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A b s t r a c t - - R e c e n t l y ,  Srivastava and Pint4r [1] investigated several interesting properties and re- 
lationships involving the classical as well as the generalized (or higher-order) Bernoulli and Euler 
polynomials. They also showed (among other things) tha t  the main relationship (proven earlier by 
Cheon [2]) can easily be put in a much more general setting. The main object of the present sequel 
to these earlier works is to derive several general properties and relationships involving the Apostol- 
Bernoulli and Apostol-Euler polynomials. Some of these general results can indeed be suitably 
specialized in order to deduce the corresponding properties and relationships involving the (general- 
ized) Bernoulli and (generalized) Euler polynomials. Other relationships associated with the Stifling 
numbers of the second kind are also considered. (~) 2006 Elsevier Ltd. AlL rights reserved. 

K e y w o r d s - - B e r n o u l l i  polynomials and numbers, Euler polynomials and numbers, Generalized 
(or higher-order) Bernoulli polynomials and numbers, Generalized (or higher-order) Euler polyno- 
mials and numbers, Apostol-Bernoulli polynomials and numbers, Apostol-Euler polynomials and 
numbers, Generalized Apostol-Bernoulli polynomials and numbers, Generalized ApostoI-Euler poly- 
nomials and numbers, Stirling numbers of the second kind, Generating functions, Srivastava-Pint~r 
addition theorems, Recursion formulas. 

1. I N T R O D U C T I O N  

T h e  generalized Bernoulli polynomials B (~) (x) of order ~ a n d  t h e  generalized Euler polynomials 

E(n ~) (x) of order (~, each  of  deg ree  n in  x as  well  as  in  ~,  a re  de f ined  b y  m e a n s  of  t h e  fo l lowing 

g e n e r a t i n g  f u n c t i o n s  (see, for de ta i l s ,  [3, p. 253 et seq.; 4, Sec t ion  2.8; 5, S e c t i o n  1.6]): 

• e xt = B(~a)(x (It[ < 2 , ;  I a :-- 1) (1) 
n.  

n=0 
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and 

= ~ (N < 7r; 1 ~ := 1), (2) 

respectively. 
Clearly, the corresponding generalized Bernoulli numbers B(~ ~) of order a and the generalized 

Euler numbers E(n ~1 of order a are given by 

B(:) = B(:)  (0) and (3) 

Also, the classical Bernoulli polynomials BE(x) and the classical ruler polynomials En(x) are 
given by 

B,~(x) := B(nl)(x) and En(x):= E(nl)(x) (n 6 No), (4) 

respectively, N being (as usual) the set of positive integers. 
Moreover, the classical Bernoulli numbers Bn and the classical Euler numbers En are given by 

1 B E ( l ) ( n  E N0) (5) Bn := S(~ 1) = BE(O) = (-1)nBn(1) - 21_n---------Z~ 

and 

E n : = E ( 1 ) = 2 n E n ( 1 )  (nEN0),  (6) 

respectively. From the generating functions (1) and (2), it is easily seen that 

B(°)(x) = E(°)(x) = x n (n e No). (7) 

Numerous interesting (and useful) properties and relationships involving each of these poly- 
nomials and numbers can be found in many books and tables on this subject (for example, 
see [5-10]). 

Recently, by making use of some fairly standard techniques based upon series rearrangement, 
Srivastava and Pint~r [1] derived each of the following elegant theorems (cf. [1, Theorem 1, p. 379; 
Theorem 2, p. 380]). 

THEOREM A. (See, [1, Theorem 1, p. 379].) The following relationship: 

k = 0  

holds true between the generalized Bernoulli polynomials and the classical Euler polynomials. 

THEOREM B. (See [1, Theorem 2, p. 380].) The following relationship: 

~-2~ 2 ( k ) [  D ( y ) ( + ) l ( Y ) ] B n _ k ( x  ) ( a E C ;  nEN0)  E(~)(x + y) = ~ - ~  E(+-I - S (9) 
k = 0  

holds true between the generalized Euler polynomiMs and the classical Bernoulli polynomials. 
Upon setting a = 1 in assertion (8) of Theorem A, if we let y ~ 0 and make use of (7), we can 

deduce the aforementioned main relationship in Cheon's work (cf., [2, p. 368, Theorem 3]), 

k = 0  
(k~l) 

just as it was accomplished by Srivastava and Pint~r [1, p. 379]. 
In Section 2 of the present paper, we propose to prove some properties and relationships in- 

volving the generalized Apostol-Bernoulli polynomials (see, for details, [11]) and the generalized 
Apostol-Euler polynomials (see, for details, [12]). In Section 3, we shall consider some interest- 
ing generalizations and analogues of the Srivastava-Pint~r addition theorems (Theorem A and 
Theorem B above). Finally, in Section 4, we derive some explicit representations of these general 
families of Apostol-Bernoulli and Apostol-Euler polynomials in terms of the Stirling numbers of 
the second kind. 



Some Relationships 633 

2. P R O P E R T I E S  A N D  R E L A T I O N S H I P S  
I N V O L V I N G  T H E  G E N E R A L I Z E D  

A P O S T O L - B E R N O U L L I  P O L Y N O M I A L S  
A N D  T H E  G E N E R A L I Z E D  

A P O S T O L - E U L E R  P O L Y N O M I A L S  

For arbitrary real or complex parameters (~ and ),, the generalized Apostol-Bevnoulli polyno- 
mials f~(a)(x; A) (see, for details, [11]) and the generalized Apostol-Euler polynomials ~(~)(x; ~) 
(see, for details, [12]) are defined by means of the following generating functions: 

t .e xt = y ~ ( ~ ) ( x ; A ) ~  (It +logAI < 27r; 1 ~ :-- 1) (11) 
~et - 1 

"n~O 

and 
) ,~ oo tn 2 

• e *t = __~-~ ~ ( a ) ( z ;  A)~.~ (]2t + logAI < 7r; 1 ~ : =  1), (12)  
Aet + 1 

r t~0  

respectively• 
Clearly, the corresponding generalized Apostol-BernouUi numbers ~(a)(A) and the generalized 

Apostol-Euler numbers ~(~)()~) are given by 

~(a)(A) := fl~(a)(0;~) and ~(a)(A):= 2n~(~ a) (~ ;A)  (n E No), (13) 

respectively. The  so-called Apostol-Bernoulli polynomials ~n(X; A) (see, for details, [13, pp. 161- 
167] and [5, pp. 126-127]) and the so-called Apostol-Euler polynomials ~n(X; A) are given by 

f~n(x;)~):=f~O)(x;)~) and ~n(x;A):=eO)(x;)~) (nEN0;  XEC) ,  (14) 

respectively• Furthermore, the corresponding Apostol-Bernoulli numbers ~n(A) and the Apostol- 
Euler numbers ~n( A ) are given by 

= 2  = ~ n ( ~ 2 ) + ~  ;~2 (n e N0) 

(15) 

and 

~n(A):=2n~n(2;A ) (n E N0), (16) 

respectively. 
Obviously, when A --- 1 in (11) to (16), we readily arrive at the corresponding well-known forms 

given by (1) to (6). 
Moreover, it can be deduced from the generating functions (11) and (12) that (see also [11,12]) 

k ,17, 

k=O 

-{/ , ( i s )  

k=O 

~,~)  (,~ _ :~; ~,1 = ( - 1 ) "  ~ (# )  (x; ; , -1)  (19) 
)~a 
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~'~) (a - x; A) = (-11'~ ~('~) (x; A -1) 

k----O 

~ . - k  (Y; ~). 
k=0 

From the generating functions (11) and (12), it follows also tha t  (see [11,12]): 

)~ ( a ) (x  + 1; A) - ~('~) (x; A) = n~n-i"'("-l)'(,x; A) 

and 

respectively. Now, since 

)~e(~)(x + 1; ~) + e(na)(x; A) = 2e('~-H (x; A), 

~ 0 ) ( z ;  ~) = e~ °)(x; ~) = x" (n • No), 

(20) 

upon setting/3 = 0 in addition theorems (21) and (22), if we interchange x and y, we obtain 

k=o \ k )  k ,~,'~) z ' - k  

and 

~ = o \ k )  k , 

respectively. 
Next, by combining (23) and (26) (with x = 1 and y ,  , x), we find that  

(21) 

(22) 

(23) 

(24) 

in series of the Apostol-Bernoulli polynomials {~B,~(x; A)}~= 0. 
In the special case of (29) when A = 1, we obtain the following familiar expansion (cf., e.g.. 

[10, p. 26]): 

n +-"'-1 k Bk(z) (n • N0) (30) 
k=0 

in series of the classical Bernoulli polynomials {Bn (x)}~=0. 

which, in the special case when a = 1, yields the following expansion: 

n + l  k k ~ , 

(27) 

(26) 

(2a) 
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In precisely the same manner, the addition theorem (27) in conjunction with (24) would lead 
us to the following companions of (28) and (29): 

= ~k (z; ~) + 
k = 0  

(n E No) (31) 

and 

x = = l  [ A ~ ( n )  k=O k (n E No). (32) 

In view of (25), this last expansion (32) in series of the Apostol-Euler polynomials {~n(z; A)}~=o 
is indeed an immediate consequence of (31) when a = 1. 

By using (11) (with a = 1) and (12) (with a = 1), we have 

~ te xt t/2 2e xt 
w~o ~n(x;A2) - A2e t - 1  = Aet /2-1  Ae t/2 +1 

oo tn ~ tn 
= 2-" n 2- en (2x;  

rt=O rt=O 

= 2 - "  - 
n = O  n !  ' 

which yields the following relationship between the Apostol-Bernoulli and Apostol-Euler polyno- 
mials: 

~n(X; A 2) = 2 -n Z ~n-k(A)~k(2x; A) (33) 
k=O 

or, equivalently, 

= ~ ( ) ~ ) ~ n _ k ( z ; . ~ ) .  
k=0 k 

(34) 

If we set A = 1 in (33) and (34), we find the corresponding familiar relationship between the 
classical Bernoulli and the classical Euler polynomials as follows [1, p. 376, equations (10),(11)] 
(see also [6, p. 806, Entry (23.1.29); 5, p. 66, equation (63)]: 

Bn(x) = 2 -n ~ Sn-kEk(2x) 
k=O 

(35) 

or, equivalently, 

2nBn = BkEn-k(x). 
k=o k 

(36) 

By applying similar arguments, it is not difficult to get the following explicit representation for 
the Apostol-Euler polynomials ~n (x; A) in terms of the Apostol-Bernoulli polynomials ~,~(x; A): 

=- -n  A~n ;A 2 - - ~ n  2; A2 (37) 
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or, equivalently, 

(38) 
n k 

By setting A = 1 in (37) and (38), we deduce the corresponding well-known relationship between 
the classical Bernoulli and the classical Euler polynomials as given below [1, p. 377, equation (14)] 
(see also [6, p. 806, Entry (23.1.27); 5, p. 65, equation 1.6 (60)]: 

- -  U n  - B n  ( 3 9 )  E ~ - l ( x )  = n 

or, equivalently, 

E ~ _ l ( x )  = ~ 

In addition, from the relationships (37) (with x = 0) and (38) (with x = 0), we find that 

( ~ )  = .2 - n - l ~  '^ A). (41) A~n ;A 2 2-n~n(A) + n "~n-x~U; 

Thus, by substituting for ~n-l(0; A) from (38) (with x = 0) into (41), we obtain the above- 
asserted relationship (15), that is, 

iB,+(A) =2 n-1 [93n(A2)+ AiB~ (~;A2)] (hE No). (42) 

For numerous other properties and relationships involving the (ordinary as well as generalized) 
Apostol-Bernoulli and the (ordinary as well as generalized) Apostol-Euler polynomials, see the 
recent works [5,11-14]. 

3. GENERALIZATIONS AND 
ANALOGUES OF THE 

SRIVASTAVA-PINTER ADDITION THEOREMS 

Making use of some known formulas and identities given in Section 2, we now prove an inter- 
esting generalization of the Srivastava-Pintdr addition theorem (8), which is given by Theorem I 
below. 

THEOREM 1. The [ollowing relationship: 

k=O 
(c~, A + C; n + No) 

holds true between the generalized Apostol-Bernoulli polynomials and the Apostol-Euler poly- 
nomials. 

PROOF. First of all, if we substitute from (32) into the right-hand side of (26), we get 

++ [ ] 1 (n'~m(a) ( x ; A ) + A Z  n - k  ~j(x;A) 
k=o ~=o J 

1 ['n'~m(a) (y; A) ~._+ (x; A) (44) = ~ \k++]+~ 
k=O 

+2k=o\k)~k (U;~)j=o J e~(x;~), 
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which, upon inverting the order of summation and using the following elementary combinatorial 
identity: 

yields 
1 

k=O 
(46) 

A n - - j  . 

j=0 k=0 

The innermost sum in (46) can be evaluated by means of (26) with, of course, 

x = l  and n, > n - j  ( 0 ~ j ~ n ;  n, j E N 0 ) .  

Thus, we find from (46) that 

1 n n ~(a) Y; 
~(n~)(x +y ; )~ )=  ~ ~ ( k )  k (~)~.n-k(X;)~) 

(47) 

+~_ ~2~ ( j )  ,~_j(u + 1; 

j=o 

or, equivalently, that 

which, in light of the recurrence relation (23), leads us at once to the relationship (43) asserted 
by Theorem 1. 

REMARK 1. By setting )~ = 1 in Theorem 1, we readily obtain the Srivastava-Pint~r addition 
Theorem 8 as asserted by Theorem A. 

REMARK 2. In terms of the generalized Apostol-Bernoulli numbers {~(na)(A)}~=0, by setting 
y = 0 in Theorem 1, we obtain the following special case: 

c; 
k=O 

Since, by the definition (11), 

1 
B1 := ~1(1) = - 2  and ~(n°)(A) = 6n,0 (n e No), (50) 

~m,n being the Kronecker symbol, a further special case of (49), when a = 1, would yield the 
following new relationship between the ApostoloBernoulli polynomials and the Apostol-Euler 
polynomials: 

~3n(X;A)= k fBk(A)~n-k(X;A)+n ~ I ( A ) +  ffn-l(X;A) ( A e C ;  nENo) .  (51) 
k=O 

(k~) 
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In view of (50), Cheon's main result (10) would follow also from (51) for A = 1. When A # 1, 
by using the following special values of the Apostol-Bernoulli numbers ~n(A) (see [5, p. 126, 
equation 2.5 (46)]: 

1 
~ 0 ( A ) = 0  and ~ I ( A ) : A _ I  

we find ~om (51) that 

(A • C \  {1}), (52) 

,53, 
k = l  

REMARK 3. Alternatively, in view of (25), the assertion (43) of Theorem 1 gives us the following 
relationship between the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials when 
a = l :  

k=O 

which, upon letting A = 1 and y --~ 0, yields Cheon's main result (10) once again. 

Next, by appealing instead to (27) and (29), our demonstration of Theorem 1 can be applied 
mutatis mutandis in order to derive an interesting analogue of the Srivastava-Pint~r addition 
formula (9), which is given by Theorem 2 below. 

THEOREM 2. The &flowing relationship: 

(55) 
k :O  

(a, ,~ e C; n • No) 

holds true between the generalized Apostol-Euler polynomials and the Apostol-Bernoulli poly- 
nomials. 

REMARK 4. By setting A = 1 in Theorem 2, we get the Srivastava-Pint~r addition formula (9) 
as asserted by Theorem B. 

REMARK 5. In light of (25), a special case of assertion (25) of Theorem 2 when a = 1 gives us 
the following relationship: 

~=o k + 1 \ k ]  - ek+l (Y; A)] ~ n - k  (z; A) (n • N0), (56) 

which, for y = 0, yields 

e . (x;~)  : -  ~ ek+~(0;~)~.-k(x;~)  (n • NO). (57) 
k=0 

Moreover, by setting A = 1 in (57), we obtain the Srivastava-Pint6r formula given below (see [1, 
p. 380, Equation (40)]): 

En(x) = . ~ Ek+l(O)Sn-k(x) (n • No). (58) 
k=0 

Relationship (57) between the Apostol-Euler polynomials and the Apostol-Bernoulli polyno- 
mials is evidently analogous to the equivalent relationships (33) and (51). From (20) (with ~ = 1 
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a n d x - - 1 )  and (38) ( w i t h x - - O a n d n ,  > n + l ) , w e o b t a i n  

~n(0;~)_(-1)n ( ~ )  2 
~n 1; = n + l  [~n+l( 'k)-2n+l~Bn+l(A2)] (59) 

(n e 1~). 

Thus, in view of (59), the relationship (57) can be rewritten in the following equivalent form: 

(:) e~_2(x; ~) = 2 [2n-k~ . -k (~  2) - ~n-k(~)]  ~k(x; ~) (60) 
k=0 

(n • N \  {1}). 

By putting 2 = I in (60), it is easy to derive 

n - I  n-2 

(n • N \ {1)), 

which incidentally is a known result recorded by (for example) Srivastava and Pint6r [1, p. 380, 
Equation (42); 6, p. 806, Entry (23.1.28)] (see also [10, p. 29]). 

REMARK 6. By setting y = 0 and A = 1 in Theorem 2, we get the following relationship between 
the generalized Euler polynomials and the classical Bernoulli polynomials: 

k=O ~ (62) 

(~ • C; n • No), 

which, in the special case when c~ -- 1, yields the Srivastava-Pint4r formula (58) once again. 

REMARK 7. By letting x = 0 and y ,  > x in Theorem 2, appealing to the first formula in (13), 
we find the following relationship between the generalized Apostol-Euler polynomials and the 
Apostol-Bernoulli numbers: 

(63) k=O 

(a, ~ • C; n • No), 

o~ 
which, for x -= ~ and in conjunction with second formula in (13), yields the following relationship 

between the generalized Apostol-Euler numbers and the Apostol-Bernoulli numbers: 

n 2n_ k i n  \ = ( , . j  r2,<+,,,,<<:,-', 

(o~,)~ • C; n • No). 

Furthermore, by setting ~ = 1 and A = 1 in (64), we get the following relationship between the 
classical Euler numbers and the classical Bernoulli numbers: 

En = ~ k (1 - E k + l ) S n - k  (n • N0), (65) 
k=O 
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which is, in fact, the same as a known result given by (cf. [5, p. 61, Equation (18)]) 

4n-k (2n~ B 
~=o~k+lk2k ) ~_~=1 (nero) 

or, equivalently, by 

22kB2k 1 

k=O (2k)!(~n--- 2-k + 1)! - (2n)! 

(06) 

4. F O R M U L A S  I N V O L V I N G  
T H E  S T I R L I N G  N U M B E R S  

O F  T H E  S E C O N D  K I N D  

Apostol [13] not only gave elementary properties of the so-called Apostol-Bernoulli polynomials 
~n(x, A), but also obtained the following recursion formulas for the so-called Apostol-Bernoulli 
numbers ~n(A) (see [13, p. 166, Equation (3.7)]): 

"-~ k!(-)Ok S(n ~n(A) = n  E (A-- 1 ~ '  - 1 ,  k) 
k = 0  

( A • C \ { 1 } ;  n • N 0 ) .  (68) 

Luo and Srivastava [11] established substantially more general recursion formulas for the gener- 
alized Apostol-Bernoulli polynomials ~on~(0"(x; A) (l • No) and the generalized Apostol-Bernoulli 
numbers ~B(L)f), ~ , ~  ~ j (l • M0) as follows (see [11, Equations (27),(30)]): 

~)(x;~) = l! x n - k ~  z + j - 1  
k=l j =o 3 

j!(-~)J 
• (A - 1)J +/ S(k - l, j )  (~, e c \  {I}; ,~,z • No) 

(69) 

and 

~B~)(A)=l!(?) ~ ( l + k - 1 )  kl(-A)k S(n-l,k) 
k=o k ( ; - - 1 T  e 

(~ e c \ {1}; n, z e No). (70) 

Luo [12], on the other hand, obtained the following general recursion formulas for the generalized 
Apostol-Euler polynomials ~(a)(x; A) and the generalized Apostol-Euler numbers ~(n a) (A) (see 
[12, equations (20),(29)]): 

n k " - 1 )  

k=O " " j = O  

( ~ , A • C ;  n • N 0 )  (71) 

and 

e~/(: , )=(_l) .  2 k + ~ , , _ ~  ~ + j - 1  j!(-:,p 
k=o j=o J (,X + 1)~+~ S'(k, j) 

(a, ~ • C; n • No). 

(72) 

(n E No). (67) 
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Here, and in what follows, S(n ,  k) denotes the Stifling numbers of the second kind, which are 
defined by (see [7, p. 207, Theorem B]) 

k=0 
(73) 

so that 

n )  (74) S(n,  0 )=~n ,0 ,  S(n,  1) S ( n , n ) = l ,  and S ( n , n - 1 ) =  2 ' 

5m,n being the Kronecker symbol (see also [5, p. 58, equation (25) et seq.]). 
Finally, we give an addition formula for each of the generalized Apostol-Bernoulli and the 

generalized Apostol-Euler polynomials.  Indeed, from the addition theorems (26) and (27) in 
conjunction with (73), we can deduce the addition formulas asserted by Theorem 3 below (see 
also [15]). 

THEOREM 3. The following relationships: 

fl~(a)(x + y; A) = k! fSj ( y , A ) S ( n - j , k )  
k=0 ~=0 J 

(75) 

and 

e(n~)(x + y; A) = k! e ~ a ) ( y ; A ) S ( n - j , k )  
k=o 2 

(a, A e C; n e No) (76) 

hold true between the generalized Aposto1-Bernoulli polynomials, the generalized Apostol-Euler 
polynomiMs, and the Stifling numbers of  the second kind. 

REMARK 8. By setting A = 1 in (75) and (76), it is easy to deduce the following interesting 
consequences of Theorem 3: 

k • BJ 
k=0  j=O 

(a ~ C; n e N0) (77) 

and 

for the generalized Bernoulli polynomials and the generalized Euler polynomials of order a. 
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