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Abstract. Carlitz firstly defined the q-Bernoulli and q-Euler polynomials [Duke Math. J., 15 (1948), 987–
1000]. Recently, M. Cenkci and M. Can [Adv. Stud. Contemp. Math., 12 (2006), 213–223], J. Choi, P. J. Anderson
and H. M. Srivastava [ Appl. Math. Comput., 199 (2008), 723–737] further defined the q-Apostol-Bernoulli
and q-Apostol-Euler polynomials. In this paper, we show the generating functions and basic properties
of the q-Apostol-Bernoulli and q-Apostol-Euler polynomials, and obtain some relationships between the
q-Apostol-Bernoulli and q-Apostol-Euler polynomials which are the corresponding q-extensions of some
known results. Some formulas in series of q-Stirling numbers of the second kind are also considered.

1. Introduction, definitions and motivation

Throughout this paper, we always make use of the following notations: N = {1, 2, 3, . . .} denotes the
set of natural numbers, N0 = {0, 1, 2, 3, . . .} denotes the set of nonnegative integers, Z denotes the set of
integers, C denotes the set of complex numbers.

The falling and rising factorial are defined by

{n}0 = 1, {n}k = n(n − 1) · · · (n − k + 1),
(n)0 = 1, (n)k = n(n + 1) · · · (n + k − 1) (n, k ∈N),

respectively.
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The q-shifted factorial are defined by

(a; q)0 = 1, (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) =
n−1∏
k=0

(1 − aqk) (n ∈N),

(a; q)∞ = (1 − a)(1 − aq) · · · (1 − aqn) · · · =
∞∏

k=0

(1 − aqk) (|q| < 1; a, q ∈ C).

Clearly,

(a; q)k =
(a; q)∞

(aqk; q)∞
.

The q-numbers, q-numbers factorial and q-numbers shifted factorial are defined by

[a]q =
1 − qa

1 − q
(q , 1); [0]q! = 1, [n]q! = [1]q[2]q · · · [n]q (n ∈N);

([a]q)n = [a]q[a + 1]q · · · [a + n − 1]q (n ∈N, a ∈ C)

respectively. Clearly,
lim
q→1

[a]q = a, lim
q→1

[n]q! = n!, lim
q→1

([a]q)n = (a)n.

The q-binomial theorem

∞∑
n=0

(a; q)n

(q; q)n
zn =

(az; q)∞
(z; q)∞

(z, q ∈ C; |z| < 1,
∣∣∣q∣∣∣ < 1). (1.1)

When a = qα (α ∈ C), then the formula (1.1) becomes the following form:

1
(z; q)α

=
(qαz; q)∞
(z; q)∞

=

∞∑
n=0

(qα; q)n

(q; q)n
zn :=

∞∑
n=0

([α]q)n

[n]q!
zn (1.2)

(z, q, α ∈ C; |z| < 1,
∣∣∣q∣∣∣ < 1).

The above q-standard notations can be found in [1] and [14].
Some interesting extensions of the classical Bernoulli polynomials and numbers were first investigated

by Apostol [2, p. 165, Eq. (3.1)] and (more recently) by Srivastava [35, p. 83-84]. We begin by recalling here
the Apostol’s definitions as follows:

Definition 1.1 (Apostol [2]; see also Srivastava [35]). The Apostol-Bernoulli polynomials Bn(x;λ) in x are de-
fined by means of the generating function

text

λet − 1
=

∞∑
n=0

Bn(x;λ)
tn

n!
(1.3)

(|t| < 2π when λ = 1; |t| <
∣∣∣logλ

∣∣∣ when λ , 1)

with, of course,

Bn(x) = Bn(x; 1) and Bn (λ) := Bn (0;λ) , (1.4)

where Bn (λ) denotes the so-called Apostol-Bernoulli numbers (in fact, it is a function in λ).

Recently, Luo and Srivastava further extended the Apostol-Bernoulli polynomials and Apostol-Euler
polynomials as follows (for convenience , we also say the Apostol-type polynomials):
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Definition 1.2 (cf. Luo and Srivastava [26]). The Apostol-Bernoulli polynomials B(α)
n (x;λ) of higher order in x

are defined by means of the generating function:( t
λet − 1

)α
ext =

∞∑
n=0

B(α)
n (x;λ)

tn

n!
(1.5)

(|t| < 2π when λ = 1; |t| <
∣∣∣logλ

∣∣∣ when λ , 1),

with, of course,

B(α)
n (x) := B(α)

n (x; 1) and B(α)
n (λ) := B(α)

n (0;λ) ,

Bn (x;λ) := B(1)
n (x;λ) and Bn (λ) := B(1)

n (λ) ,
(1.6)

where Bn (λ), B(α)
n (λ) ,Bn (x;λ) and B(α)

n (x) denote the so-called Apostol-Bernoulli numbers, Apostol-Bernoulli
numbers of higher order (in fact, they are the functions inλ), Apostol-Bernoulli polynomials and Bernoulli polynomials
of higher order respectively.

Remark 1.3. When λ , 1 in (1.5), the order α should tacitly be restricted to nonnegative integer values.

Definition 1.4 (cf. Luo [16]). The Apostol-Euler polynomials E(α)
n (x;λ) of higher order in x are defined by means

of the generating function:( 2
λet + 1

)α
ext =

∞∑
n=0

E(α)
n (x;λ)

tn

n!

(
|t| <

∣∣∣log(−λ)
∣∣∣) , (1.7)

with, of course,

E(α)
n (x) := E(α)

n (x; 1) and E(α)
n (λ) := 2nE(α)

n

(
α
2

;λ
)
,

En (x;λ) := E(1)
n (x;λ) and En(λ) := 2nEn

(1
2

;λ
)
,

(1.8)

where En (λ), E(α)
n (λ) ,En (x;λ) and E(α)

n (x) (n ∈ N0) denote the so-called Apostol-Euler numbers, Apostol-Euler
numbers of higher order (in fact, they are the functions in λ), Apostol-Euler polynomials and Euler polynomials of
higher order respectively.

1948, Carlitz firstly extended the classical Bernoulli and Euler numbers and polynomials (of higher
order) as the q-Bernoulli and q-Euler numbers and polynomials (of higher order)(see, [5–7]).

Recently, Cenkci and Can [9] further defined the q-extensions of Apostol-Bernoulli numbers and poly-
nomials. Subsequently, J. Choi, P. J. Anderson and H. M. Srivastava [11] gave the following q-extensions of
Apostol-Bernoulli and Apostol-Euler polynomials of higher order:

Definition 1.5. For q, α, λ ∈ C; |q| < 1, the q-Apostol-Bernoulli numbers and polynomials of higher order in qx are
respectively defined by means of the generating function

U(α)
λ;q(t) = (−t)α

∞∑
n=0

([α]q)n

[n]q!
λnqne[n]qt =

∞∑
n=0

B(α)
n;q(λ)

tn

n!
, (1.9)

U(α)
x;λ;q(t) = (−t)α

∞∑
n=0

([α]q)n

[n]q!
λnqn+xe[n+x]qt =

∞∑
n=0

B(α)
n;q(x;λ)

tn

n!
. (1.10)

Obviously, we have

B(α)
n;q(λ) = B(α)

n;q (0;λ) , B(α)
n;q = B(α)

n;q (0) ,

lim
q→1
B(α)

n;q(x;λ) = B(α)
n (x;λ), lim

q→1
B(α)

n;q(x) = B(α)
n (x), lim

q→1
B(α)

n;q = B(α)
n ,
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where B(α)
n;q := B(α)

n;q(1) and B(α)
n;q(x) := B(α)

n;q(x; 1) denote the q-Bernoulli numbers and polynomials of higher order
respectively; Bn;q := B(1)

n;q and Bn;q(x) := B(1)
n;q(x) denote the q-Bernoulli numbers and polynomials respectively.

Definition 1.6. For q, α, λ ∈ C; |q| < 1, the q-Apostol-Euler numbers and polynomials of higher order in qx are
respectively defined by means of the generating function

V(α)
λ;q(t) = 2α

∞∑
n=0

([α]q)n

[n]q!
(−λ)nqn+ α2 e2[n+ α2 ]qt =

∞∑
n=0

E(α)
n;q(λ)

tn

n!
, (1.11)

V(α)
x;λ;q(t) = 2α

∞∑
n=0

([α]q)n

[n]q!
(−λ)nqn+xe[n+x]qt =

∞∑
n=0

E(α)
n;q(x;λ)

tn

n!
. (1.12)

Obviously,

E(α)
n;q(λ) = 2nE(α)

n;q

(
α
2

;λ
)
, E(α)

n;q = 2nE(α)
n;q

(
α
2

)
,

lim
q→1
E(α)

n;q(x;λ) = E(α)
n (x;λ), lim

q→1
E(α)

n;q(x) = E(α)
n (x), lim

q→1
E(α)

n;q = E(α)
n ,

where E(α)
n;q := E(α)

n;q(1) and E(α)
n;q(x) := E(α)

n;q(x; 1) denote q-Euler numbers and polynomials of higher order respectively;
En;q := E(1)

n;q(1) and En;q(x) := E(1)
n;q(x; 1) denote q-Euler numbers and polynomials respectively.

On the subject of the Apostol type polynomials and their various extensions, a remarkably large number
of investigations have appeared in the literature (see [3, 9–12, 15–30, 32–43]; see also the references cited in
each of these works).

Remark 1.7. Throughout this paper, we take the principal value of the logarithm logλ, i.e., logλ = log |λ| +
i argλ (−π < argλ ≤ π) when λ , 1; We choose log 1 = 0 when λ = 1.

The aim of this paper is to derive the generating functions and basic properties of q-Apostol-Bernoulli and
q-Apostol-Euler polynomials of higher order, and to research some relationships between the q-Apostol-
Bernoulli and q-Apostol-Euler polynomials of higher order. We show some q-extensions of some results
of Luo and Srivastava [27] (below Theorem A), Srivastava and Pintér [43] (below Theorem B), Cheon [8]
(below (4.5)). Furthermore, other formulas involving the q-Stirling numbers of the second kind are also
given.

The paper is organized as follows: In the first section we introduce some notation and rewrite some
definitions. In the second section we derive the generating functions of the q-Apostol-Bernoulli and
q-Apostol-Euler polynomials of higher order. In the third section we display the basic properties of q-
Apostol-Bernoulli and q-Apostol-Euler polynomials of higher order. In the fourth section we investigate
some relationships between these q-polynomials based on some fairly standard techniques for series re-
arrangement. In the fifth section we give the formulas in terms of the Carlitz’s q-Stirling numbers of the
second kind. We provide some new and interesting formulas for the Apostol-Bernoulli and Apostol-Euler
polynomials in the sixth section.
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2. The generating functions of q-Apostol-Bernoulli and q-Apostol-Euler polynomials

In the present section, by Definition 1.5 and Definition 1.6 we can derive the generating functions and
the closed formulas for q-Apostol-Bernoulli and q-Apostol-Euler polynomials of higher order in order to
prove some basic properties in Section 3.

By (1.10) and noting that q-binomial theorem (1.2) yields that

U(α)
x;λ;q(t) = (−t)α

∞∑
n=0

([α]q)n

[n]q!
λnqn+xe[n+x]qt

= (−t)αe
t

1−q

∞∑
n=0

([α]q)n

[n]q!
λnqn+xe−

qn+x

1−q t

= (−t)αe
t

1−q

∞∑
k=0

(−1)kq(k+1)x

(1 − q)k

tk

k!

∞∑
n=0

([α]q)n

[n]q!
(λqk+1)n

= (−t)αe
t

1−q

∞∑
k=0

(−1)kq(k+1)x

(λqk+1; q)α

(
1

1 − q

)k tk

k!
.

(2.1)

Therefore, we obtain the generating function of B(α)
n;q(x;λ) as follows:

U(α)
x;λ;q(t) = (−t)αe

t
1−q

∞∑
k=0

(−1)kq(k+1)x

(λqk+1; q)α

(
1

1 − q

)k tk

k!
=

∞∑
n=0

B(α)
n;q(x;λ)

tn

n!
. (2.2)

Clearly, by setting x = 0 in (2.2) we have the generating function of B(α)
n;q(λ):

U(α)
λ;q(t) = (−t)αe

t
1−q

∞∑
k=0

(−1)k

(λqk+1; q)α

(
1

1 − q

)k tk

k!
=

∞∑
n=0

B(α)
n;q(λ)

tn

n!
. (2.3)

When λ = 1 then (2.2) and (2.3) become the generating functions of B(α)
n;q(x) and B(α)

n;q respectively.
Setting α = ℓ ∈N0 in (2.2) and (2.3), via simple calculation, we can get the following closed formulas:

B(ℓ)
n;q(x;λ) =

(−1)ℓ{n}ℓ
(1 − q)n−ℓ

n−ℓ∑
k=0

(
n − ℓ

k

)
(−1)kq(k+1)x

(λqk+1; q)ℓ
(2.4)

and

B(ℓ)
n;q(λ) =

(−1)ℓ{n}ℓ
(1 − q)n−ℓ

n−ℓ∑
k=0

(
n − ℓ

k

)
(−1)k

(λqk+1; q)ℓ
. (2.5)

Remark 2.1. The special cases of (2.4) and (2.5) by putting λ = 1, ℓ = 1 are just the Carlitz’s results (4.7) and
(4.11) of [5, p. 992] respectively.

Similarly, we obtain the following generating functions of q-Apostol-Euler polynomials by using (1.2) and
(1.12).

V(α)
x;λ;q(t) = 2αe

t
1−q

∞∑
k=0

(−1)kq(k+1)x

(−λqk+1; q)α

(
1

1 − q

)k tk

k!
=

∞∑
n=0

E(α)
n;q(x;λ)

tn

n!
. (2.6)

Clearly, by setting x = α2 and t 7→ 2t in (2.6) and noting that E(α)
n;q(λ) = 2nE(α)

n;q(α2 ;λ), we obtain the generating
function of q-Apostol-Euler numbers E(α)

n;q(λ) as follows:

V(α)
λ;q(t) = 2αe

2t
1−q

∞∑
k=0

(−2)kq
(k+1)α

2

(−λqk+1; q)α

(
1

1 − q

)k tk

k!
=

∞∑
n=0

E(α)
n;q(λ)

tn

n!
. (2.7)
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Putting λ = 1 in (2.6) and (2.7), we can deduce the generating functions of E(α)
n;q(x) and E(α)

n;q respectively.
By (2.6) and (2.7), we readily derive the following closed formulas:

E(α)
n;q(x;λ) =

2α

(1 − q)n

n∑
k=0

(
n
k

)
(−1)kq(k+1)x

(−λqk+1; q)α
(2.8)

and

E(α)
n;q(λ) =

2n+α

(1 − q)n

n∑
k=0

(
n
k

)
(−1)kq

(k+1)α
2

(−λqk+1; q)α
. (2.9)

Remark 2.2. The special cases of (2.8) and (2.9) by setting λ = 1, α = 1 are some analogues of Carlitz’s numbers
ϵm and polynomials ϵm(x) in [5, Eqs. (8.14) and (8.17)] respestively.

3. The basic properties of q-Apostol-Bernoulli and q-Apostol-Euler polynomials

The following elementary properties of the q-Apostol-Bernoulli and q-Apostol-Euler polynomials are
readily derived from Definition 1.5 and Definition 1.6. We, therefore, choose to omit the details involved.

Proposition 3.1. For n, ℓ ∈N; α, λ ∈ C,

B(α)
n;q(λ) = B(α)

n;q(0;λ), B(0)
n;q(x;λ) = qx[x]n

q ,

B(α)
0;q(x;λ) = B(α)

0;q(λ) = δα,0, B(ℓ)
n;q(x;λ) = 0 (0 5 n 5 ℓ − 1).

(3.1)

δn,k being the Kronecker’s symbol.

Proposition 3.2. A expansion for the q-Apostol-Bernoulli polynomials of higher order

B(α)
n;q(x;λ) =

n∑
k=0

(
n
k

)
B(α)

k;q (λ)q(k−α+1)x[x]n−k
q . (3.2)

Proposition 3.3 (difference equation).

λqα−1B(α)
n;q(x + 1;λ) − B(α)

n;q(x;λ) = nB(α−1)
n−1;q(x;λ) (n = 1). (3.3)

Proposition 3.4 (differential relationship).

∂

∂x
B(α)

n;q(x;λ) = B(α)
n;q(x;λ) log q + n

log q
q − 1

qxB(α)
n−1;q(x;λq). (3.4)

Proposition 3.5 (addition theorem).

B(α)
n;q(x + y;λ) =

n∑
k=0

(
n
k

)
B(α)

k;q (x;λ)q(k−α+1)y[y]n−k
q . (3.5)

Proposition 3.6 (theorem of complement).

B(ℓ)
n;q(ℓ − x;λ) =

(−1)n

λℓ
qℓ−n−(ℓ2)B(ℓ)

n;q−1 (x;λ−1), (3.6)

B(ℓ)
n;q(ℓ + x;λ) =

(−1)n

λℓ
qℓ−n−(ℓ2)B(ℓ)

n;q−1 (−x;λ−1). (3.7)
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Proposition 3.7 (two recursive formulas).

(n − α)B(α)
n;q(x;λ) = n[x]qB(α)

n−1;q(x;λ) − λ[α]qqxB(α+1)
n;q (x + 1;λ), (3.8)

[α]qqx−αB(α+1)
n;q (x;λ) = n

(
[x]q − [α]qqx−α

)
B(α)

n−1;q(x;λ) + (α − n)B(α)
n;q(x;λ). (3.9)

Proposition 3.8. For n,∈N; α, λ ∈ C,

E(α)
n;q(λ) = 2nE(α)

n;q

(
α
2

;λ
)
, E(0)

n;q(x;λ) = qx[x]n
q ,

E(α)
0;q(λ) =

(2
√

q)α

(−λq; q)α
, E(α)

0;q(x;λ) =
2αqx

(−λq; q)α
.

(3.10)

Proposition 3.9. The formula of the q-Apostol-Euler polynomials of higher order

E(α)
n;q(x;λ) =

n∑
k=0

(
n
k

)
2−kE(α)

k;q (λ)q(k+1)(x− α2 )
[
x − α

2

]n−k

q
. (3.11)

Proposition 3.10 (difference equation).

λqα−1E(α)
n;q(x + 1;λ) + E(α)

n;q(x;λ) = 2E(α−1)
n;q (x;λ) (n = 0). (3.12)

Proposition 3.11 (differential relationship).

∂
∂x
E(α)

n;q(x;λ) = E(α)
n;q(x;λ) log q + n

log q
q − 1

qxE(α)
n−1;q(x;λq). (3.13)

Proposition 3.12 (integral formula).∫ b

a
qxE(α)

n;q(x;λq) dx =
1 − q
n + 1

∫ b

a
E(α)

n+1;q(x;λ) dx +
q − 1
log q

E(α)
n+1;q(b;λ) − E(α)

n+1;q(a;λ)

n + 1
. (3.14)

Proposition 3.13 (addition theorem).

E(α)
n;q(x + y;λ) =

n∑
k=0

(
n
k

)
E(α)

k;q (x;λ)q(k+1)y[y]n−k
q . (3.15)

Proposition 3.14 (theorem of complement).

E(α)
n;q(α − x;λ) =

(−1)n

λαq(α2)+n
E(α)

n;q−1 (x;λ−1), (3.16)

E(α)
n;q(α + x;λ) =

(−1)n

λαq(α2)+n
E(α)

n;q−1 (−x;λ−1). (3.17)

Proposition 3.15 (two recursive formulas).

E(α)
n+1;q(x;λ) = [x]qE(α)

n;q(x;λ) − λ
2

[α]qqxE(α+1)
n;q (x + 1;λ), (3.18)

[α]qqx−αE(α+1)
n;q (x;λ) = 2E(α)

n+1;q(x;λ) + 2
(
[α]qqx−α − [x]q

)
E(α)

n;q(x;λ). (3.19)

Remark 3.16. The Proposition 3.1–Proposition 3.7 are the q-extensions of the basic properties for Apostol-Bernoulli
polynomials of higher order (see, [26, p. 301, Eqs. (55)–(63)]).

When λ = 1, the Proposition 3.1–Proposition 3.7 will become the corresponding properties for the q-Bernoulli
numbers and polynomials of higher order.

When λ = 1, α = 1 or ℓ = 1, the Proposition 3.1–Proposition 3.7 will become the corresponding basic properties
of Carlitz’s numbers ηm and polynomials ηm(x) in [5, p. 991–993].
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Remark 3.17. The Proposition 3.8–Proposition 3.15 are the q-extensions of the basic properties for Apostol-Euler
polynomials of higher order (see, [16, p. 918–919, Eqs. (3)–(13)]).

Whenλ = 1, the Proposition 3.8–Proposition 3.15 will become the corresponding proerties for the q-Euler numbers
and polynomials of higher order.

When λ = 1, α = 1 or ℓ = 1, the Proposition 3.8–Proposition 3.15 will become some analogues of the basic
properties of Carlitz’s numbers ϵm and polynomials ϵm(x) in [5, p. 998–1000].

4. Some explicit relationships between the q-Apostol-Bernoulli and q-Apostol-Euler polynomials of
higher order

In this section we shall investigate some explicit relationships between the q-Apostol-Bernoulli and
q-Apostol-Euler polynomials based on the techniques for series rearrangement.

We now begin by recalling some earlier results of Luo and Srivastava (see, [27]) given by Theorem A
below.

Theorem A. For n ∈N0; α ∈ C; λ ∈ C \ {−1}, the following relationships

B(α)
n (x + y;λ) =

n∑
k=0

(
n
k

) [
B(α)

k (y;λ) +
k
2
B(α−1)

k−1 (y;λ)
]
En−k(x;λ), (4.1)

E(α)
n (x + y;λ) =

n∑
k=0

2
k + 1

(
n
k

) [
E(α−1)

k+1 (y;λ) − E(α)
k+1(y;λ)

]
Bn−k(x;λ)

+
λ − 1
n + 1

( 2
λ + 1

)α
Bn+1(x;λ) (4.2)

hold true.
The special cases of Theorem A for λ = 1 are just the following elegant results of Srivastava and Á.

Pintér [43]:
Theorem B. For n ∈N0; α ∈ C, the following relationships

B(α)
n (x + y) =

n∑
k=0

(
n
k

) [
B(α)

k (y) +
k
2

B(α−1)
k−1 (y)

]
En−k(x), (4.3)

E(α)
n (x + y) =

n∑
k=0

2
k + 1

(
n
k

) [
E(α−1)

k+1 (y) − E(α)
k+1(y)

]
Bn−k(x) (4.4)

hold true.
If further putting α = 1 in (4.3) of Theorem B and then letting y → 0, in view of that B(0)

n (x) = xn and
B1 = − 1

2 , gives us the following Cheon’s main result [8]:

Bn(x) =
n∑

k=0
(k,1)

(
n
k

)
BkEn−k(x) (n ∈N0). (4.5)

In order to obtain the main results of this paper we need the following facts and lemmas.
Taking y = 1 in (3.5), we get

B(α)
n;q(x + 1;λ) =

n∑
k=0

(
n
k

)
qk−α+1B(α)

k;q (x;λ). (4.6)
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It follows from (3.3) and (4.6) that

B(α−1)
n;q (x;λ) =

1
n + 1

λ n+1∑
k=0

(
n + 1

k

)
qkB(α)

k;q (x;λ) − B(α)
n+1;q(x;λ)

 (n ∈N0), (4.7)

which, in the special case when α = 1 and noting that B(0)
n;q(x;λ) = qx[x]n

q , we find the following explicit
expansion:

qx[x]n
q =

1
n + 1

λ n+1∑
k=0

(
n + 1

k

)
qkBk;q(x;λ) − Bn+1;q(x;λ)

 , (4.8)

which is an q-extension of the known expansion [27, p. 634, Eq. (29)]:

xn =
1

n + 1

λ n+1∑
k=0

(
n + 1

k

)
Bk(x;λ) − Bn+1(x;λ)

 . (4.9)

Further, setting λ = 1 in (4.8), we easily obtain the following expansion:

qx[x]n
q =

1
n + 1

 n∑
k=0

(
n + 1

k

)
qkBk;q(x) − (1 − qn+1)Bn+1;q(x)

 , (4.10)

which is an q-extension of the familiar expansion (e.g., [31, p. 26]):

xn =
1

n + 1

n∑
k=0

(
n + 1

k

)
Bk(x). (4.11)

It is obvious that

[my]q = [y]qm [m]q (4.12)

From (3.5) and (4.12) we have

B(α)
n;qm (x + y;λ) =

n∑
k=0

(
n
k

)
qm(k−α+1)yB(α)

k;qm (x;λ)[y]n−k
qm

=[m]−n
q

n∑
k=0

(
n
k

)
qm(k−α+1)y[m]k

qB(α)
k;qm (x;λ)[my]n−k

q .

Upon setting y = 1
m , we obtain the following formula:

n∑
k=0

(
n
k

)
qk−α+1[m]k

qB(α)
k;qm (x;λ) = [m]n

qB(α)
n;qm

(
x +

1
m

;λ
)
. (4.13)

We define the following polynomials in qx:

B(α)
n;qm;y(x + 1;λ) =

n∑
k=0

(
n
k

)
qm(k−α+1)y[m]k

qB(α)
k;qm (x;λ). (4.14)

Clearly, we have

lim
q→1
B(α)

n;qm;y(x + 1;λ) = mnB(α)
n

(
x +

1
m

;λ
)
, (4.15)

B(α)
n;qm; 1

m
(x + 1;λ) = [m]n

qB(α)
n;qm

(
x +

1
m

;λ
)
, (4.16)

B(α)
n;q(x + 1;λ) = B(α)

n;q;1(x + 1;λ), Bn;qm;y(x + 1;λ) = B(1)
n;qm;y(x + 1;λ),

B(α)
n;qm;y(x + 1) = B(α)

n;qm;y(x + 1; 1), Bn;qm;y(x + 1) = Bn;qm;y(x + 1; 1).
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It is easy to see that the equations (4.13) and (4.14) are q-extensions of the equation (see, [27, p. 634, Eq.(26)]
for x←→ y, y = 1

m )

n∑
k=0

(
n
k

)
mkB(α)

k (x;λ) = mnB(α)
n

(
x +

1
m

;λ
)
. (4.17)

The following special values of B(α)
n;qm;y(x;λ) are easily obtained from (4.14) by simple computation.

B(0)
n;qm;y(x;λ) = qm(x+y−1)(1 + qmy[mx −m]q)n, (4.18)

B(α)
0;qm;y(x;λ) = qm(x+y−1)δα,0, B(ℓ)

n;qm;y(x;λ) = 0 (0 5 n 5 ℓ − 1), (4.19)

where δn,k denotes the Kronecker’s symbol.
The polynomials B(α)

n;qm;y(x;λ) satisfies the following difference relationship.

Lemma 4.1. For n = 1,

λqm(α−1)B(α)
n;qm;y(x + 1;λ) − B(α)

n;qm;y(x;λ) = n[m]qB(α−1)
n−1;qm;y(x;λ). (4.20)

Proof. By (4.14) and applying (3.3), we obtain

λqm(α−1)B(α)
n;qm;y(x + 1;λ) − B(α)

n;qm;y(x;λ)

=

n∑
k=0

(
n
k

)
qm(k−α+1)y[m]k

q

[
λqm(α−1)B(α)

k;qm (x;λ) − B(α)
k;qm (x − 1;λ)

]
=

n∑
k=0

k
(
n
k

)
qm(k−α+1)y[m]k

qB(α−1)
k−1;qm (x − 1;λ)

= n
n−1∑
k=0

(
n − 1

k

)
qm(k−α+2)y[m]k+1

q B(α−1)
k;qm (x − 1;λ)

= n[m]qB(α−1)
n−1;qm;y(x − 1;λ).

Hence, the formula (4.20) follows.

On the other hand, if setting y = 1 in (3.15), we have

E(α)
n;q(x + 1;λ) =

n∑
k=0

(
n
k

)
qk+1E(α)

k;q (x;λ). (4.21)

It follows from (3.12) and (4.21) that

E(α−1)
n;q (x;λ) =

1
2

λ n∑
k=0

(
n
k

)
qk+αE(α)

k;q (x;λ) + E(α)
n;q(x;λ)

 (n ∈N0) (4.22)

which, in the special case when α = 1 and noting that E(0)
n;q(x;λ) = qx[x]n

q , we arrive at the following explicit
expansion:

qx[x]n
q =

1
2

λ n∑
k=0

(
n
k

)
qk+1Ek;q(x;λ) + En;q(x;λ)

 , (4.23)
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which is an q-extension of the known expansion (see, [27, p. 635, Eq. (32)])

xn =
1
2

λ n∑
k=0

(
n
k

)
Ek(x;λ) + En(x;λ)

 . (4.24)

Further, setting λ = 1 in (4.23), we easily obtain the following expansion:

qx[x]n
q =

1
2

 n∑
k=0

(
n
k

)
qk+1Ek;q(x) + En;q(x)

 , (4.25)

which is an q-extension of the well-known expansion (e.g., [43, p. 378, Eq. (29)]):

xn =
1
2

 n∑
k=0

(
n
k

)
Ek(x) + En(x)

 . (4.26)

From (3.15) and (4.12) we have

E(α)
n;qm (x + y;λ) =

n∑
k=0

(
n
k

)
qm(k+1)yE(α)

k;qm (x;λ)[y]n−k
qm

=[m]−n
q

n∑
k=0

(
n
k

)
qm(k+1)y[m]k

qE(α)
k;qm (x;λ)[my]n−k

q .

If we set y = 1
m , we obtain the following formula:

n∑
k=0

(
n
k

)
qk+1[m]k

qE(α)
k;qm (x;λ) = [m]n

qE(α)
n;qm

(
x +

1
m

;λ
)
. (4.27)

We define the following polynomials in qx:

E(α)
n;qm;y(x + 1;λ) =

n∑
k=0

(
n
k

)
qm(k+1)y[m]k

qE(α)
k;qm (x;λ). (4.28)

Clearly, we have

lim
q→1
E(α)

n;qm;y(x + 1;λ) = mnE(α)
n

(
x +

1
m

;λ
)
, (4.29)

E(α)
n;qm; 1

m
(x + 1;λ) = [m]n

qE(α)
n;qm

(
x +

1
m

;λ
)
, (4.30)

E(α)
n;q(x + 1;λ) = E(α)

n;q;1(x + 1;λ), En;qm;y(x + 1;λ) = E(1)
n;qm;y(x + 1;λ),

E(α)
n;qm;y(x + 1) = E(α)

n;qm;y(x + 1; 1), En;qm;y(x + 1) = En;qm;y(x + 1; 1).

It is easy to observe that the equations (4.27) and (4.28) are q-extensions of the equation (see, [27, p. 634,
Eq.(27)] for x←→ y, y = 1

m )
n∑

k=0

(
n
k

)
mkE(α)

k (x;λ) = mnE(α)
n

(
x +

1
m

;λ
)
. (4.31)

The following special values of E(α)
n;qm;y(x;λ) are easily obtained from (4.28).

E(0)
n;qm;y(x;λ) = qm(x+y−1)(1 + qmy[mx −m]q)n, (4.32)

E(α)
0;qm;y(x;λ) =

2αqm(x+y−1)

(−λqm; qm)α
. (4.33)
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Similarly, by (3.12) and (4.28) the polynomials E(α)
n;qm;y(x;λ) in qx also satisfy the following difference relation-

ship:

Lemma 4.2. For n = 0,

λqm(α−1)E(α)
n;qm;y(x + 1;λ) + E(α)

n;qm;y(x;λ) = 2E(α−1)
n;qm;y(x;λ). (4.34)

Next, by making use of the above formulas and results, we now prove the following formulas of the
q-Apostol-Bernoulli polynomials of higher order.

Theorem 4.3. For n ∈N0, m ∈N; α, λ ∈ C, the following relationship:

B(α)
n;qm (x + y;λ) =

1
2[m]n

q

n∑
k=0

(
n
k

)[
qm(k−α)y[m]k

qB(α)
k;qm (x;λ)

+ qn−k−m(y+α−1)+1
[
B(α)

k;qm;y(x;λ) + k[m]qB(α−1)
k−1;qm;y(x;λ)

]]
En−k;q(my;λ)

(4.35)

holds true between the q-Apostol-Bernoulli polynomials of higher order and q-Apostol-Euler polynomials.

Proof. First replacing q by qm in (3.5), and then applying the relation (4.12) and making the suitable substi-
tution in (4.23), we obtain

B(α)
n;qm (x + y;λ) =[m]−n

q

n∑
k=0

(
n
k

)
qm(k−α+1)y[m]k

qB(α)
k;qm (x;λ)[my]n−k

q

=
1
2

[m]−n
q

n∑
k=0

(
n
k

)
qm(k−α)y[m]k

qB(α)
k;qm (x;λ)

[
λ

n−k∑
j=0

(
n − k

j

)
q j+1E j;q(my;λ) + En−k;q(my;λ)

]

=
1
2

[m]−n
q

n∑
k=0

(
n
k

)
qm(k−α)y[m]k

qB(α)
k;qm (x;λ)En−k;q(my;λ)

+
1
2
λ[m]−n

q

n∑
k=0

(
n
k

)
qm(k−α)y[m]k

qB(α)
k;qm (x;λ)

n−k∑
j=0

(
n − k

j

)
q j+1E j;q(my;λ)

=
1
2

[m]−n
q

n∑
k=0

(
n
k

)
qm(k−α)y[m]k

qB(α)
k;qm (x;λ)En−k;q(my;λ)

+
1
2
λ[m]−n

q

n∑
j=0

(
n
j

)
q j+1E j;q(my;λ)

n− j∑
k=0

(
n − j

k

)
qm(k−α)y[m]k

qB(α)
k;qm (x;λ)

=
1
2

[m]−n
q

n∑
k=0

(
n
k

)
qm(k−α)y[m]k

qB(α)
k;qm (x;λ)En−k;q(my;λ)

+
1
2
λ[m]−n

q

n∑
k=0

(
n
k

)
qn−k+1En−k;q(my;λ)

k∑
j=0

(
k
j

)
qm( j−α)y[m] j

qB(α)
j;qm (x;λ)

=
1
2

[m]−n
q

n∑
k=0

(
n
k

)[
qm(k−α)y[m]k

qB(α)
k;qm (x;λ) + λqn−k−my+1B(α)

k;qm;y(x + 1;λ)
]
En−k;q(my;λ).

In the above process we have inverted the order of summation and applied the following elementary
combinatorial identity:(

m
l

)(
l
n

)
=

(
m
n

)(
m − n
m − l

)
. (4.36)
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Finally, in light of the difference relationship (4.20) of Lemma 4.1, we obtain the assertion (4.35) at once.
This proof is complete.

In view of the symmetry of x, y in Theorem 4.3, the formula (4.35) can be rewritten in the following form:

B(α)
n;qm (x + y;λ) =

1
2[m]n

q

n∑
k=0

(
n
k

)[
qm(k−α)x[m]k

qB(α)
k;qm (y;λ) + qn−k−m(x+α−1)+1

×
[
B(α)

k;qm;x(y;λ) + k[m]qB(α−1)
k−1;qm;x(y;λ)

]]
En−k;q(mx;λ).

(4.37)

It follows from (4.37) that we give the following corollaries which are the corresponding q-extensions for
some well-known results.

Setting m = 1 in (4.37), we obtain

Corollary 4.4. For n ∈N0; α, λ ∈ C, the following relationship

B(α)
n;q(x + y;λ) =

1
2

n∑
k=0

(
n
k

)[
q(k−α)xB(α)

k;q (y;λ)

+ qn−k−x−α+2
[
B(α)

k;q;x(y;λ) + kB(α−1)
k−1;q;x(y;λ)

]]
En−k;q(x;λ)

(4.38)

holds true.

Obviously, the formula (4.38) when q → 1 reduces to (4.1) of Theorem A. Therefore, the formula (4.38) is
just an q-extension of the main formula (4.1) of Luo and Srivastava [27, p. 636, Theorem 1].

Further, we set y = 0 in (4.38), we deduce that

B(α)
n;q(x;λ) =

1
2

n∑
k=0

(
n
k

)[
q(k−α)xB(α)

k;q (λ)

+ qn−k−x−α+2
[
B(α)

k;q;x(0;λ) + kB(α−1)
k−1;q;x(0;λ)

]]
En−k;q(x;λ),

(4.39)

which is just an q-extension of the formula of Luo and Srivastava (see, [27, p. 637, Eq. (49)]):

B(α)
n (x;λ) =

n∑
k=0

(
n
k

)[
B(α)

k (λ) +
k
2
B(α−1)

k−1 (λ)
]
En−k(x;λ). (4.40)

Putting λ = 1 in (4.37), we have

Corollary 4.5. For n ∈N0, m ∈N; α ∈ C, the following relationship

B(α)
n;qm (x + y) =

1
2[m]n

q

n∑
k=0

(
n
k

)[
qm(k−α)x[m]k

qB(α)
k;qm (y)

+ qn−k−m(x+α−1)+1
[
B(α)

k;qm;x(y) + k[m]qB(α−1)
k−1;qm;x(y)

]]
En−k;q(mx)

(4.41)

holds true between the q-Bernoulli polynomials of higher order and q-Euler polynomials.

In particular, setting λ = 1 in (4.38) or m = 1 in (4.41), we thus arrive at the following corollary.
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Corollary 4.6. [28, p. 249, Theorem 1, Eq. (3.1)] For n ∈N0, α ∈ C, the following relationship

B(α)
n;q(x + y) =

n∑
k=0

(
n
k

)[1
2

q(k−α)xB(α)
k;q (y) +

1
2

qn−k−x−α+2B(α)
k;q;x(y)

+ qn−k−x−α+2 k
2

B(α−1)
k−1;q;x(y)

]
En−k;q(x)

(4.42)

holds true.

It is obvious that the formula (4.42) when q→ 1 reduces to (4.3) of Theorem B. Hence, the formula (4.42) is
indeed an q-extension of the main formula (4.3) of Srivastava and Á. Pintér (see, [43, p. 379, Theorem 1]).

Setting α = 1 in (4.37) and noting that (4.18), we have

Corollary 4.7. For n ∈N0, m ∈N; λ ∈ C, the following relationship

Bn;qm (x + y;λ) =
n∑

k=0

(
n
k

)[1
2

qm(k−1)x[m]k−n
q Bk;qm (y;λ) +

1
2

qn−k−mx+1[m]−n
q Bk;qm;x(y;λ)

+
k
2

[m]1−n
q qn−k−m+my+1(1 + qmx[my −m]q)k−1

]
En−k;q(mx;λ)

(4.43)

holds true between the q-Apostol-Bernoulli polynomials and q-Apostol-Euler polynomials.

Further, putting m = 1 in (4.43), we get

Bn;q(x + y;λ) =
n∑

k=0

(
n
k

)[1
2

q(k−1)xBk;q(y;λ) +
1
2

qn−k−x+1Bk;q;x(y;λ)

+
k
2

qn−k+y(1 + qx[y − 1]q)k−1
]
En−k;q(x;λ),

(4.44)

which is an q-extension of the known formula (see, [27, p. 638, Eq. (54)])

Bn(x + y;λ) =
n∑

k=0

(
n
k

) [
Bk(y;λ) +

k
2

yk−1

]
En−k(x;λ). (4.45)

Letting y→ 0 in (4.44), we obtain

Corollary 4.8. For n ∈N0; λ ∈ C, the following relationship

Bn;q(x;λ) =
n∑

k=0

(
n
k

)[1
2

q(k−1)xBk;q(λ) +
1
2

qn−k−x+1Bk;q;x(0;λ)

+
k
2

qn−k(1 − qx−1)k−1
]
En−k;q(x;λ)

(4.46)

holds true.

When q→ 1, the formula (4.46) reduces to the following form (see, [27, p. 637, Eq. (51)]):

Bn(x;λ) =
n∑

k=0
(k,1)

(
n
k

)
Bk(λ)En−k(x;λ) + n

[
B1(λ) +

1
2

]
En−1(x;λ) (4.47)

(λ ∈ C, n ∈N0).

Therefore, the formula (4.46) is an q-extension of (4.47).
When λ = 1, the formula (4.43) reduces to the following known result:
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Corollary 4.9. [24, p. 11, Eq. (3.1)] For n ∈N0, m ∈N; λ ∈ C, the following relationship

Bn;qm (x + y) =
n∑

k=0

(
n
k

)[1
2

qm(k−1)x[m]k−n
q Bk;qm (y) +

1
2

qn−k−mx+1[m]−n
q Bk;qm;x(y)

+
k
2

[m]1−n
q qn−k−m+my+1(1 + qmx[my −m]q)k−1

]
En−k;q(mx)

(4.48)

holds true between the q-Bernoulli polynomials and q-Euler polynomials.

If we take λ = 1 in (4.46), we have

Corollary 4.10. [24, p. 13, Eq. (3.8)] For n ∈N0, the following relationship

Bn;q(x) =
n∑

k=0

(
n
k

)[1
2

q(k−1)xBk;q +
1
2

qn−k−x+1Bk;q;x(0) +
k
2

qn−k(1 − qx−1)k−1
]
En−k;q(x) (4.49)

holds true between the q-Bernoulli polynomials and q-Euler polynomials.

It is easy to verify that the formula (4.49) is an q-extension of the Cheon’s main result (4.5) (see, [8, p. 368,
Theorem 3]).

In the same manner, we can obtain the following theorem.

Theorem 4.11. For n ∈N0, m ∈N; α ∈ C, λ ∈ C \ {−1}, the following relationship

E(α)
n;qm (x + y;λ) =[m]−n

q

n∑
k=0

1
k + 1

(
n
k

)[
qn−k−m(x+α−1)

[
2E(α−1)

k+1;qm;x(y;λ) − E(α)
k+1;qm;x(y;λ)

]
− [m]k+1

q qm(k+1)xE(α)
k+1;qm (y;λ)

]
Bn−k;q(mx;λ) +

2αqmy(λqn+1 − 1)
(n + 1)[m]n

q (−λqm; qm)α
Bn+1;q(mx;λ)

(4.50)

holds true between the q-Apostol-Euler polynomials of higher order and q-Apostol-Bernoulli polynomials.

In the following we give some interesting special cases of (4.50).
Setting λ = 1 in (4.50), we have

Corollary 4.12. For n ∈N0; α ∈ C, the following relationship

E(α)
n;qm (x + y) =[m]−n

q

n∑
k=0

1
k + 1

(
n
k

)[
qn−k−m(x+α−1)

[
2E(α−1)

k+1;qm;x(y) − E(α)
k+1;qm;x(y)

]
− [m]k+1

q qm(k+1)xE(α)
k+1;qm (y)

]
Bn−k;q(mx) +

2αqmy(qn+1 − 1)
(n + 1)[m]n

q (−qm; qm)α
Bn+1;q(mx)

(4.51)

holds true between the q-Apostol-Euler polynomials of higher order and q-Apostol-Bernoulli polynomials.

Taking m = 1 in (4.50) we get

Corollary 4.13. For n ∈N0; α ∈ C, λ ∈ C \ {−1}, the following relationship

E(α)
n;q(x + y;λ) =

n∑
k=0

1
k + 1

(
n
k

)[
qn−k−x−α+1

[
2E(α−1)

k+1;q;x(y;λ) − E(α)
k+1;q;x(y;λ)

]
− q(k+1)xE(α)

k+1;q(y;λ)
]
Bn−k;q(x;λ) +

2αqy(λqn+1 − 1)
(n + 1)(−λq; q)α

Bn+1;q(x;λ)

(4.52)

holds true between the q-Apostol-Euler polynomials of higher order and q-Apostol-Bernoulli polynomials.
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The formula (4.52) when q→ 1 reduces to (4.2) of Theorem A. Therefore, the formula (4.52) is an q-extension
of the main formula (4.2) of Luo and Srivastava (see, [27, p. 638, Theorem 2]).

Further, we put x = 0 in (4.52) and then replace y by x, we deduce that

E(α)
n;q(x;λ) =

n∑
k=0

1
k + 1

(
n
k

)[
qn−k−α+1

[
2E(α−1)

k+1;q;0(x;λ) − E(α)
k+1;q;0(x;λ)

]
− E(α)

k+1;q(x;λ)
]
Bn−k;q(λ) +

2αqx(λqn+1 − 1)
(n + 1)(−λq; q)α

Bn+1;q(λ),

(4.53)

which is an q-extension of the formula of Luo and Srivastava (see, [27, p. 638, Eq. (63)]):

E(α)
n (x;λ) =

n∑
k=0

2
k + 1

(
n
k

)[
E(α−1)

k+1 (x;λ) − E(α)
k+1(x;λ)

]
Bn−k(λ) +

λ − 1
n + 1

( 2
λ + 1

)α
Bn+1(λ). (4.54)

If we put x =
α
2

in (4.53) and note that E(α)
n;q(λ) = 2nE(α)

n;q

(
α
2 ;λ

)
, we derive that

E(α)
n;q(λ) =

n∑
k=0

2n−k−1

k + 1

(
n
k

)[
qn−k−α+1

[
2k+2E(α−1)

k+1;q;0

(
α
2

;λ
)
− E(α)

k+1;q;0(λ)
]
− E(α)

k+1;q(λ)
]
Bn−k;q(λ)

+
2αq

α
2 (λqn+1 − 1)

(n + 1)(−λq; q)α
Bn+1;q(λ),

(4.55)

which is an q-extension of the formula of Luo and Srivastava (see, [27, p. 638, Eq. (63)]):

E(α)
n (λ) =

n∑
k=0

2n−k

k + 1

(
n
k

)[
2k+1E(α−1)

k+1

(
α
2

;λ
)
− E(α)

k+1(λ)
]
Bn−k(λ) +

λ − 1
n + 1

( 2
λ + 1

)α
Bn+1(λ). (4.56)

If we put α = 1 and λ = 1 in (4.55), we have

En;q =

n∑
k=0

2n−k−1

k + 1

(
n
k

)[
qn−k−α+1

[
2k+2E(0)

k+1;q;0

(1
2

)
− Ek+1;q;0

]
− Ek+1;q

]
Bn−k;q

+
2q

1
2 (qn+1 − 1)

(n + 1)(λ + 1)
Bn+1;q,

(4.57)

which is an q-extension of the familiar formula (see, [27, p. 638, Eqs. (65)]):

En =

n∑
k=0

2n−k

k + 1

(
n
k

)
(1 − Ek+1)Bn−k. (4.58)

Putting λ = 1 in (4.52), we arrive at

Corollary 4.14. [28, p. 249, Theorem 1, Eq. (3.2)] For n ∈N0, m ∈N; α ∈ C, the following relationship

E(α)
n;q(x + y) =

n∑
k=0

1
k + 1

(
n
k

)[
qn−k−x−α+1

[
2E(α−1)

k+1;q;x(y) − E(α)
k+1;q;x(y)

]
− q(k+1)xE(α)

k+1;q(y)
]
Bn−k;q(x) +

2αqy(qn+1 − 1)
(n + 1)(−q; q)α

Bn+1;q(x)

(4.59)

holds true between the q-Euler polynomials of higher order and q-Bernoulli polynomials.
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The formula (4.59) reduces to (4.4) of Theorem B when q → 1. Hence, the formula (4.59) is an q-extension
of the main formula (4.4) of Srivastava and Á. Pintér (see, [43, p. 380, Theorem 2]).

Letting α = 1 in (4.50) and noting that (4.32), we have

Corollary 4.15. For n ∈N0, m ∈N; λ ∈ C \ {−1}, the following relationship

En;qm (x + y;λ) =[m]−n
q

n∑
k=0

1
k + 1

(
n
k

)[
2qn−k+m(y−1)(1 + qmx[my −m]q)k+1

− qn−k−mxEk+1;qm;x(y;λ) − [m]k+1
q qm(k+1)xEk+1;qm (y;λ)

]
Bn−k;q(mx;λ)

+
2qmy(λqn+1 − 1)

(n + 1)[m]n
q (λqm + 1)

Bn+1;q(mx;λ)

(4.60)

holds true between the q-Apostol-Euler polynomials and q-Apostol-Bernoulli polynomials.

Setting m = 1, the formula (4.60) becomes that

En;q(x + y;λ) =
n∑

k=0

1
k + 1

(
n
k

)[
2qn−k+y−1(1 + qx[y − 1]q)k+1

− qn−k−xEk+1;q;x(y;λ) − q(k+1)xEk+1;q(y;λ)
]
Bn−k;q(x;λ)

+
2qy(λqn+1 − 1)
(n + 1)(λq + 1)

Bn+1;q(x;λ),

(4.61)

which is an q-extension of the formula of Luo and Srivastava [27, p. 638, Eq. (56)]:

En(x + y;λ) =
n∑

k=0

2
k + 1

(
n
k

) [
yk+1 − Ek+1(y;λ)

]
Bn−k(x;λ) +

2(λ − 1)
(n + 1)(λ + 1)

Bn+1(x;λ).

Setting y = 0 in (4.61), we have

En;q(x;λ) =
n∑

k=0

1
k + 1

(
n
k

)[
2qn−k−1(1 − qx−1)k+1 − qn−k−xEk+1;q;x(0;λ) − q(k+1)xEk+1;q(0;λ)

]
Bn−k;q(x;λ)

+
2(λqn+1 − 1)

(n + 1)(λq + 1)
Bn+1;q(x;λ),

(4.62)

is an q-extension of the formula of Luo and Srivastava [27, p. 638, Eq. (57)]:

En(x;λ) = −
n∑

k=0

2
k + 1

(
n
k

)
Ek+1(0;λ)Bn−k(x;λ) +

2(λ − 1)
(n + 1)(λ + 1)

Bn+1(x;λ).

Taking λ = 1 in (4.60), we have

Corollary 4.16. [24, p. 13, Eq. (3.10)] For n ∈N0, m ∈N; α ∈ C, the following relationship

En;qm (x + y) =[m]−n
q

n∑
k=0

1
k + 1

(
n
k

)[
2qn−k+m(y−1)(1 + qmx[my −m]q)k+1

− qn−k−mxEk+1;qm;x(y) − [m]k+1
q qm(k+1)xEk+1;qm (y)

]
Bn−k;q(mx)

+
2qmy(qn+1 − 1)

(n + 1)[m]n
q (qm + 1)

Bn+1;q(mx)

(4.63)

holds true between the q-Euler polynomials and q-Bernoulli polynomials.
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Setting y = 0 in (4.63), we deduce that (see, [24, p. 13, Eq. (3.13)]):

En;qm (x) =[m]−n
q

n∑
k=0

1
k + 1

(
n
k

)[
2qn−k−m(1 − qm(x−1)[m]q)k+1 − qn−k−mxEk+1;qm;x(0)

− [m]k+1
q qm(k+1)xEk+1;qm (0)

]
Bn−k;q(mx) +

2(qn+1 − 1)
(n + 1)[m]n

q (qm + 1)
Bn+1;q(mx).

(4.64)

By setting m = 1 in (4.64) we deduce that (see, [24, p. 13, Eq. (3.16)]):

En;q(x) =
n∑

k=0

1
k + 1

(
n
k

)[
2qn−k−1(1 − qx−1)k+1 − qn−k−xEk+1;q;x(0) − q(k+1)xEk+1;q(0)

]
Bn−k;q(x)

+
2(qn+1 − 1)

(n + 1)(q + 1)
Bn+1;q(x).

(4.65)

5. Some formulas involving the q-Stirling numbers of the second kind

In this section we provide some formulas for the q-Apostol-Bernoulli and q-Apostol-Euler polynomials
in series of the q-Stirling numbers of the second kind. Some interesting special cases are also considered.
We know that the q-binomial coefficient is defined by[

n
k

]
q
=

(q; q)n

(q; q)n−k(q; q)k
,

which satisfies the following relationships:[
n
k

]
q
=

[
n

n − k

]
q

(0 ≤ k ≤ n),
[
n
k

]
q
= 0 (n < k),[

x
k

]
q
=

[
x − 1
k − 1

]
q
+ qk

[
x − 1

k

]
q

(n, k ∈N; x ∈ C).

We recall that the Stirling numbers of the second kind S(n, k) are defined by means of the following expansion
(see, [13, p. 207, Theorem B])

xn =

n∑
k=0

(
x
k

)
k!S(n, k). (5.1)

So that

S(n, 0) = δn,0 S(n, 1) = S(n,n) = 1 S(n,n − 1) =
(
n
2

)
,

where δm,n denotes the Kronecker’s symbol.
In 1948, Carlitz firstly gave an q-extension of the Stirling numbers of the second kind, i.e., the so-called

q-Stirling numbers of the second kind Sq(n, k) are defined by (see, [5, p. 989, Eq. (3.1)])

[x]n
q =

n∑
k=0

Sq(n, k)[k]q!
[
x
k

]
q
q(k

2). (5.2)
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Carlitz also showed that the q-Stirling numbers of the second kind Sq(n, k) satisfy the following relationships
(see, [5, p. 990, Eq. (3.2) and (3.5)]):

Sq(n + 1, k) = Sq(n, k − 1) + [k]qSq(n, k),

Sq(n, k) = (q − 1)k−n
n∑

j=0

(−1)n− j
(
n
j

)[
j
k

]
q
.

Obviously,

Sq(n, 0) = δn,0 Sq(n, 1) = Sq(n,n) = 1 Sq(n,n − 1) =
n − [n]q

1 − q
.

Noting that (4.12) and making the appropriate substitution in (5.2) into the right side of the formulas
(3.5) and (3.15) respectively, we obtain Theorem 5.1 below.

Theorem 5.1. For α, λ ∈ C; n ∈N0, m ∈N, the following relationships

B(α)
n;qm (x + y;λ) =

n∑
k=0

[k]q!
[
mx
k

]
q

n−k∑
j=0

(
n
j

)
qm( j−α+1)x+(k

2)[m] j−n
q B(α)

j;qm (y;λ)Sq(n − j, k), (5.3)

E(α)
n;qm (x + y;λ) =

n∑
k=0

[k]q!
[
mx
k

]
q

n−k∑
j=0

(
n
j

)
qm( j+1)x+(k

2)[m] j−n
q E(α)

j;qm (y;λ)Sq(n − j, k) (5.4)

hold true between the q-Apostol-type polynomials of higher order and q-Stirling numbers of the second kind.

Setting m = 1 in (5.3) and (5.4) of Theorem 5.1, we then obtain the following corollary:

Corollary 5.2. For α, λ ∈ C; n ∈N0, the following relationships

B(α)
n;q(x + y;λ) =

n∑
k=0

[k]q!
[
x
k

]
q

n−k∑
j=0

(
n
j

)
q( j−α+1)x+(k

2)B(α)
j;q (y;λ)Sq(n − j, k), (5.5)

E(α)
n;q(x + y;λ) =

n∑
k=0

[k]q!
[
x
k

]
q

n−k∑
j=0

(
n
j

)
q( j+1)x+(k

2)E(α)
j;q (y;λ)Sq(n − j, k) (5.6)

hold true.

It is easy to verify that the formulas (5.5) and (5.6) are respectively the q-extensions of the corresponding
formulas (75) and (76) of [27, p. 641].

By setting λ = 1 and m = 1 in (5.3), and taking λ = 1 and m = 1 in (5.4), we have

Corollary 5.3. [28, p. 253, Theorem 3, Eq. (4.11) and (4.12)] For α ∈ C; n ∈N0, the following relationships

B(α)
n;q(x + y) =

n∑
k=0

[k]q!
[
x
k

]
q

n−k∑
j=0

(
n
j

)
q( j−α+1)x+(k

2)B(α)
j;q (y)Sq(n − j, k), (5.7)

E(α)
n;q(x + y) =

n∑
k=0

[k]q!
[
x
k

]
q

n−k∑
j=0

(
n
j

)
q( j+1)x+(k

2)E(α)
j;q (y)Sq(n − j, k) (5.8)

hold true.

Letting q→ 1 in (5.7) and (5.8), we obtain the corresponding formulas of Bernoulli and Euler polynomials
of higher order.

Setting λ = 1 and α = 1 in (5.3) and (5.4) of Theorem 5.1, then we obtain the following corollary:
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Corollary 5.4. [24, p. 14, Eq. (4.5) and (4.6)] For m ∈N, n ∈N0, the following relationships

Bn;qm (x + y) =
n∑

k=0

[k]q!
[
mx
k

]
q

n−k∑
j=0

(
n
j

)
qmjx+(k

2)[m] j−n
q B j;qm (y)Sq(n − j, k), (5.9)

En;qm (x + y) =
n∑

k=0

[k]q!
[
mx
k

]
q

n−k∑
j=0

(
n
j

)
qm( j+1)x+(k

2)[m] j−n
q E j;qm (y)Sq(n − j, k) (5.10)

hold true.

6. Further observations and consequences

In this section we give some new and interesting formulas of the Apostol-Bernoulli and Apostol-Euler
polynomials of higher order based on the corresponding formulas in Section 4.

Letting q → 1 in (4.37) and (4.50) and noting that (4.15) and (4.29), we obtain the following interesting
formulas for Apostol-Bernoulli and Apostol-Euler polynomials of higher order.

Theorem 6.1. For n ∈N0, m ∈N; α ∈ C; λ ∈ C \ {−1}, the following relationships:

B(α)
n (x + y;λ) =

n∑
k=0

mk−n

2

(
n
k

)[
B(α)

k (y;λ) +B(α)
k

(
y +

1 −m
m

;λ
)
+ kB(α−1)

k−1

(
y +

1 −m
m

;λ
) ]
En−k(mx;λ), (6.1)

E(α)
n (x + y;λ) =

n∑
k=0

mk−n+1

k + 1

(
n
k

)[
2E(α−1)

k+1

(
y +

1 −m
m

;λ
)
− E(α)

k+1

(
y +

1 −m
m

;λ
)
− E(α)

k+1(y;λ)
]
Bn−k(mx;λ)

+
λ − 1

mn(n + 1)

( 2
λ + 1

)α
Bn+1(mx;λ) (6.2)

hold true.

Clearly, the above formulas (6.1) and (6.2) are the corresponding extensions of the formulas (4.1) and (4.2)
of Theorem A.

If we set λ = 1 in (6.1) and (6.2), we obtain the following Corollary.

Corollary 6.2. For n ∈N0, m ∈N; α ∈ C, the following relationships

B(α)
n (x + y) =

n∑
k=0

mk−n

2

(
n
k

)[
B(α)

k (y) + B(α)
k

(
y +

1 −m
m

)
+ kB(α−1)

k−1

(
y +

1 −m
m

) ]
En−k(mx), (6.3)

E(α)
n (x + y) =

n∑
k=0

mk−n+1

k + 1

(
n
k

)[
2E(α−1)

k+1

(
y +

1 −m
m

)
− E(α)

k+1

(
y +

1 −m
m

)
− E(α)

k+1(y)
]
Bn−k(mx) (6.4)

hold true.

Obviously, the above formulas (6.3) and (6.4) are the corresponding extensions of the formulas (4.3) and
(4.4) of Theorem B.

Taking α = 1 in (6.1) and (6.2) of Theorem 6.1, we have

Corollary 6.3. For n ∈N0, m ∈N; λ ∈ C \ {−1}, the following relationships

Bn(x + y;λ) =
n∑

k=0

mk−n

2

(
n
k

)[
Bk(y;λ) +Bk

(
y +

1 −m
m

;λ
)
+ k

(
y +

1 −m
m

)k−1 ]
En−k(mx;λ), (6.5)

En(x + y;λ) =
n∑

k=0

mk−n+1

k + 1

(
n
k

)[
2
(
y +

1 −m
m

)k+1

− Ek+1

(
y +

1 −m
m

;λ
)

− Ek+1(y;λ)
]
Bn−k(mx;λ) +

2
mn(n + 1)

λ − 1
λ + 1

Bn+1(mx;λ) (6.6)
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hold true.

Setting λ = 1 in (6.5) and (6.6), we obtain the following new and interesting formulas respectively.

Bn(x + y) =
n∑

k=0

mk−n

2

(
n
k

)[
Bk(y) + Bk

(
y +

1 −m
m

)
+ k

(
y +

1 −m
m

)k−1 ]
En−k(mx), (6.7)

En(x + y) =
n∑

k=0

mk−n+1

k + 1

(
n
k

)[
2
(
y +

1 −m
m

)k+1

− Ek+1

(
y +

1 −m
m

)
− Ek+1(y)

]
Bn−k(mx). (6.8)

Obviously, the formulas (6.7) and (6.8) are respectively the extensions of the formulas of Srivastava and Á.
Pintér (see, [43]):

Bn(x + y) =
n∑

k=0

(
n
k

)[
Bk(y) +

k
2

yk−1
]
En−k(x), (6.9)

En(x + y) =
n∑

k=0

2
k + 1

(
n
k

)[
yk+1 − Ek+1(y)

]
Bn−k(x). (6.10)
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