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Abstract. We present an operator approach to Rogers-type formulas and Mehler’s formulas
for the Al-Salam-Carlitz polynomials Un(x, y, a; q). By using the q-exponential operator,
we obtain a Rogers-type formula which leads to a linearization formula. With the aid of a
bivariate augmentation operator, we get a simple derivation of Mehler’s formula due to by
Al-Salam and Carlitz, which requires a terminating condition on a 3φ2 series. By means
of the Cauchy companion augmentation operator, we obtain Mehler’s formula in a similar
form, but it does not need the terminating condition. We also give several identities on the
generating functions for products of the Al-Salam-Carlitz polynomials which are extensions
of formulas for Rogers-Szegö polynomials.
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1. Introduction

The Al-Salam-Carlitz polynomials are q-orthogonal polynomials which arise in many applica-
tions such as the q-harmonic oscillator, theta functions, quantum groups and coding theory;
see for example [4, 5, 15, 16]. This paper presents an operator approach to the Rogers-type
formulas and Mehler’s formulas for the Al-Salam-Carlitz polynomials. These polynomials
are a generalization of the classical Rogers-Szegö polynomials which have been extensively
studied, see for example [6–8,10,13]. There are two classical formulas concerning the Rogers-
Szegö polynomials, namely, Mehler’s formula and the Rogers formula, in connection with the
Poisson kernel formula and the linearization formula.

It is natural to study the Rogers-type formulas and Mehler’s formulas beyond the Rogers-
Szegö polynomials. In fact, Mehler’s formula for the Al-Salam-Carlitz polynomials has been
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derived by Al-Salam and Carlitz [2], which requires a terminating condition on a 3φ2 series as
mentioned by Askey and Suslov [4]. Using our operator approach, we deduce a new formula
in a similar form, but it does not involve the terminating condition. We also derive some
Rogers-type formulas, one of which leads to a linearization formula. In addition, we obtain
several identities on the generating functions of products of the Al-Salam-Carlitz polynomials
as extensions of the formulas for the Rogers-Szegö polynomials.

We adopt the common notation on q-series in Gasper and Rahman [15]. The set of
integers is denoted by Z. Throughout this paper, q is a fixed nonzero complex number with
|q| < 1. The q-shifted factorial is defined for any complex parameter a by

(a; q)∞ =
∞
∏

k=0

(1 − aqk) and (a; q)n =
(a; q)∞

(aqn; q)∞
, n ∈ Z.

We shall use the compact notation

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n, for n ∈ Z or n = ∞.

The q-binomial coefficient is given by

[

n

k

]

=
(q; q)n

(q; q)n−k(q; q)k
.

The basic hypergeometric series rφs are defined as follows,

rφs

[

a1, a2, . . . , ar

b1, b2, . . . , bs
; q, x

]

=

∞
∑

n=0

(a1, a2, . . . , ar; q)n
(q, b1, b2, . . . , bs; q)n

[

(−1)nq(
n

2)
]1+s−r

xn. (1.1)

This paper is primarily concerned with the Al-Salam-Carlitz polynomials Un(x, y, a; q)
which can be defined in terms of a 2φ1 series

Un(x, y, a; q) = (−a)nq(
n

2)2φ1

(

q−n, y/x
0

; q,
qx

a

)

. (1.2)

The following generating function for the the Al-Salam-Carlitz polynomials has been given
by Al-Salam and Carlitz [2],

∞
∑

n=0

Un(x, y, a; q)
tn

(q; q)n
=

(at, yt; q)∞
(xt; q)∞

, (1.3)

where |xt| < 1. Since that the right-hand side of (1.3) is symmetric in a and y, the polynomials
Un(x, y, a; q) are symmetric in a and y, that is,

Un(x, y, a; q) = Un(x, a, y; q). (1.4)

This symmetry property will be used later.

In terms of of the Cauchy polynomials

Pn(x, y) = (x − y)(x − qy) · · · (x − qn−1y),
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with the generating function

∞
∑

n=0

Pn(x, y)
tn

(q; q)n
=

(yt; q)∞
(xt; q)∞

, |xt| < 1, (1.5)

the Al-Salam-Carlitz polynomials can be expressed as

Un(x, y, a; q) =
n
∑

k=0

[

n

k

]

(−1)kq(
k

2)akPn−k(x, y). (1.6)

The above definition is essentially the same as the original definition of the Al-Salam-Carlitz

polynomials u
(a)
n (x; q),

u(a)
n (x; q) = (−a)nq(

n

2)2φ1

(

q−n, x−1

0
; q,

qx

a

)

. (1.7)

Clearly, we have the following relation

Un(x, y, a; q) = ynu(a/y)
n (x/y; q). (1.8)

The Al-Salam-Carlitz polynomials are related to several q-orthogonal polynomials, such
as the q-Bessel polynomials Bn(x, b; q) due to Abdi [1], and the Stieltjes-Wigert polynomials
Sn(x; q) [17, p. 116]. In particular, the Al-Salam-Carlitz polynomials are connected to the
bivariate Rogers-Szegö polynomials [11]

hn(x, y|q) =

n
∑

k=0

[

n

k

]

Pk(x, y),

which have the generating function

∞
∑

n=0

hn(x, y|q)
tn

(q; q)n
=

(yt; q)∞
(t, xt; q)∞

, |t| < 1, |xt| < 1. (1.9)

On the other hand, although the Al-Salam-Carlitz polynomials can be expressed in terms
of the bivariate Rogers-Szegö polynomials

Un(x, y, a; q) = (−1)nq(
n

2)anhn

(y

a
,
x

a

∣

∣

∣
q−1
)

, (1.10)

as noted by Carlitz [8], it is often happens that an infinite q-series identity no longer holds
when q is replaced by q−1. In fact, it turns out to be the case for the Rogers formula and
Mehler’s formula for the polynomials hn(x, y|q). This suggests that there is a need for a
direct approach to deal with the Al-Salam-Carlitz polynomials, and it is our hope to serve
this purpose.

This paper is organized as follows. In Section 2, we give an overview of the q-exponential
operator T (bDq), and derive a Rogers-type formula for Un(x, y, a; q) which leads to a lin-
earization formula. In Section 3, we construct a homogeneous q-shift operator F(aDxy) and
apply it to derive Mehler’s formula under the terminating condition. In Section 4, we make
use of the Cauchy companion operator to obtain two Rogers-type formulas and Mehler’s
formula without the terminating condition. In the last section, we provide four generating
function identities for products of Un(x, y, a; q).
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2. A Rogers-Type Formula

In this section, we give a Rogers-type formula for the Al-Salam-Carlitz polynomials Un(x, y, a; q)
by using the q-exponential operator T (bDq). As a consequence, we obtain a linearization for-
mula for Un(x, y, a; q).

The q-differential operator, or the q-derivative, acting on the variable a, is defined by

Dq{f(a)} =
f(a) − f(aq)

a
.

The q-shift operator, denoted by η, is defined by

η{f(a)} = f(aq) and η−1{f(a)} = f(aq−1),

see, for example, [3, 18]. The operator θ is defined by

θ = η−1Dq, (2.1)

see Roman [18]. Recall the q-Leibniz rule for Dq, see [18],

Dn
q {f(a)g(a)} =

n
∑

k=0

[

n

k

]

qk(k−n)Dk
q {f(a)}Dn−k

q {g(qka)}.

By convention, D0
q is understood as the identity, that is, D0

q{f(a)} = f(a). Chen and Liu [12]
introduced the following two q-exponential operators

T (bDq) =

∞
∑

n=0

(bDq)
n

(q; q)n
and E(bθ) =

∞
∑

n=0

q(
n

2)(bθ)n

(q; q)n

for proving basic hypergeometric identities from their special cases. This method is called
parameter augmentation. The following lemma for the q-exponential operator T (bDq) is easy
to verify.

Lemma 2.1. We have

T (bDq){a
n} =

n
∑

k=0

[

n

k

]

bkan−k. (2.2)

From the q-Leibniz rule for Dq, Zhang and Wang [19] obtain the following identity.

Lemma 2.2. Let n be a nonnegative integer. Then

Dn
q

{

(at; q)∞
(av; q)∞

}

= vn(t/v; q)n
(atqn; q)∞
(av; q)∞

.

Based on the above relation, we obtain the following formula.

Lemma 2.3. We have

T (bDq)

{

(as, at; q)∞
(av; q)∞

}

=
(as, at; q)∞
(av; q)∞

∞
∑

k=0

(−1)kq(
k

2)(av; q)k(bs)k

(q; q)k(as, at; q)k
2φ1

(

t/v, 0
atqk ; q, bv

)

. (2.3)
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Proof. By the definition of T (bDq) and the q-Leibniz rule for Dq, we have

T (bDq)

{

(as, at; q)∞
(av; q)∞

}

=
∞
∑

n=0

bn

(q; q)n
Dn

q

{

(as, at; q)∞
(av; q)∞

}

=
∞
∑

n=0

bn

(q; q)n

n
∑

k=0

[

n

k

]

qk(k−n)Dk
q {(as; q)∞}Dn−k

q

{

(atqk; q)∞
(avqk; q)∞

}

=

∞
∑

n=0

bn

(q; q)n

n
∑

k=0

[

n

k

]

qk(k−n)(−1)kq(
k

2)sk(asqk; q)∞(vqk)n−k(t/v; q)n−k
(atqn; q)∞
(avqk; q)∞

=
(as, at; q)∞
(av; q)∞

∞
∑

n=0

bn

(q; q)n

n
∑

k=0

[

n

k

]

(−1)kq(
k

2)sk (av; q)k(t/v; q)n−kvn−k

(as; q)k(at; q)n

=
(as, at; q)∞
(av; q)∞

∞
∑

k=0

(−1)kq(
k

2)(av; q)k(bs)k

(q, as, at; q)k

∞
∑

n=0

(t/v; q)n(bv)n

(q; q)n(atqk; q)n

=
(as, at; q)∞
(av; q)∞

∞
∑

k=0

(−1)kq(
k

2)(av; q)k(bs)k

(q; q)k(as, at; q)k
2φ1

(

t/v, 0
atqk ; q, bv

)

.

This completes the proof.

Now we are ready to present a Rogers-type formula for the polynomials Un(x, y, a; q).

Theorem 2.4. We have

∞
∑

n=0

∞
∑

m=0

Un+m(x, y, a; q)
tn

(q; q)n

sm

(q; q)m

=
(as, ys; q)∞

(xs; q)∞

∞
∑

k=0

(−1)kq(
k

2)(xs; q)k(at)k

(q; q)k(as, ys; q)k
2φ1

(

y/x, 0
ysqk ; q, xt

)

, (2.4)

provided that |xs| < 1.

Proof. Setting m → m − n, exchanging the order of the sum on the left hand side of (2.4),
and applying the operator identity (2.2), we obtain

∞
∑

n=0

∞
∑

m=0

Un+m(x, y, a; q)
tn

(q; q)n

sm

(q; q)m

=

∞
∑

n=0

∞
∑

m=n

Um(x, y, a; q)
tn

(q; q)n

sm−n

(q; q)m−n
=

∞
∑

m=0

Um(x, y, a; q)

(q; q)m

m
∑

n=0

[

m

n

]

tnsm−n

=
∞
∑

m=0

Um(x, y, a; q)

(q; q)m
T (tDq){s

m} = T (tDq)

{

∞
∑

m=0

Um(x, y, a; q)
sm

(q; q)m

}

(|xs| < 1)

= T (tDq)

{

(as, ys; q)∞
(xs; q)∞

}

,

where Dq acts on the parameter s. Applying Lemma 2.3, we complete the proof.
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From the above Rogers-type formula, we obtain the following linearization formula for
Un(x, y, a; q).

Theorem 2.5. For n,m ≥ 0, we have

Un+m(x, y, a; q) =
n
∑

k=0

[

n

k

]

(−1)kq(
k

2)(aqm)kPn−k(x, y)Um(x, yqn−k, a; q).

Proof. Rewrite the Rogers-type formula (2.4) as follows

∞
∑

n=0

∞
∑

m=0

Un+m(x, y, a; q)
tn

(q; q)n

sm

(q; q)m

=

∞
∑

k=0

(−1)kq(
k

2)(at)k

(q; q)k

∞
∑

n=0

(y/x; q)n
(q; q)n

(xt)n
(asqk, ysqn+k; q)∞

(xsqk; q)∞

=
∞
∑

k=0

(−1)kq(
k

2)(at)k

(q; q)k

∞
∑

n=0

(y/x; q)n
(q; q)n

(xt)n
∞
∑

l=0

Ul(x, yqn, a; q)
(sqk)l

(q; q)l
.

Equating the coefficients of tnsm in the above equation, the desired identity follows.

3. Mehler’s Formula

In this section, we aim to introduce the homogeneous q-shift operator which can be used to
give a simple derivation of Mehler’s formula for Un(x, y, a; q) due to Al-Salam and Carlitz.

Recall that the homogeneous q-difference operator Dxy introduced by Chen, Fu and Zhang
[11] is given by

Dxy{f(x, y)} =
f(x, q−1y) − f(qx, y)

x − q−1y
. (3.1)

Based on this operator Dxy, we construct the following homogeneous q-shift operator

F(aDxy) =
∞
∑

n=0

(−1)nq(
n

2)(aDxy)
n

(q; q)n
. (3.2)

The q-difference operator Dxy has the following basic properties.

Proposition 3.1. We have

Dk
xy{Pn(x, y)} =

(q; q)n
(q; q)n−k

Pn−k(x, y), (3.3)

Dk
xy

{

(yt; q)∞
(xt; q)∞

}

= tk
(yt; q)∞
(xt; q)∞

. (3.4)

Invoking (3.3), the Al-Salam-Carlitz polynomials Un(x, y, a; q) can be expressed in terms
of the homogeneous q-shift operator F(aDxy).
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Theorem 3.2. We have

Un(x, y, a; q) = F(aDxy) {Pn(x, y)} . (3.5)

By using (3.4), it is easy to derive the following relation.

Proposition 3.3. We have

F(aDxy)

{

(yt; q)∞
(xt; q)∞

}

=
(at, yt; q)∞
(xt; q)∞

. (3.6)

Combining (3.5) and (3.6), the generating function of Un(x, y, a; q) can be derived as
follows,

∞
∑

n=0

Un(x, y, a; q)
tn

(q; q)n
= F(aDxy)

{

∞
∑

n=0

Pn(x, y)
tn

(q; q)n

}

(|xt| < 1)

= F(aDxy)

{

(yt; q)∞
(xt; q)∞

}

=
(at, yt; q)∞
(xt; q)∞

.

The following identity will be used to derive Mehler’s formula.

Theorem 3.4. Assume |xs| < 1. We have

F(aDxy)

{

Pn(x, y)(ys; q)∞
(ys; q)n(xs; q)∞

}

=
(ysqn, as; q)∞

(xs; q)∞

n
∑

k=0

[

n

k

]

(−1)kq(
k

2)
(xs; q)k(y/x; q)n−k

(as; q)k
xn−kak.

(3.7)

Proof. Applying (3.5), the left hand side of the Rogers-type formula (2.4) equals

F(aDxy)

{

∞
∑

n=0

∞
∑

m=0

Pn+m(x, y)
tn

(q; q)n

sm

(q; q)m

}

= F(aDxy)

{

∞
∑

n=0

Pn(x, y)
tn

(q; q)n

∞
∑

m=0

Pm(x, qny)
sm

(q; q)m

}

(|xs| < 1)

= F(aDxy)

{

∞
∑

n=0

Pn(x, y)
tn

(q; q)n

(yqns; q)∞
(xs; q)∞

}

=

∞
∑

n=0

F(aDxy)

{

Pn(x, y)(ys; q)∞
(ys; q)n(xs; q)∞

}

tn

(q; q)n
. (3.8)

On the other hand, the right hand side of (2.4) can be restated as

(as, ys; q)∞
(xs; q)∞

∞
∑

k=0

(−1)kq(
k

2)(xs; q)k(at)k

(q; q)k(as, ys; q)k

∞
∑

l=0

(y/x; q)l
(q, ysqk; q)l

(xt)l. (3.9)

Equating the coefficients of tn in (3.8) and (3.9), we complete the proof.
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Applying the above operator identity, we obtain Mehler’s formula involving a terminating

3φ2 series.

Theorem 3.5. We have

∞
∑

n=0

(−1)nq−(n

2)Un(x, y, a; q)Un(u, v, b; q)
tn

(q; q)n

=
(abt, ybt, avt; q)∞

(xbt, aut; q)∞
3φ2

(

y/x, v/u, q/abt
q/xbt, q/aut

; q, q

)

, (3.10)

where y/x = q−r or v/u = q−r for a nonnegative integer r, and max{|xbtq−r|, |autq−r|} < 1.

Proof. Using (3.5), we find

∞
∑

n=0

(−1)nq−(n

2)Un(x, y, a; q)Un(u, v, b; q)
tn

(q; q)n

= F(aDxy)

{

∞
∑

n=0

(−1)nq−(n

2)Pn(x, y)Un(u, v, b; q)
tn

(q; q)n

}

= F(aDxy)

{

∞
∑

n=0

(−1)nq−(n

2)Pn(x, y)

(

n
∑

k=0

[

n

k

]

(−1)kq(
k

2)bkPn−k(u, v)

)

tn

(q; q)n

}

= F(aDxy)

{

∞
∑

n=0

(−1)nq−(n

2)Pn(u, v)Pn(x, y)tn

(q; q)n

∞
∑

k=0

Pk(x, qny)
(btq−n)k

(q; q)k

}

. (3.11)

The terminating condition v/u = q−r or y/x = q−r implies that the first sum in (3.11) is
finite. Utilizing (1.5), we see that (3.11) equals

∞
∑

n=0

(−1)nq−(n

2)Pn(u, v)tn

(q; q)n
F(aDxy)

{

Pn(x, y)

(ybtq−n; q)n

(ybtq−n; q)∞
(xbtq−n; q)∞

}

.

Applying (3.7) with s → btq−n, the above sum equals

∞
∑

n=0

(−1)nq−(n

2)Pn(u, v)tn

(q; q)n

(ybt, abtq−n; q)∞
(xbtq−n; q)∞

n
∑

k=0

[

n

k

]

(−1)kq(
k

2)
(xbtq−n; q)k(y/x; q)n−k

(abtq−n; q)k
xn−kak

=
(abt, ybt; q)∞

(xbt; q)∞

∞
∑

n=0

(−1)nq−(n

2)(abtq−n, y/x; q)nPn(u, v)(xt)n

(q; q)n(xbtq−n; q)n

∞
∑

k=0

Pk(u, vqn)
(atq−n)k

(q; q)k
,

(3.12)

Under the terminating condition, the above sum further simplifies to the right hand side of
(3.10). This completes the proof.

We remark that the second sums in (3.11) and (3.12) do not converge when n tends to
infinity. To avoid this problem, we may restrict our attention to the case that v/u = q−r or
y/x = q−r, where r is a nonnegative integer, as noticed by Askey and Suslov [4] and Fang [14].
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Owing to the symmetry property and the relation (1.8), Mehler’s formula for the Al-

Salam-Carlitz polynomials u
(a)
n (x; q) given by Al-Salam and Carlitz [2] can be recovered from

the above theorem by setting y/a → a, x/a → x, v/b → b, u/b → y,−abt → t.

Corollary 3.5.1 (Mehler’s formula for u
(a)
n (x|q)).

∞
∑

n=0

q−(n

2)u(a)
n (x; q)u(b)

n (y; q)
tn

(q; q)n
=

(−t,−at,−bt; q)∞
(−xt,−yt; q)∞

3φ2

(

a/x, b/y,−q/t
−q/xt,−q/yt

; q, q

)

, (3.13)

where a/x = q−r or b/y = q−r for a nonnegative integer r, and max{|xtq−r|, |ytq−r|} < 1.

4. The Cauchy Companion Operator

In this section, we apply the Cauchy companion operator defined by Chen [9] to derive the
Rogers-type formulas and Mehler’s formula without the terminating condition. Recall that
the Cauchy augmentation operator is defined by Chen and Gu [10],

T (a, b;Dq) =

∞
∑

n=0

(a; q)n
(q; q)n

(bDq)
n.

Moreover, Chen [9] introduced the Cauchy companion operator

E(a, b; θ) =

∞
∑

n=0

(a; q)n(−bθ)n

(q; q)n
. (4.1)

As observed by Chen [9], when one applies E(a, b; θ) to the product (cs, ct; q)∞/(cv; q)∞,
one does not get a valid identity by directly using q-Leibniz rule because of the convergence
consideration. Instead, we may use the following expansion for Dn

q

Dn
q {f(c)} = c−nq−(n

2)
n
∑

k=0

(−1)k
[

n

k

]

q(
n−k

2 )f(cqk).

In this way, we can deduce an alternative expansion for E(a, b; θ) which is convergent [9]

E(a, b; θ){f(c)} =
(abq/c; q)∞
(bq/c; q)∞

∞
∑

k=0

(a; q)kf(cq−k)q(
k

2)

(q, abq/c; q)k

(

−
bq

c

)k

, (4.2)

where |bq/c| < 1. Furthermore, we will be able to derive the Rogers-type formulas and a
Mehler’s formula without the terminating condition based on the following operator identities
established by Chen [9].

Proposition 4.1. Assume that the operator E(a, b; θ) acts on the parameter c, then

E(a, b; θ){cn} =

n
∑

k=0

[

n

k

]

(a; q)k(−bq)kcn−kq(
k

2)q−nk, (n ≥ 0), (4.3)

9



E(a, b; θ)

{

(ct; q)∞
(cv; q)∞

}

=
(ct; q)∞
(cv; q)∞

2φ1

(

a, t/v
q/cv

; q,
bq

c

)

, (|bq/c| < 1), (4.4)

E(a, b; θ)

{

(cs, ct; q)∞
(cv; q)∞

}

=
(abq/c, cs, ct; q)∞

(bq/c, cv; q)∞
3φ2

(

a, q/cs, q/ct
abq/c, q/cv

; q,
bst

v

)

,

(max{|bq/c|, |bst/v|} < 1). (4.5)

In the light of the property (4.3), we obtain the following operator representation of
Un(x, y, a; q).

Theorem 4.2. Assume that the operator E(y/x, x; θ) acts on the parameter a, then

E(y/x, x; θ){(−1)nq(
n

2)an} = Un(x, y, a; q). (4.6)

The above operator identity leads to another Rogers-type formula for the Al-Salam-Carlitz
polynomials.

Theorem 4.3. We have

∞
∑

n=0

∞
∑

m=0

(−1)nq−(n

2)−nmUn+m(x, y, a; q)
tn

(q; q)n

sm

(q; q)m
=

(as; q)∞
(at; q)∞

2φ1

(

y/x, s/t
q/at

; q,
xq

a

)

,

(4.7)

where max{|at|, |xq/a|} < 1.

Proof. By (4.6), the left hand side of (4.7) can be written as

∞
∑

n=0

∞
∑

m=0

(−1)nq−(n

2)−nmUn+m(x, y, a; q)
tn

(q; q)n

sm

(q; q)m

= E(y/x, x; θ)

{

∞
∑

n=0

∞
∑

m=0

(−1)mq(
m

2 )
antn

(q; q)n

amsm

(q; q)m

}

= E(y/x, x; θ)

{

∞
∑

n=0

antn

(q; q)n

∞
∑

m=0

(−1)mq(
m

2 )
(as)m

(q; q)m

}

(|at| < 1)

= E(y/x, x; θ)

{

(as; q)∞
(at; q)∞

}

.

Using (4.4), we complete the proof.

Applying the operator E(a, b; θ) one more time, we obtain following triple sum identity.

Theorem 4.4. We have

∞
∑

n=0

∞
∑

m=0

∞
∑

k=0

(−1)kq−(k

2)−(m+n)k−mnUn+m+k(x, y, a; q)
tn

(q; q)n

sm

(q; q)m

vk

(q; q)k

=
(yq/a, as, at; q)∞
(xq/a, av; q)∞

3φ2

(

y/x, q/as, q/at
yq/a, q/av

; q,
xst

v

)

, (4.8)

provided that max{|av|, |xq/a|, |xst/v|} < 1.
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Proof. By the operator identity (4.6), the left hand side of (4.8) equals

E(y/x, x; θ)

{

∞
∑

n=0

∞
∑

m=0

∞
∑

k=0

(−1)m+nq(
n

2)+(m

2 )
(at)n

(q; q)n

(as)m

(q; q)m

(av)k

(q; q)k

}

(|av| < 1)

= E(y/x, x; θ)

{

(as, at; q)∞
(av; q)∞

}

.

Applying the operator identity (4.5), we complete the proof.

Setting s → 0 and t → s, v → t and applying Jackson’s transformation formula [15,
III.4], the triple sum (4.8) reduces to the Rogers-type formula (4.7). The Cauchy companion
operator also applies to other Rogers-type formulas for the Al-Salam-Carlitz polynomials,
including the one given in the previous section. Moreover, we can also derive the following
Rogers-type formula

∞
∑

n=0

∞
∑

m=0

q−mnUn+m(x, y, a; q)
tn

(q; q)n

sm

(q; q)m

=
(yq/a, as, at; q)∞

(xq/a; q)∞
3φ1

(

y/x, q/as, q/at
yq/a

; q,
axst

q

)

,

where max{|xq/a|, |axst/q|} < 1. It should be noticed that the above formula is not a
consequence of the Rogers formula for the bivariate Rogers-Szegö polynomials hn(x, y|q) [13,
Theorem 3.1] by replacing q with q−1.

We now present Mehler’s formula without the terminating condition.

Theorem 4.5. We have

∞
∑

n=0

(−1)nq−(n

2)Un(x, y, a; q)Un(u, v, b; q)
tn

(q; q)n

=
(yq/a, abt, avt; q)∞

(xq/a, aut; q)∞
3φ2

(

y/x, q/abt, q/avt
yq/a, q/aut

; q,
xbvt

u

)

, (4.9)

provided that max{|aut|, |xq/a|, |xbvt/u|} < 1.

Proof. Using (4.6) and (1.3), we find

∞
∑

n=0

(−1)nq−(n

2)Un(x, y, a; q)Un(u, v, b; q)
tn

(q; q)n

= E(y/x, x; θ)

{

∞
∑

n=0

Un(u, v, b; q)
(at)n

(q; q)n

}

(|aut| < 1)

= E(y/x, x; θ)

{

(avt; abt; q)∞
(aut; q)∞

}

.

So the proof is completed by using the operator identity (4.5).

Comparing the above Mehler’s formula with the terminating form (3.10), it leads to the
following transformation formula for 3φ2 series.
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Corollary 4.5.2. We have

3φ2

(

y/x, q/abt, q/avt
yq/a, q/aut

; q,
xbvt

u

)

=
(ybt, xq/a; q)∞
(xbt, yq/a; q)∞

3φ2

(

y/x, v/u, q/abt
q/xbt, q/aut

; q, q

)

, (4.10)

provided that v/u = q−r for a nonnegative integer r.

5. Generating Functions for Products of Un(x, y, a; q)

The objective of this section is to give several generating function formulas for products of the
Al-Salam-Carlitz polynomials by using the Cauchy companion operator. Keep in mind that
the Al-Salam-Carlitz polynomials are extensions of the Rogers-Szegö polynomials defined by

gn(a|q) =

n
∑

k=0

[

n

k

]

qk(k−n)ak.

It is easily seen that

Un(0, 1, a; q) = (−1)nq(
n

2)gn(a|q).

Theorem 5.1. We have

∞
∑

n=0

∞
∑

m=0

(−1)n+mq−(n+m

2 )Un+m(x, y, a; q)Un(u, v, b; q)Um(z,w, c; q)
tn

(q; q)n

sm

(q; q)m

=
(yq/a, abt, avt, acs, aws; q)∞

(xq/a, aut, azs; q)∞
5φ3

(

y/x, q/abt, q/avt, q/acs, q/aws
yq/a, q/aut, q/azs

; q,
xabcvwts

uzq

)

,

provided that max{|xq/a|, |aut|, |azs|} < 1.

Proof. By the operator identity (4.6) acting on the parameter a, we obtain

∞
∑

n=0

∞
∑

m=0

(−1)n+mq−(n+m

2 )Un+m(x, y, a; q)Un(u, v, b; q)Um(z,w, c; q)
tn

(q; q)n

sm

(q; q)m

= E(y/x, x; θ)

{

∞
∑

n=0

∞
∑

m=0

Un(u, v, b; q)Um(z,w, c; q)
(at)n

(q; q)n

(as)m

(q; q)m

}

. (5.1)

Employing the generating function (1.3) with max{|aut|, |azs|} < 1 and the operator identity
(4.2) with |xq/a| < 1, we see that (5.1) equals

E(y/x, x; θ)

{

(abt, avt; q)∞(acs, aws; q)∞
(aut; q)∞(azs; q)∞

}

=
(yq/a; q)∞
(xq/a; q)∞

∞
∑

k=0

(y/x; q)kq(
k

2)

(q, yq/a; q)k

(

−
xq

a

)k (abtq−k, avtq−k, acsq−k, awsq−k; q)∞
(autq−k, azsq−k; q)∞

,

as desired. This completes the proof.

Setting x, u, z → 0 and y, v, w → 1, the above theorem reduces to the following generating
function formula for the Rogers-Szegö polynomials gn(x|q).
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Theorem 5.2. We have

∞
∑

n=0

∞
∑

m=0

(−1)n+mq(
n

2)+(m

2 )gn+m(a|q)gn(b|q)gm(c|q)
tn

(q; q)n

sm

(q; q)m

= (q/a, at, abt, as, acs; q)∞ 4φ1

(

q/at, q/abt, q/as, q/acs
q/a

; q,
a3bct2s2

q3

)

. (5.2)

It should be noted that Cao has considered the same generating function and obtained
a double summation formula, see [7, Theorem 4.4]. Using similar arguments, we can derive
several other generating function formulas for products of Un(x, y, a; q). The detailed proofs
are omitted.

Theorem 5.3. Assume max{|xq/a|, |aut|} < 1. We have

∞
∑

n=0

(−1)n+mq−(n+m

2 )Un+m(x, y, a; q)Un(u, v, b; q)
tn

(q; q)n

=
(yq/a, abt, avt; q)∞

(xq/a, aut; q)∞
am

3φ2

(

y/x, q/abt, q/avt
yq/a, q/aut

; q,
xbvt

uqm

)

.

Letting x, u → 0, y, v → 1 and applying the transformation formula for 2φ1 series [15,
Appendix III.2], we are led to the following formula due to Cao [7, Theorem 4.1],

∞
∑

n=0

(−1)nq(
n

2)gn+m(a|q)gn(b|q)
tn

(q; q)n

=
(abt, at, bt, t; q)∞

(abt2/q; q)∞

(q/t; q)m
(bt/q)m(q2/abt2; q)m

2φ1

(

q−m, q/abt
tq−m ; q, bt

)

.

Theorem 5.4. Assume max{|xq/a|, |uq/b|} < 1. We have

∞
∑

n=0

∞
∑

m=0

∞
∑

k=0

(−1)kq−(k

2)−(n+m)kUn+k(x, y, a; q)Um+k(u, v, b; q)
tn

(q; q)n

sm

(q; q)m

zk

(q; q)k

=
(yq/a, vq/b, bs, at, abz; q)∞

(xq/a, uq/b; q)∞

∞
∑

k=0

(−1)kq−(k

2)(y/x, q/at, q/abz; q)k
(q, yq/a; q)k

(xabtz

q

)k

× 3φ1

(

v/u, q/bs, qk+1/abz
vq/b

; q,
abusz

qk+1

)

.

Setting x, u → 0, y, v → 1 , we obtain

∞
∑

n=0

∞
∑

m=0

∞
∑

k=0

(−1)n+m+kq(
n

2)+(m

2 )+(k

2)gn+k(a|q)gm+k(b|q)
tn

(q; q)n

sm

(q; q)m

zk

(q; q)k

= (q/a, q/b, bs, at, abz; q)∞

∞
∑

k=0

(q/at, q/abz; q)k
(q, q/a; q)k

(abtz

q

)k

2φ1

(

q/bs, qk+1/abz
q/b

; q,
absz

qk+1

)

.
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Because of the convergence requirement, we should assume that q/at = q−r and |absz/qr+1| <
1. Under this condition, the 2φ1 series in the above expression can be summed by the q-Gauss
formula [15, Appendix (II.8)]. It follows that

∞
∑

n=0

∞
∑

m=0

∞
∑

k=0

(−1)n+m+kq(
n

2)+(m

2 )+(k

2)gn+k(a|q)gm+k(b|q)
tn

(q; q)n

sm

(q; q)m

zk

(q; q)k

=
(q/a, s, at, az, bs, abz; q)∞

(absz/q; q)∞
3φ2

(

q−n, q/az, q/abz
q/a, q2/absz

; q,
atz

s

)

.

It should mentioned that the terminating condition t/v = q−r is overlooked in the operator
identity of Zhang and Wang [19, Theorem 2.5], and the same condition is required concerning
the identity of Cao [7, Eq. (2.9)].

Theorem 5.5. Assume max{|xq/a|, |vq/b|} < 1. We have

∞
∑

k=0

(−1)m+n+kq−(n+k

2 )−(m

2 )−mkUn+k(x, y, a; q)Um+k(u, v, b; q)
zk

(q; q)k

=
(yq/a, vq/b, abz; q)∞

(xq/a, uq/b; q)∞
anbm

∞
∑

k=0

(y/x, q/abz; q)k
(q, yq/a; q)k

(xbz

qn

)k

2φ1

(

v/u, qk+1/abz
vq/b

; q,
auz

qm+k

)

.

Setting x, u → 0, y, v → 1, we deduce that

∞
∑

k=0

(−1)kq(
k

2)gn+k(a|q)gm+k(b|q)
zk

(q; q)k

= (q/a, q/b, abz; q)∞anbm
∞
∑

k=0

(−1)kq(
k

2)(q/abz; q)k
(q, q/a; q)k

( bz

qn

)k

1φ1

(

qk+1/abz
q/b

; q,
az

qm+k

)

,

which can be deduced from the formula of Cao [7, Theorem 4.3] by three transformations,
namely, the the limiting case of [15, Appendix (III.2)] when c → 0, the two transformations
[15, Appendix (III.2)] and [15, Appendix (III.7)].
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