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Abstract. The Apéry numbers An and central Delannoy numbers Dn are defined by

An =
n
∑

k=0

(

n + k

2k

)2(
2k

k

)2

, Dn =
n
∑

k=0

(

n+ k

2k

)(

2k

k

)

.

Motivated by some recent work of Z.-W. Sun, we prove the following congruences:

n−1
∑

k=0

(2k + 1)2r+1Ak ≡
n−1
∑

k=0

εk(2k + 1)2r+1Dk ≡ 0 (mod n),

where n > 1, r > 0, and ε = ±1. For r = 1, we further show that

n−1
∑

k=0

(2k + 1)3Ak ≡ 0 (mod n3),

p−1
∑

k=0

(2k + 1)3Ak ≡ p3 (mod 2p6),

where p > 3 is a prime. The following congruence

n−1
∑

k=0

(

n+ k

k

)2(
n− 1

k

)2

≡ 0 (mod n)

plays an important role in our proof.

Keywords: Apéry numbers, central Delannoy numbers, q-binomial coefficients, q-Chu-
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1 Introduction

The Apéry numbers [2] are given by

An =
n
∑

k=0

(

n+ k

2k

)2(
2k

k

)2

. (1.1)

Congruences for Apéry numbers were studied by many people, see Chowla et al. [7],
Gessel [9], and Beukers [3], for example. The central Delannoy numbers (see [5, 13, 14])
are defined by

Dn =

n
∑

k=0

(

n + k

2k

)(

2k

k

)

. (1.2)

Recently, Sun [14] has proved several remarkable congruences involving Apéry numbers or
central Delannoy numbers. In this paper we will prove some similar congruences related
to Apéry numbers and central Delannoy numbers, and establish some new congruences
on sums of binomial coefficients and q-binomial coefficients. Let N denote the set of
nonnegative integers and Z+ the set of positive integers. Our main results may be stated
as follows.

Theorem 1.1 Let r ∈ N and n ∈ Z+. Then

n−1
∑

k=0

(2k + 1)kr(k + 1)rAk ≡ 0 (mod n), (1.3)

n−1
∑

k=0

(2k + 1)2r+1Ak ≡ 0 (mod n). (1.4)

Theorem 1.2 Let r ∈ N and n ∈ Z+. Then

n−1
∑

k=0

εk(2k + 1)kr(k + 1)rDk ≡ 0 (mod n), (1.5)

n−1
∑

k=0

εk(2k + 1)2r+1Dk ≡ 0 (mod n), (1.6)

where ε = ±1.

When r = 0 the above theorems were obtained by Sun [14]. For r = 1, we have the
following stronger result.

Theorem 1.3 Let n ∈ Z+, and let p > 3 be a prime. Then

n−1
∑

k=0

(2k + 1)3Ak ≡ 0 (mod n3), (1.7)

p−1
∑

k=0

(2k + 1)3Ak ≡ p3 (mod 2p6). (1.8)
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In order to prove Theorem 1.3 we need to establish the congruence

n−1
∑

k=0

(

n+ k

k

)2(
n− 1

k

)2

≡ 0 (mod n). (1.9)

In fact, we have the following more general result.

Theorem 1.4 Let a1, . . . , am, b1, . . . , bm ∈ N and n ∈ Z+. Then

n−1
∑

k=0

(

n− 1

k

)2 m
∏

i=1

(

ai + k

bi + k

)

≡ 0 (mod gcd(a1, . . . , am, b1, . . . , bm, n)). (1.10)

We shall prove Theorems 1.1–1.4 in the next four sections, respectively, along with
some conjectures for further studies.

2 Proof of Theorem 1.1

Let (x)0 = 1 and (x)n = x(x + 1) · · · (x + n − 1) for all n ∈ Z+. We first establish three
lemmas.

Lemma 2.1 For all k,m, r ∈ N, there exist a0(k, r), a1(k, r), . . . , ar(k, r) ∈ Z such that

mr(m+ 1)r
(

m+ k

2k

)

=
r
∑

j=0

aj(k, r)

(

m+ k + j

2k + 2j

)

(2k + 1)2j. (2.1)

Proof. Given k, r ∈ N, it is easy to see that there exist integers a0(k, r), a1(k, r), . . . , ar(k, r),
independent of x, such that

xr =

r
∑

j=0

aj(k, r)

j
∏

i=1

(x− (k + i− 1)(k + i)). (2.2)

Substituting x = m(m+ 1) in (2.2), we get

mr(m+ 1)r =
r
∑

j=0

aj(k, r)(m+ k + 1)j(m− k − j + 1)j .

Multiplying both sides by
(

m+k
2k

)

and noticing that

(

m+ k

2k

)

(m+ k + 1)j(m− k − j + 1)j =

(

m+ k + j

2k + 2j

)

(2k + 1)2j ,

we obtain (2.1).
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Lemma 2.2 For all a, k, n ∈ N, there holds

n−1
∑

m=k

(2m+ 1)

(

m+ k

2k

)(

m+ k + a

2k + 2a

)

=
(n− k)(n− k − a)

2k + a+ 1

(

n+ k

2k

)(

n+ k + a

2k + 2a

)

. (2.3)

Lemma 2.2 can be proved easily by induction on n (see Sun [14, Lemma 2.1] for the a=0
case). We can also evaluate the left-hand side of (2.3) automatically by Maple.

Lemma 2.3 For all a, k ∈ N and n ∈ Z+, there holds

(n− k)(n− k − a)

n(2k + a + 1)

(

n + k

2k

)(

n+ k + a

2k + 2a

)(

2k

k

)

(2k + 1)2a ∈ N.

Proof. For a = 0, we have

(n− k)2

n(2k + 1)

(

n+ k

2k

)2(
2k

k

)

=

(

n− 1

k

)(

n + k

k

)(

n + k

2k + 1

)

∈ N.

For a > 1, we have

(n− k)(n− k − a)

n(2k + a + 1)

(

n + k

2k

)(

2k

k

)

(2k + 1)2a

= (n− k − a)

(

n+ k

k

)(

n− 1

k

)

(2k + 1)a(2k + a+ 2)a−1 ∈ N.

This completes the proof.

Proof of Theorem 1.1. Substituting (1.1) for Am and applying Lemmas 2.1 and 2.2, we
obtain

n−1
∑

m=0

(2m+ 1)mr(m+ 1)rAm

=
r
∑

j=0

n−1
∑

k=0

aj(k, r)

(

2k

k

)2

(2k + 1)2j

n−1
∑

m=k

(2m+ 1)

(

m+ k

2k

)(

m+ k + j

2k + 2j

)

=

r
∑

j=0

n−1
∑

k=0

aj(k, r)

(

2k

k

)

Cj(k, n),

where a0(k, r), a1(k, r), . . . , ar(k, r) are integers determined by (2.1) and

Cj(k, n) =

(

2k

k

)

(2k + 1)2j
(n− k)(n− k − j)

2k + j + 1

(

n+ k

2k

)(

n+ k + j

2k + 2j

)

.

By Lemma 2.3, we have Cj(k, n) ≡ 0 (mod n) and hence (1.3) holds. Since

(2k + 1)2r = (4k2 + 4k + 1)r =

r
∑

i=0

(

r

i

)

4iki(k + 1)i, (2.4)

we deduce the congruence (1.4) from (1.3) immediately.
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3 Proof of Theorem 1.2

Similarly to the proof of Lemma 2.2, we can check the following result (see [14]).

Lemma 3.1 For all k, n ∈ N, there hold

n−1
∑

m=0

(2m+ 1)

(

m+ k

2k

)

=
(n− k)n

k + 1

(

n+ k

2k

)

,

n−1
∑

m=0

(−1)m(2m+ 1)

(

m+ k

2k

)

= (−1)n−1(n− k)

(

n+ k

2k

)

.

Proof of Theorem 1.2. Substituting (1.2) for Dm and applying Lemmas 2.1 and 3.1, we
obtain

n−1
∑

m=0

(2m+ 1)mr(m+ 1)rDm

=

r
∑

j=0

n−1
∑

k=0

aj(k, r)

(

2k

k

)

(2k + 1)2j
(n− k − j)n

k + j + 1

(

n+ k + j

2k + 2j

)

= n
r
∑

j=0

n−1
∑

k=0

aj(k, r)
(n− k − j)

k + j + 1

(

2k + 2j

k + j

)

(k + 1)2j

(

n+ k + j

2k + 2j

)

,

where a0(k, r), . . . , ar(k, r) are integers determined by (2.1). Since 1
k+j+1

(

2k+2j
k+j

)

is an

integer (a Catalan number), we derive (1.5) for ε = 1. Similarly, we have

n−1
∑

m=0

(−1)m(2m+ 1)mr(m+ 1)rDm

=
r
∑

j=0

n−1
∑

k=0

aj(k, r)

(

2k

k

)

(2k + 1)2j(−1)n−1(n− k − j)

(

n + k + j

2k + 2j

)

=
r
∑

j=0

n−1
∑

k=0

aj(k, r)(−1)n−1(n− k − j)

(

2k + 2j

k + j

)

(k + 1)2j

(

n + k + j

2k + 2j

)

.

Writing (n−k− j)
(

2k+2j
k+j

)(

n+k+j
2k+2j

)

= n
(

n+k+j
n

)(

n−1
k+j

)

, we obtain (1.5) for ε = −1. Thus, the

congruence (1.5) holds for ε = ±1. By the relation (2.4), we deduce the congruence (1.6)
from (1.5) immediately.

The congruence (1.6) has the following refinements.
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Theorem 3.2 Let r ∈ N and n ∈ Z+. Then

n−1
∑

k=0

(2k + 1)2r+1Dk ≡ n (mod 2n),

n−1
∑

k=0

(−1)k(2k + 1)2r+1Dk ≡

{

n, if n is odd

0, otherwise
(mod 2n).

Proof. By the relation (2.4) and the congruence (1.5), it is enough to prove the case
r = 0. Substituting (1.2) for Dk and exchanging the order of summations, we obtain, by
applying Lemma 3.1, that

n−1
∑

k=0

(2k + 1)Dk = n

n−1
∑

k=0

(

n + k

n

)(

n

k + 1

)

,

n−1
∑

k=0

(−1)k(2k + 1)Dk = (−1)nn

n−1
∑

k=0

(

n + k

n

)(

n− 1

k

)

,

as already mentioned by Sun [14]. Noticing that

n−1
∑

k=0

(

n+ k

n

)(

n

k + 1

)

≡
n−1
∑

k=0

(−1)k
(

n+ k

n

)(

n

k + 1

)

= (−1)n−1 (mod 2),

n−1
∑

k=0

(

n+ k

n

)(

n− 1

k

)

≡
n−1
∑

k=0

(−1)k
(

n+ k

n

)(

n− 1

k

)

= (−1)n−1n (mod 2), (3.1)

we have

n−1
∑

k=0

(2k + 1)Dk ≡ n (mod 2n),

n−1
∑

k=0

(−1)k(2k + 1)Dk ≡

{

n, if n is odd

0, otherwise
(mod 2n).

This completes the proof.

Conjecture 3.3 Let n be a power of 2. Then

n−1
∑

k=0

(−1)k(2k + 1)3Dk ≡ 2n2 (mod n3).
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4 Proof of Theorem 1.3

We first prove two lemmas. The first one can be proved easily by induction on n, or be
verified automatically in Maple.

Lemma 4.1 For 0 6 k 6 n− 1 we have

n−1
∑

m=0

(2m+ 1)3
(

m+ k

2k

)2

=
(n− k)2(2n2 − k − 1)

k + 1

(

n + k

2k

)2

.

Lemma 4.2 For any prime p > 3, we have

p−1
∑

k=0

(

p + k

k

)2(
p− 1

k

)2

≡ p (mod 2p4), (4.1)

p−1
∑

k=0

(

p+ k

k + 1

)(

p+ k

k

)(

p− 1

k

)2

≡ 1 (mod 2p3). (4.2)

Proof. For 0 6 k 6 p− 1, we have

(

p+ k

k

)2(
p− 1

k

)2

=

k
∏

j=1

(p+ j)2(p− j)2

j4
=

k
∏

j=1

(

1−
p2

j2

)2

≡ 1− 2p2
k
∑

j=1

1

j2
(mod p4).

Therefore,

p−1
∑

k=0

(

p+ k

k

)2(
p− 1

k

)2

≡

p−1
∑

k=0

(

1− 2p2
k
∑

j=1

1

j2

)

= p− 2p2
p−1
∑

j=1

p− j

j2
(mod p4). (4.3)

By Wolstenholme’s theorem (see [11]), i.e., for p > 3,

p−1
∑

k=1

1

k
≡ 0 (mod p2),

p−1
∑

k=1

1

k2
≡ 0 (mod p), (4.4)

we obtain

p−1
∑

k=0

(

p+ k

k

)2(
p− 1

k

)2

≡ p (mod p4). (4.5)
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Combining (4.5) and (3.1) with n = p, we obtain the congruence (4.1).
Since

(

p+k
k+1

)

= p
k+1

(

p+k
k

)

, by (4.3) we have

(

p+ k

k + 1

)(

p+ k

k

)(

p− 1

k

)2

≡

{

1− 2p2
∑k

j=1
1
j2
, if k = p− 1

p
k+1

(

1− 2p2
∑k

j=1
1
j2

)

if 0 6 k 6 p− 2
(mod p4),

and hence by (4.4) we get

(

p + k

k + 1

)(

p+ k

k

)(

p− 1

k

)2

≡

{

1, if k = p− 1
p

k+1
if 0 6 k 6 p− 2

(mod p3).

It follows that, for p > 3,

p−1
∑

k=0

(

p + k

k + 1

)(

p+ k

k

)(

p− 1

k

)2

≡ 1 +

p−2
∑

k=0

p

k + 1
≡ 1 (mod p3) (4.6)

by (4.4). On the other hand, we have

p−1
∑

k=0

(

p+ k

k + 1

)(

p+ k

k

)(

p− 1

k

)2

≡

p−1
∑

k=0

(

p+ k

k + 1

)(

p+ k

k

)(

p− 1

k

)

=

p−1
∑

k=0

(

p+ k

k

)2(
p

k + 1

)

≡

p−1
∑

k=0

(−1)k
(

p+ k

k

)(

p

k + 1

)

= (−1)p−1 (mod 2).

(4.7)

Combining (4.6) and (4.7), we obtain the congruence (4.2).

Proof of Theorem 1.3. Substituting (1.1) for Am and exchanging the order of summations,
by Lemma 4.1, we obtain

n−1
∑

m=0

(2m+ 1)3Am =

n−1
∑

k=0

(

2k

k

)2
(n− k)2(2n2 − k − 1)

k + 1

(

n+ k

2k

)2

=

n−1
∑

k=0

(

n+ k

k

)2
(n− k)2(2n2 − k − 1)

k + 1

(

n

k

)2

= 2n3

n−1
∑

k=0

(

n+ k

k + 1

)(

n+ k

k

)(

n− 1

k

)2

− n2

n−1
∑

k=0

(

n+ k

k

)2(
n− 1

k

)2

.

(4.8)

Applying (1.9) to (4.8), we immediately get the congruence (1.7). Now, assume that
n = p > 3 is a prime in (4.8). Then the congruence (1.8) follows from (4.1) and (4.2).
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5 Proof of Theorem 1.4

We shall prove several q-versions of (1.10). We first recall some q-notations and two
fundamental results. The q-binomial coefficients and q-integers are polynomials in q with
integer coefficients and are defined by

[

n

k

]

q

=
k
∏

j=1

1− qn−j+1

1− qj
, [n]q =

1− qn

1− q
.

The following two results are well known (see [1, (3.3.10)] and [8, 10, 12]).

Lemma 5.1 (The q-Chu-Vandermonde formula) For nonnegative integers m,n and

h there holds

h
∑

k=0

[

n

k

]

q

[

m

h− k

]

q

q(n−k)(h−k) =

[

m+ n

h

]

q

. (5.1)

Lemma 5.2 (The q-Lucas Theorem) Let a, b, r, s and n be nonnegative integers such

that 0 6 b, s 6 n− 1. Then, for any nth primitive root of unity ω, there holds

[

ad+ b

rd+ s

]

ω

=

(

a

r

)[

b

s

]

ω

.

Given three polynomials f(x), g(x) and q(x) in Z[x], if q(x) divides f(x)−g(x) in Z[x]
we write f(x) ≡ g(x) (mod q(x)). We shall prove the following q-versions of Theorem 1.4.

Theorem 5.3 For any nonnegative integers a1, . . . , am, b1, . . . , bm and positive integer n,
let d := gcd(a1, . . . , am, b1, . . . , bm, n). Then

n−1
∑

k=0

qk
2

[

n− 1

k

]2

q

m
∏

i=1

[

ai + k

bi + k

]

q

≡ 0 (mod [d]q), (5.2)

n−1
∑

k=0

qk
2+2k

[

n− 1

k

]2

q

m
∏

i=1

[

ai + k

bi + k

]

q

≡ 0 (mod [d]q), (5.3)

n−1
∑

k=0

qk
m
∏

i=1

[

ai + k

bi + k

]

q

≡ 0 (mod [d]q), (5.4)

n−1
∑

k=0

qn−k−1

m
∏

i=1

[

ai + k

bi + k

]

q

≡ 0 (mod [d]q), (5.5)

Proof. Let d1 ∈ Z+ such that d1|d and d1 > 1, and let

ai = a′id1, bi = b′id1, i = 1, . . . , m, and n = n′d1.
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Suppose that ω is a primitive d1-th root of unity. Replacing k by jd1+k with 0 6 j 6 n′−1
and 0 6 k 6 d1 − 1, we obtain, by the q-Lucas theorem,

n−1
∑

k=0

ωk2
[

n− 1

k

]2

ω

m
∏

i=1

[

ai + k

bi + k

]

ω

=

n′−1
∑

j=0

d1−1
∑

k=0

ω(jd1+k)2
[

n′d1 − 1

jd1 + k

]2

ω

m
∏

i=1

[

a′id1 + jd1 + k

b′id1 + jd1 + k

]

ω

=
n′−1
∑

j=0

d1−1
∑

k=0

ωk2
(

n′ − 1

j

)2[
d1 − 1

k

]2

ω

m
∏

i=1

(

a′i + j

b′i + j

)

=

(

n′−1
∑

j=0

(

n′ − 1

j

)2 m
∏

i=1

(

a′i + j

b′i + j

)

)

d1−1
∑

k=0

ωk2
[

d1 − 1

k

]2

ω

.

By applying the q-Chu-Vandermonde formula and the q-Lucas theorem, we have

d1−1
∑

k=0

ωk2
[

d1 − 1

k

]2

ω

=

[

2d1 − 2

d1 − 1

]

ω

=

[

d1 − 2

d1 − 1

]

ω

= 0.

This proves that

n−1
∑

k=0

qk
2

[

n− 1

k

]2

q

m
∏

i=1

[

ai + k

bi + k

]

q

≡ 0 (mod Φd1(q)) for any d1|d and d1 > 1,

where Φn(q) is the nth cyclotomic polynomial in q. Since

1− qd

1− q
=
∏

d1|d
d1>1

Φd1(q),

and the cyclotomic polynomials are pairwise relatively prime, we complete the proof of
(5.2). Similarly, observing that

d1−1
∑

k=0

ωk2+2k

[

d1 − 1

k

]2

ω

= ω−1

d1−1
∑

k=0

ω(d1−k−1)2
[

d1 − 1

k

]2

ω

= ω−1

[

2d1 − 2

d1 − 1

]

ω

= 0,

d1−1
∑

k=0

ωk =
d1−1
∑

k=0

ω−k−1 = 0,

we can prove (5.3)–(5.5).

To derive more consequences of Theorem 5.3, we need the following lemma.

Lemma 5.4 Let P (x) ∈ Z[x] and d ∈ Z+. If P (n) ≡ 0 (mod d) for all n ∈ N, then
P (m) ≡ 0 (mod d) for all m ∈ Z.

Proof. Just notice that P (m+ kd) ≡ P (m) (mod d) for all m, k ∈ Z.

We now give the following generalization of Theorem 1.4.
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Theorem 5.5 Let a1, . . . , am ∈ Z, b1, . . . , bm ∈ N and n ∈ Z+. Then

n−1
∑

k=0

(−1)mk
m
∏

i=1

(

ai − 1

bi + k

)

≡ 0 (mod gcd(a1, . . . , am, b1, . . . , bm, n)).

Proof. Suppose that d is a factor of n. Letting q = 1 in (5.4), we obtain

n−1
∑

k=0

m
∏

i=1

(

xid+ k

yid+ k

)

≡ 0 (mod d) (5.6)

for all x1, . . . , xm, y1, . . . , ym ∈ N. Since P (x1) :=
∑n−1

k=0

∏m
i=1

(

xid+k
yid+k

)

is a polynomial in

x1 with rational coefficients, there is a positive integer α such that αP (x1) ∈ Z[x1]. Then
(5.6) is equivalent to

αP (x1) ≡ 0 (mod αd). (5.7)

By Lemma 5.4, we see that (5.7) is true for all x1 ∈ Z, and so is (5.6). By symmetry,
we conclude that (5.6) holds for all x1, . . . , xm ∈ Z. Namely, for all a1, . . . , am ∈ Z,
b1, . . . , bm ∈ N, there holds

n−1
∑

k=0

m
∏

i=1

(

bi − ai + k

bi + k

)

≡ 0 (mod gcd(a1, . . . , am, b1, . . . , bm, n)).

Noticing that
(

bi−ai+k
bi+k

)

= (−1)bi+k
(

ai−1
bi+k

)

, we complete the proof.

Letting bi = 0 and ai = ±n in Theorem 5.5, we obtain

Corollary 5.6 Let r, s, n ∈ N. Then

n−1
∑

k=0

(

n + k

k

)r(
n− 1

k

)2s

≡ 0 (mod n),

n−1
∑

k=0

(−1)k
(

n+ k

k

)r(
n− 1

k

)2s+1

≡ 0 (mod n),

In particular, we have

n
∑

k=0

(

n

k

)2s

≡ 0 (mod (n + 1)). (5.8)

It is worth mentioning that Calkin [4, Proposition 3] has proved that

n
∑

k=0

(

n

k

)2s

≡ 0 (mod p) (5.9)

if p is a prime such that n
m

< p < n+1
m

+ n+1−m
m(2ms−1)

for some m ∈ Z+. It is clear that (5.8)

and (5.9) are different and can not be deduced from each other.
Letting bi = 0 and ai = −n or ai = −2n in Theorem 5.5, we obtain
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Corollary 5.7 Let r, s, n ∈ N. Then

n−1
∑

k=0

(−1)(r+s)k

(

n− 1

k

)r(
2n− 1

k

)s

≡ 0 (mod n).

Note that Chamberland and Dilcher [6] have studied divisibility properties of the following
similar sums:

n
∑

k=0

εk
(

n

k

)r(
2n

k

)s

,

where ε = ±1.

Conjecture 5.8 Let a1, . . . , am ∈ Z, b1, . . . , bm, r ∈ N and n ∈ Z+. Then

n−1
∑

k=0

(−1)mkεk(2k + 1)kr(k + 1)r
m
∏

i=1

(

ai − 1

bi + k

)

≡ 0 (mod gcd(a1, . . . , am, b1, . . . , bm, n)),

where ε = ±1.

Conjecture 5.9 Let n, r ∈ Z+. Then

n−1
∑

k=0

(

n− 1

k

)2r

≡

{

n, if n = 2a

0, otherwise
(mod 2n),

n−1
∑

k=0

(

2n− 1

k

)2r

≡

{

n, if n = 2a

0, otherwise
(mod 2n).

Conjecture 5.10 Let n, r ∈ N and s, t ∈ Z+. Then

n−1
∑

k=0

(−1)kt
(

n+ k

k

)s(
n− 1

k

)t

≡

{

0, if 2 | n and 2 ∤ (s+ t)

n, otherwise
(mod 2n).

Lemma 5.11 Let n ∈ N. Then

n
∑

k=0

[

n

k

]2

q

qk
2−k = 2

[

2n− 1

n

]

q

. (5.10)

Proof. By the q-Chu-Vandermonde formula (5.1), we have

n
∑

k=0

[

n

k

]

q

[

n− 1

k

]

q

qk
2

=

[

2n− 1

n

]

q

,

n
∑

k=0

[

n

k

]

q

[

n− 1

k − 1

]

q

qk(k−1) =

[

2n− 1

n

]

q

.

The result then follows from the relation
[

n
k

]

q
=
[

n−1
k

]

q
qk +

[

n−1
k−1

]

q
.
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Theorem 5.12 Let n ∈ Z+. Then

n−1
∑

k=0

qk
2−k

[

n + k

k

]2

q

[

n− 1

k

]2

q

≡

{

2I(n/2)1−qn

1−q2
, if n is even

0, otherwise
(mod [n]q), (5.11)

where I(n) = 1
n

∑n−1
k=0

(

n+k
k

)2(n−1
k

)2
.

Proof. Let d1|n (d1 > 1) and n′ = n/d1. Suppose that ω is a primitive d1-th root of unity.
Similarly to the proof of Theorem 5.3, we have

n−1
∑

k=0

ωk2−k

[

n− 1

k

]2

ω

[

n+ k

k

]2

ω

=
n′−1
∑

j=0

(

n′ − 1

j

)2(
n′ + j

j

)2 d1−1
∑

k=0

ωk2−k

[

d1 − 1

k

]2

ω

.

= 2

[

2d1 − 3

d1 − 1

]

ω

n′−1
∑

j=0

(

n′ − 1

j

)2(
n′ + j

j

)2

by (5.10).

If n is odd, then d1 > 3, and by the q-Lucas theorem,
[

2d1 − 3

d1 − 1

]

ω

=

[

d1 − 3

d1 − 1

]

ω

= 0,

which means that

n−1
∑

k=0

qk
2−k

[

n+ k

k

]2

q

[

n− 1

k

]2

q

≡ 0 (mod [n]q).

If n is even, then it is easy to check that (for d1 = 2 or d1 > 3)

n−1
∑

k=0

ωk2−k

[

n− 1

k

]2

ω

[

n + k

k

]2

ω

− 2I(n/2)

(n−2)/2
∑

k=0

ω2k = 0,

which implies the first congruence in (5.11). This completes the proof.

Conjecture 5.13 Let n be any power of a prime p. Then

n−1
∑

k=0

q(n−k)2
[

n + k

k

]2

q

[

n− 1

k

]2

q

≡ q(n−1)2 [n]q (mod [p]2qn/p).

It is easy to see that Conjecture 5.13 is true for q = 1 by the congruences (1.9) and
(4.1).

Acknowledgments. This work was partially supported by the Fundamental Research
Funds for the Central Universities, Shanghai Rising-Star Program (#09QA1401700) and
the National Science Foundation of China (#10801054).

13



References

[1] G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
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[3] F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987),
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