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Abstract

We show that the Akiyama-Tanigawa algorithm and Chen’s variant for computing Bernoulli
numbers can be generalized to Carlitz’s ¢-Bernoulli numbers. We also put these algorithms
in the larger context of generalized Euler-Seidel matrices.

1. Introduction

Carlitz [?] introduced the ¢-Bernoulli numbers (3, (n > 1) by the recurrence:

n L ifn=1
where 3y = 1 and 3, = 3" after expansion. The first few values of 3, are
1 q (¢—1)q
= ]_ = —— — = —
/60 ) 61 [2] ) ﬁ? /63 [3] [4] )

213"
where [n] = (1 — ¢")/(1 — q) and [n]! = [1][2]...[n]

following explicit formula (see [?]):

(q—1)"Bn = zn:(—l)”—" (Z”) %

for n > 0. More generally we have the

Recently, Akiyama and Tanigawa’s amazing algorithm for computing Bernoulli num-
bers [?] has attracted the attention of several authors [?, 7, ?]. One of our aims is to show
that there is an analogue algorithm for Carlitz’s ¢-Bernoulli numbers as follows: start with

the 0-th row 1, [71], [‘_}3]’ [Ti]’ [—;)], ... and define the first row by

() (g ()
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which produces the sequence [%], f—;], %7 .... Then define the next row by

8 R )

o 2l¢* [3]¢®
thus giving TQ[B]’ [3]&}, [4}%}, .

0,1,2,...) coefficient in the n-th (n = 0,1,2,...) row by a,,, then the following recurrence
relation holds:

as the second row. In general, denoting the m-th (m =

an,m = [m + 1] : (an—l,m - an—l,m-‘rl) (m 2 O>n 2 1) (2)

We claim that the 0-th component a, o of each row is just the n-th g-Bernoulli number g,
for n > 2.

Chen [?] gave a variant of the Akiyama and Tanigawa algorithm, which generates the
Bernoulli numbers starting from n = 1. We have also a g-version of Chen’s algorithm for
g-Bernoulli numbers as follows: if we replace (??) by the following equation

Apm = [m]an—l,m - [m + 1]an—1,m+1 (m Z 07 n 2 ]-)7 (3)
then the 0-th component a, o of each row is just the n-th g-Bernoulli number (3, for n > 1.

The validity of these algorithms is based on two facts: the first one (Theorem 1) relates
the 0-th component a,o of each row to the initial sequence ag,, by means of ¢-Stirling
numbers of second kind, and the second one gives two explicit formulae (Theorem 2) of the
g-Bernoulli numbers in terms of ¢-Stirling numbers of second kind.

Recall [?] that the g-Stirling numbers of second kind {Z}q are defined by the recurrence:

R R R .

where {g‘}q = {g}q = 0 except {8}q =1.

Theorem 1. Let (a,),>0 be a sequence in a commutative ring. If we define the array
(@nm)mm>0 bY Qom = @, for m >0 and the recurrence (77), then

& n+1

o= XV o 020 )
k=0 q

and if we use the recurrence (??) instead of (77?), then

n

ano = > (—1)*[K]! {Z}qao,k (n > 0). (6)

k=0

We shall give the first proof of Theorem 1 in Section 2 by using ¢-differential operator and
generating functions, and the second one in Section 4 by applying Theorem 3 in Section 4.
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Theorem 2. We have

=0} G =, )

and

w=Y {0 w022 s)

Note that Eq. (?7?) was already given by Carlitz [?]. For the sake of completeness we
shall include a proof of Theorem 2 in Section 3, which is essentially due to Carlitz [?].

The definition of the Akiyama-Tanigawa algorithm is reminiscent of the so-called Euler-
Seidel matrix, a term coined by Dumont [?]. Recall that the Euler-Seidel matrix associated
to a sequence (a,) is an infinite matrix (an,,) (n > 0,m > 0) given by the recurrence
ano = a, (n >0) and

pm = Qpn—-1,m + Ap—1,m+1 (m > O,H > 1)

The sequence (ag,,), first row of the matrix, is called initial sequence, while the sequence
(an), first column of the matrix, is called the final sequence. Note that the Euler-Seidel

matrix may be used as a simple device for computing its initial and final sequences quickly,
see Arnold [?, ?] and Dumont [?].

In the following theorem we shall unify the Akiyama-Tanigawa type algorithms and
the classical Euler-Seidel matrices and prove a general formula about the corresponding
coefficients.

Theorem 3. Let (z,), (Ym) and (z,) (m > 0) be three sequences in a commutative ring.
The generalized Euler-Seidel matriz (a,m) (n,m > 0) associated to (x,,) is defined by ag m, =
T (m >0) and

Anm = YmAn—1,m + AmAn—1,m+1 (m 2 07 n Z ]-) (9)
Then
Z$m+k <H Zm+]> n—k ym7 Ym+1y -+ - aym-‘rk)a (10)
where hy(z1, ... ,z.) is the n-th complete symmetric function of z1, ... ,z. defined by

Zh (z 2 )t = L
oo %) (1—2t) (1= 29t) - (1 — 2,8)

n>0

In particular, we have
k—1

no = Zl’k (H ]) ke (Y0s Y15 - -+ 5 Y)- (11)

7=0

We will prove Theorem 3 and give some applications in Section 4. In particular, we shall
derive an alternative proof of Theorem 1.
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2. Proof of Theorem 1

For any formal power series f(z) denote by D, the g-derivative operator:

flgr) - f(x)

qu($>: (q—l)x

We will need the two associated operators:

Aq:]'_(]'_xq>DlI7
3, = (x —1)D,.

For n > 0 define (z;¢q)o = 1 and (z;¢), = (1 — 2)(1 — zq)...(1 — x¢"'). The following
formulas are easy to prove once discovered.

Lemma 1. Forn > 1 we have

n

Ay = Z(—l)'“{Z::} (q; q)x Dy, (12)
o = S} @Dt (13)
k=0 q

Proof. We proceed by induction on n > 1. It is easy to check (?7) and (?7) for n = 1. For
example we have

2 2
qul—(l—xq)Dq:{l} —{2} (1—-2q)D,=1—-(1—2q)D,.
q q
Note that D,(z™) = [nJz"! and

D, ((xq:q)n) = —q[n]o(z¢®; @)1,
Dq((x§Q)n> = _[n]q<xQ§Q)n—1-

Suppose the formulas are true for n. Then, using the rule

Dy(f(x)g(x)) = f(x)Dy(g(x)) + g(qz)Dy(f (),
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and the induction hypothesis we have

n+1
A7 =

and

n+1
6‘]

(= =ep) S0 {3 1} s,

zn:(—l)k {n +1 }q [k + 1]4(xq; ) D

— E+1

- n+1
- (_1)k{ } ($Q§Q)k+1DkH
Z k- + ]_ . q

k=0

{”Tl}ﬁ;(—l)’“ ([HH{ZEL*{H?}Q) (o 0s

+(=1)"*H {ZI 1} (zq; Q)n+1D2L+1
RZH(—l)’“ {Zii} (zq; @)1 DY,
— (z—-1)D, i {Z}q (x = 1)(zg—1)...(z¢" " —1)DF
_ i {Z}q K](x — 1)(zq —1)... (zg" — 1)DF

This completes the proof.

Remark: A g-analogue of (z-L)" =37 {"} " (d%)k is the following formula:

o)=Y {7} 2t}
k=0

which can be verified easily by induction on n.
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We are now ready to prove Theorem 1. For fixed n > 0, consider the generating function
of any (k> 0) defined by (?7):

gn() = anpz® = D [k+ 1(an-1k — Aoy per)a”
k=0 k=0

9] 00
— E k+1 E k+1
- Dq Ap—1 kT - Dq Ap—1k+1T
k=0 k=0

= Dy(2gn-1(x)) = Dy(gn-1(7) — @n_1,)
= gn1(®) + (vq¢ — 1) Dy(gn-1(z))
= Ay(gn-1()).

By iteration g,(z) = A7 (go(z)) and Lemma 1 implies that

gule) = 3 (-1 {” * 1} (1= 2g)(1 - 2g?). .. (1 — ") D¥(go ).

— kE+1
Putting = = 0 in the above equation yields (?7).

Similarly, we consider the generating function of a, x (k > 0) defined by (?7):

ha(z) =Y anpa® = > ([Klan-1x — [k + an_y pe1)a”
k=0 k=0

oo
_ k k+1
= zD, (E Ap—1 kT ) - D, (E Ap—1 k1T )
k=0 k=0

= 2Dq(hn-1(x)) = Dyg(hn-1(2) = an-1,)
= 0g(hn1(z)).
Thus h,(x) = 0, (ho(x)) and Lemma 1 implies that

ha(@) =Y {1} @=D@a = 1) (e = 1)DE(ho(w)).

k=0 1
Putting x = 0 in the last equation yields (77).
Now, if we take ag,,, = 1/[m+ 1] in Theorem 1 and apply algorithm (?7), then it follows

from (??) and (??) that a, o = B, for n > 2; while applying algorithm (??) will yield that
ano = By for n > 1 by (?77) and (77).

3. Proof of Theorem 2

Let [x] = (¢°* —1)/(¢ — 1). For integer s > 0 define [z|s = [z][z — 1] --- [z — s + 1] and the
g-binomial coefficient [?] = [x],/[s]!.
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Let n9, m1,1m2, ... be a sequence such that by ny =1, n; = 0 and

i (?) qni=nm  (m>1). (14)

=0

We define the polynomials 7,,(z) (m > 0) in ¢* by

) =3 (0 e (15)

Then 7,,(0) = n,, and
et =3 (7 )l (16

Indeed, substituting n;(y) by (?7) and exchanging the order of summations in the right-hand
side of (?77?) yields

iim (y) " e = i(?)w““y mZ( ) i (g )’

7=0 i=j 0 1=

<.
Il

M

i
o

(% Y= 1+ )™

<

(ac+y)

NE

T
)

m
njle +yl™"

J

which is equal to n,,(x + y) by (?7?).

Setting x = 1 in (??) we see that 7,,(1) = n,, for m > 1. It follows from (??) with y =1
that for m > 0,

— m —1i iz x m—
o+ 1) = () = 3 () 1) = mlal" ' = e (1)
i=0
It follows that for k& > 1,
k—1 =
ZOqM Eiiiﬁn@+) Mm (1))
1

= 7(77m+1<k) - nm—l-l)

1 m+1 m—+1 i (m+l—i)k (m+1)k Nm+1
= — ; [k]'q Nmt1—i + (g - 1)m7—|—1° (18)
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On the other hand, it is readily seen by induction on n > 1 that

x":i{k} w(e —[1])... (z — [k — 1)), (19)

q

Therefore

Zqi[i]m =

where we used the identity for ¢-binomial coefficients:

Sa[]-[.4)

i=s

k—1

7

qliqs 51/ {T;%}q i, — zm:qs(sm/z {Zl}q % (20)

=0 s=1

Combining (??) and (??) we obtain a polynomial identity on ¢*. Dividing both sides by [k]
and setting k = 0 leads to

—1],
nm+(q_1nm+1 querl/Z{ } [ ] .

q[s+1]

Now, it remains to prove S, = M + (¢ — 1)Nme1. Indeed, the sequence 1, + (¢ — 1)np41
satisfies the recurrence (77?) for n > 1:

qg(?)qi(nﬁ D)7i1) —QZ( >qm q—l)g(ifl>qini

=1

=q?7n+(q—1):§11 ((njl - (7)) '

=@+ (¢ — 1) Moy — 1)
=1+ (¢ — 1)1

This completes the proof of (?7).

For n > 2, simplifying z in (??7) and setting z = 0 we get

ozi(—1)m{:l}q[m—1]!. (21)

m=1
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Now, using (??) we have

n

n ! ~ k n n !
kz:%(—l)k { i _—:: 1 }q [k[lﬂ 1] - Z(_l) <{k}q + [k + 1] {k‘ +1 }q) [k[lﬂ 1]
LI (—1)k{ ],

Il
|
—_
=
—
> 3
——
2
B
+
=
+
ol
+ 3
—_

Formula (?7?) follows then from (??) and (?77).

4. Proof of Theorem 3 and applications

By induction on n > 0. The formula is clear for n = 0 and n = 1. Suppose that the formula
is true until n > 1. Then

Ap+1,m = YmAnm + ZmAn,m+1

n
= Ym g Tm+kfm - - - Zm+k71hnfk(ym7 ce 7ym+k)
k=0

n
+ Zm E Tm4k+12m+1 - - - Zerkhnfk(merla s >ym+k+1>
k=0

= xmy;l:_l + Z Tm+kZm - - - Zm+k—1(ymhn—k(ym7 ce aym—i-k) + hn—k—i—l (ym-i-l; cee 7ym+k))
k=1

+ Tm4+n+12m -+ - Bm+n-
Since Yomhn—k(Ymy -+ s Ymak) Fhnkr1(Umats - -+ Ymak) = Pnak—1(Yms - - - Ymak), We are done.

The following examples are special cases of Theorem 3:
e if y,, = z,, = 1, we recover the so-called Euler-Seidel matrix (see [?]) associated to the
initial sequence z,, (m > 0).

e if 2, = ¢ and y,, = 1, then we recover the g-Seidel matrix introduced by Clarke,
Han and Zeng [7].

e if 2,, = —Yy,,, then Theorem 3 reduces to a result of Lascoux [?].

o if y,, = —2,, = [m+ 1] and z,,, = 1/[m + 1], then this is our g-analogue of the
Akiyama-Tanigawa algorithm. Indeed, it is readily seen that

n n th
Z{k}qt SO0 =20... (=)

n>k
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which yields the explicit formula: {Z}q = hn—r([1], ..., [k]), so
n+1
= hn—x([1],..., [k +1]).
{,m}q (1, T+ 1)

Eq. (??) follows then from (??) with the above specializations.
e if y,, = [m] and z,, = —[m + 1] and z,,, = 1/[m + 1], this is our g-analogue of Chen’s

algorithm and (?7?) follows directly from (?7).

It may be worth pointing out that it is possible to write explicitly the general coefficients
@pm in Theorem 1, because

Bor([m), ... [m+ k]) = Z(_1)kiq—k<m+i>+(’tl)%. (22)

Indeed, there holds

(1 — 20t)(1 — 2z1t) ... (1 — zt)

k _
1 i Hj:[],j;éi(l — zj/z) 7!

0 1-— Zzt

Equating the coefficients of t" (n > 0) in the two sides yields

ho(zoy -y 28) = Z H (1— zj/zi)’l 2,

i=0 j=0,j#i

which gives (?7) by taking z; = [m + ] for i =0,... , k.
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