)(
n − l

k

)
λkxn−k−l

(λ − 1)k+l

·
k∑

j=0

(−1)j
(

k

j

)
jkF

(
k + l − n,1; k + 1;− j

x

)
. (24)

Finally, we apply the known Pfaff–Kummer hypergeometric transformation [1, Eq. (15
p. 559]:

F(a, b; c; z) = (1− z)−aF

(
a, c − b; c; z

z − 1

)
(
c /∈ Z

−
0 ; ∣∣arg(1− z)

∣∣ � π − ε (0 < ε < π)
)

(25)
in (24). We are thus led immediately to the assertion (18) of Theorem 1.
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]:

hen

rmula
e (and
The assertion (19) of Theorem 1 can be proven similarly (or, alternatively, by app
Lemma 2 in conjunction with the special caseα = l (l ∈ N0) of a known result given earlie
by Srivastava and Todorov [11, Eq. (3), p. 510]; see also Eq. (26) below).�
Remark 1. By settingλ = 1 in (19), we obtain aspecialcaseα = l (l ∈ N0) of the afore-
mentioned known result due to Srivastava and Todorov (see [11, Eq. (3), p. 510]):

B(α)
n (x) =

n∑
k=0

(
n

k

)(
α + k − 1

k

)
k!

(2k)!
k∑

j=0

(−1)j
(

k

j

)
j2k(x + j)n−k

· F
(

k − n, k − α;2k + 1; j

x + j

)
. (26)

Remark 2. For the Apostol–Bernoulli numbersB(α)
n (λ), by settingx = 0 in (18), we obtain

the following explicit representation:

B(l)
n (λ) = l!

(
n

l

) n−l∑
k=0

(
l + k − 1

k

)
k!(−λ)k

(λ − 1)k+l
S(n − l, k),

(
n, l ∈ N0; λ ∈ C\{1}), (27)

where we have made use of the Gauss summation theorem [1, Eq. (15.1.20), p. 556

F(a, b; c;1) = Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)

(
c /∈ Z

−
0 ; R(c − a − b) > 0

)
for

a = k + l − n, b = k, and c = k + 1,

so that

F(k + l − n, k; k + 1;1) =
(

n − l

k

)−1

(k = 0,1, . . . , n − l; n, l ∈ N0). (28)

Remark 3. Apostol’s formula (7) is an obvious special case of our formula (27) w
l = 1.

Remark 4. The following explicit formula for the Bernoulli numbersB(α)
n of orderα was

given by Todorov [12, Eq. (3), p. 665]:

B(α)
n =

n∑
k=0

(−1)k
(

α + n

n − k

)(
α + k − 1

k

)(
n + k

k

)−1

S(n + k, k). (29)

Obviously, as already observed by Srivastava and Todorov [11, p. 513], Todorov’s fo
(29) is contained in the relatively more general Srivastava–Todorov result (26) abov
hence also in the assertion (19) of Theorem 1, but only for the special case whenα = l
(l ∈ N0)).
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ulli

et

Zeta
Remark 5. The proof of Theorem 1 can be appliedmutatis mutandisin order to obtain
a new explicit formula for the Apostol–Bernoulli polynomialsB(α)

n (x;λ) involving the
Stirling numbers of the second kind as follows:

B(l)
n (x;λ) = l!

n∑
k=l

(
n

k

)(
k

l

)
xn−k

k−l∑
j=0

(
l + j − 1

j

)

· j !(−λ)j

(λ − 1)j+l
S(k − l, j)

(
n, l ∈ N0; λ ∈ C\{1}). (30)

Corollary. The following explicit representation holds true for the Apostol–Berno
polynomialsBn(x;λ):

Bn(x;λ) = n

n−1∑
k=0

(
n − 1

k

)
λk

(λ − 1)k+1

k∑
j=0

(−1)j
(

k

j

)
jk(x + j)n−k−1

· F
(

k − n + 1, k; k + 1; j

x + j

) (
n ∈ N0; λ ∈ C\{1}). (31)

3. Explicit representations involving the Hurwitz (or generalized) Zeta function

A general Hurwitz–Lerch Zeta functionΦ(z, s, a) defined by (cf., e.g., [10, p. 121
seq.])

Φ(z, s, a) :=
∞∑

n=0

zn

(n + a)s(
a ∈ C\Z

−
0 ; s ∈ C when |z| < 1; R(s) > 1 when |z| = 1

)
(32)

contains, as itsspecialcases, not only the Riemann and Hurwitz (or generalized)
functions (cf. Eqs. (16) and (17)):

ζ(s) = Φ(1, s,1) and ζ(s, a) = Φ(1, s, a) (33)

and the Lerch Zeta function:


s(ξ) :=
∞∑

n=1

e2nπiξ

ns
= e2πiξΦ

(
e2πiξ , s,1

) (
ξ ∈ R; R(s) > 1

)
, (34)

but also such other functions as the polylogarithmic function:

Li s(z) :=
∞∑

n=1

zn

ns
= zΦ(z, s,1)

(
s ∈ C when |z| < 1; R(s) > 1 when |z| = 1

)
(35)
and the Lipschitz–Lerch Zeta function (cf. [10, Eq. 2.5 (11), p. 122]):
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922)

n

φ(ξ, a, s) :=
∞∑

n=0

e2nπiξ

(n + a)s
= Φ

(
e2πiξ , s, a

) =: L(ξ, s, a)

(
a ∈ C\Z

−
0 ; R(s) > 0 whenξ ∈ R\Z; R(s) > 1 whenξ ∈ Z

)
, (36)

which was first studied by Rudolf Lipschitz (1832–1903) and Matyáš Lerch (1860–1
in connection with Dirichlet’s famous theorem on primes in arithmetic progressions.

For the general Hurwitz–Lerch Zeta functionΦ(z, s, a) defined by (32), it is easily see
by using the elementary series identity:

∞∑
k=1

f (k) =
q∑

j=1

∞∑
k=0

f (qk + j) (q ∈ N) (37)

that

Φ(z, s, a) = q−s

q∑
j=1

Φ

(
zq, s,

a + j − 1

q

)
zj−1, (38)

which, in the special case when

z = exp

(
2pπi

q

)
(p ∈ Z; q ∈ N),

yields the following summation formula for the Lipschitz–Lerch Zeta functionφ(ξ, a, s)

defined by (36):

φ

(
p

q
,a, s

)
= q−s

q∑
j=1

ζ

(
s,

a + j − 1

q

)
exp

(
2(j − 1)pπi

q

)
(39)

in terms of the Hurwitz (or generalized) Zeta functionζ(s, a).
For z = 1, (38) reduces at once to the following familiar identity:

ζ(s, a) = q−s

q∑
j=1

ζ

(
s,

a + j − 1

q

)
, (40)

which, for a = 1, yields a well-known result for the Riemann Zeta functionζ(s). On the
other hand, by settinga = 1

2 in (38) and (39), we have

∞∑
n=1

zn

(2n − 1)s
= (2q)−s

q∑
j=1

Φ

(
zq, s,

2j − 1

2q

)
zj−1 (41)

and
∞∑

n=0

e(2n+1)pπi/q

(2n + 1)s
= (2q)−s

q∑
j=1

ζ

(
s,

2j − 1

2q

)
exp

(
(2j − 1)pπi

q

)
, (42)

respectively. Lastly, in their special cases whena = 1, (38) and (39) yield the following
companions of the summation formulas (41) and (42), respectively:

∞∑ zn

=: Li s(z) = q−s

q∑
Φ

(
zq, s,

j
)

zj (43)

n=1

ns
j=1

q



Q.-M. Luo, H.M. Srivastava / J. Math. Anal. Appl. 308 (2005) 290–302 299

ula

ulli
7),

lier by

]
o [10,
f

turn
and
∞∑

n=1

e2npπi/q

ns
=: 
s

(
p

q

)
= q−s

q∑
j=1

ζ

(
s,

j

q

)
exp

(
2jpπi

q

)
. (44)

For the Lipschitz–Lerch Zeta functionφ(ξ, a, s) defined by (36), wenowrecall Lerch’s
functional equation:

φ(ξ, a,1− s) = Γ (s)

(2π)s

{
exp

[(
1

2
s − 2aξ

)
πi

]
φ(−a, ξ, s)

+ exp

[(
−1

2
s + 2a(1− ξ)

)
πi

]
φ(a,1− ξ, s)

}
(s ∈ C;0< ξ < 1), (45)

which was applied recently by Srivastava [9] in conjunction with Apostol’s form
[2, p. 164]:

φ(ξ, a,1− n) = −Bn(a; e2πiξ )

n
(n ∈ N) (46)

with a view to deriving the following explicit representation for the Apostol–Berno
polynomialsBn(x;λ) defined by (5) (cf. [9, Eq. (4.6), p. 84]; see also [10, Eq. 6.1 (2
p. 341]):

Bn

(
p

q
; e2πiξ

)
= − n!

(2qπ)n

{
q∑

j=1

ζ

(
n,

ξ + j − 1

q

)
exp

[(
n

2
− 2(ξ + j − 1)p

q

)
πi

]

+
q∑

j=1

ζ

(
n,

j − ξ

q

)
exp

[(
−n

2
+ 2(j − ξ)p

q

)
πi

]}
,

(n ∈ N\{1}; p ∈ Z; q ∈ N; ξ ∈ R), (47)

which holds true whenever each side exists. Indeed, in itsspecialcase whenξ ∈ Z, the
summation formula (47) can easily be shown to reduce to a known result given ear
Cvijović and Klinowski [5, Theorem A, p. 1529].

Remark 6. Srivastava’s formula (47) as well as Srivastava’sdetailed derivation of his
series representation (47) were subsequently reproducedverbatimby Luo [6, p. 513 et seq.
without rightfully attributing the series representation (47) to Srivastava [9] (see als
Eq. 6.1 (27), p. 341]). Moreover,both [9] and [10] were actually included in the list o
citations at the end of Luo’s paper [6, p. 515].

With a view to applying Srivastava’s formula (47) for our present objective, we
once again to Definition 2, which yields

∞∑
n=0

B(α)
n (x;λ)

zn

n! =
(

z

λez − 1

)α−1

·
(

z

λez − 1

)
exz

=
( ∞∑

B(α−1)(λ)
zn

)
·
( ∞∑

Bn(x;λ)
zn

)
. (48)
n=0
n n!

n=0
n!
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Upon recognizing the last member in (48) as the Cauchy product of two series, we
diately arrive at Lemma 3 below.

Lemma 3. The following relationship:

B(α)
n (x;λ) =

n∑
k=0

(
n

k

)
B(α−1)

n−k (λ)Bk(x;λ) (n ∈ N0) (49)

holds true between the Apostol–Bernoulli polynomialsB(α)
n (x;λ) of order α and the

Apostol–Bernoulli numbersB(α−1)
n (λ) of orderα − 1.

Theorem 2. For the Apostol–Bernoulli polynomialsB(α)
n (x;λ) of orderα,

B(α)
n

(
p

q
; e2πiξ

)
= n

(
e2πiξ − 1

)−1B(α−1)
n−1

(
e2πiξ

) −
n∑

k=2

k!
(2qπ)k

(
n

k

)
B(α−1)

n−k

(
e2πiξ

)

·
{

q∑
j=1

ζ

(
k,

ξ + j − 1

q

)
exp

[(
k

2
− 2(ξ + j − 1)p

q

)
πi

]

+
q∑

j=1

ζ

(
k,

j − ξ

q

)
exp

[(
−k

2
+ 2(j − ξ)p

q

)
πi

]}

(
n ∈ N\{1}; p ∈ Z; q ∈ N; ξ ∈ R\Z

)
. (50)

Proof. The proof of Theorem 2 is fairly straightforward. Indeed, by making use
Srivastava’s formula (47) in Lemma 3 above, the assertion (50) of Theorem 2 fo
immediately upon noting that [10, Eq. 2.5 (46), p. 126]

B0(x;λ) = 0 and B1(x;λ) = 1

λ − 1
(λ �= 1). (51)

Since

B(0)
n (λ) := B(0)

n (0;λ) = δn,0 (n ∈ N0), (52)

Srivastava’s formula (47) can be recovered at once from Theorem 2 by settingα = 1 in
(50). More importantly, in theexceptionalcase of the representation formula (50) wh
ξ ∈ Z, we can apply the assertion (49) of Lemma 3 (with λ = 1) in conjunction with
Srivastava’s formula [9, Eq. (2.3), p. 79]:

Bn

(
p

q

)
= − 2 · n!

(2qπ)n

q∑
j=1

ζ

(
n,

j

q

)
cos

(
2jpπ

q
− nπ

2

)
(
n ∈ N\{1}; p ∈ N0; q ∈ N; 0� p � q

)
(53)
with a view to deriving the followingcomplementof (50) for ξ ∈ Z:
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tails

e’s
nan
g

B(α)
n

(
p

q

)
= B(α−1)

n + n

(
p

q
− 1

2

)
B

(α−1)
n−1

−
n∑

k=2

2 · k!
(2qπ)k

(
n

k

)
B

(α−1)
n−k

q∑
j=1

ζ

(
k,

j

q

)
cos

(
2jpπ

q
− kπ

2

)
(
n ∈ N\{1}; p ∈ N0; q ∈ N; 0� p � q

)
. � (54)

4. Miscellaneous results

The following further properties of the Apostol–Bernoulli polynomialsB(α)
n (x;λ) of

orderα are readily derived from Definition 2. We, therefore, choose to omit the de
involved.

Theorem 3. Letn ∈ N0. Suppose also thatα andλ are suitable(real or complex) parame-
ters. Then

B(α)
n (x;λ) =

n∑
k=0

(
n

k

)
B(α)

k (λ)xn−k and B(0)
n (x;λ) = xn, (55)

λB(α)
n (x + 1;λ) −B(α)

n (x;λ) = nB(α−1)
n−1 (x;λ), (56)

∂

∂x
B(α)

n (x;λ) = nB(α)
n−1(x;λ), (57)

b∫
a

B(α)
n (x;λ)dx = B(α)

n+1(b;λ) −B(α)
n+1(a;λ)

n + 1
, (58)

B(α+β)
n (x + y;λ) =

n∑
k=0

(
n

k

)
B(α)

k (x;λ)B(β)
n−k(y;λ), (59)

B(α)
n (α − x;λ) = (−1)n

λα
B(α)

n

(
x;λ−1), (60)

B(α)
n (α + x;λ) = (−1)n

λα
B(α)

n

(−x;λ−1), (61)

nxB(α)
n−1(x;λ) = (n − α)B(α)

n (x;λ) + αλB(α+1)
n (x + 1;λ), and (62)

B(α+1)
n (x;λ) =

(
1− n

α

)
B(α)

n (x;λ) + n

(
x

α
− 1

)
B(α)

n−1(x;λ). (63)
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[5] D. Cvijović, J. Klinowski, New formulae for the Bernoulli and Euler polynomials at rational argum

Proc. Amer. Math. Soc. 123 (1995) 1527–1535.
[6] Q.-M. Luo, On the Apostol–Bernoulli polynomials, Central European J. Math. 2 (2004) 509–515.
[7] Q.-M. Luo, Apostol–Euler polynomials of higher order and the Gaussian hypergeometric function

wanese J. Math., in press.
[8] N.E. Nörlund, Vorlesungen über Differentzenrechnung, Springer-Verlag, Berlin, 1924; Reprinte

Chelsea, Bronx, New York, 1954.
[9] H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math

Cambridge Philos. Soc. 129 (2000) 77–84.
[10] H.M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Aca

Dordrecht, 2001.
[11] H.M. Srivastava, P.G. Todorov, An explicit formula for the generalized Bernoulli polynomials, J. M

Anal. Appl. 130 (1988) 509–513.
[12] P.G. Todorov, Une formule simple explicite des nombres de Bernoulli généralisés, C. R. Acad. Sc
Sér. I Math. 301 (1985) 665–666.


