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Abstract

We consider the transformation proposed by Akiyama and Tanigawa to obtain the
Bernoulli numbers and extend it to other important sequences. We also show its connec-
tion to two particular Riordan Arrays, which allow us to prove a number of combinatorial
sums related to the transformation.

Keywords: Bernoulli numbers, combinatorial sum inversion, Riordan arrays, Stirling numbers.

1. Introduction

During his recent visit to our Department in Florence, Zhi-Wei Sun gave a seminar
related to [10] and cited some papers of M. Kaneko, among which was [2] “The Akiyama
- Tanigawa algorithm for Bernoulli numbers”. The algorithm consists in writing in a row
the sequence 1, 1/2, 1/3, . . . and then forming successive rows by applying a well-defined
rule. If we denote the starting row by a0,0 = 1, a0,1 = 1/2, a0,2 = 1/3, · · · and, in general
a0,n−1 = 1/n, then the rule defining an+1,k is:

an+1,k = (k + 1)(an,k − an,k+1). (1.1)
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The infinite matrix thus obtained is:

0 1 2 3 4 5
0 1 1/2 1/3 1/4 1/5 1/6
1 1/2 1/3 1/4 1/5 1/6 1/7
2 1/6 1/6 3/20 2/15 5/42 3/28
3 0 1/30 1/20 2/35 5/84 5/84
4 −1/30 −1/30 −3/140 −1/105 0 · · ·
5 0 −1/42 −1/28 −4/105 · · · · · ·

and we can easily recognize in column 0 the sequence of the Bernoulli numbers, with the
term B1 having positive sign. As it is well-known, the exponential generating function
(e.g.f. for short) of the Bernoulli numbers is: B(t) = t/(et − 1), and therefore the e.g.f.
for column 0 should be:

B∗(t) =
t

et − 1
+ t =

tet

et − 1
.

In his paper, M. Kaneko proves that the Akiyama - Tanigawa method actually pro-
duces the Bernoulli numbers, and extends this result to poly-Bernoulli numbers. However,
in our opinion, the important point in the paper is a remark that the author ascribes to
an anonymous referee: if a(t) is the ordinary generating function (o.g.f. for short) of the
starting sequence, i.e., a(t) = a0,0 +a0,1t+a0,2t

2 + · · ·, then the sequence in column 0 has
the exponential generating function b(t) given by: b(t) = eta(1 − et). This observation
creates a link between the Akiyama - Tanigawa algorithm and Riordan Arrays, a link
which is worthy of being studied and allows us to extend the method to other interesting
sequences.

The paper is organized in the following way. In Section 2 we give a proof of the ref-
eree’s remark, make explicit the connection with Riordan Arrays and give other examples
of the Akiyama - Tanigawa algorithm. In Section 3 we show which other sequences can
be generated by reversing the algorithm, starting with column 0 and arriving to row 0.

2. The Akiyama - Tanigawa transformation

Let a(t) = a0(t) be the o.g.f. of the starting sequence, i.e., of the row 0 in the Akiyama
- Tanigawa matrix. It is possible to find an expression for the o.g.f. an(t) of any row
in this matrix and then to establish a formula for the elements in column 0, by simply
computing an(t) at t = 0, denoted1 by an(0). Let us begin with the defining expression
(1.1), and apply to it the generating function operator G, i.e., the operator that transforms
a sequence {an}n∈N into the corresponding o.g.f.:

G{an+1,k} = G{kan,k}+ G{an,k} − G{(k + 1)an,k+1}.
1We try to be consistent with our notations: an(t) is the g.f. of row n; an = a0,n is the n-th element

in row 0, the o.g.f. of which is denoted by a(t) = a0(t).
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If we denote by D the differentiation operator with respect to the indeterminate t, i.e.,
D = d/dt, the usual rules of the G operator show that we have:

an+1(t) = tDan(t) + an(t)−Dan(t) = an(t)− (1− t)Dan(t).

Therefore, we pass from a row in the Akiyama - Tanigawa matrix to the next by
applying the operator2 ∆ = 1− (1− t)D, or, in other words, the o.g.f. an(t) of row n is
given by an(t) = ∆na0(t). The next step is to determine an explicit form for ∆n.

Theorem 2.1 The operator ∆n has the form:

∆n =
n∑

k=0

(−1)k
{
n+ 1

k + 1

}
(1− t)kDk,

where
{

n
k

}
denotes a Stirling number of second kind (see, e.g., [1]).

Proof: For n = 0 this expression becomes ∆0 = 1, where 1 denotes the identity operator.
For n = 1 we have:

∆ = 1− (1− t)D =

{
2

1

}
−
{

2

2

}
(1− t)D

this being the defining relation. Therefore, let us proceed by mathematical induction by
computing:

∆n+1 = ∆∆n =
n∑

k=0

(−1)k
{
n+ 1

k + 1

}
∆(1− t)kDk.

Now we have:

∆(1− t)kDk = (1− t)kDk + k(1− t)kDk − (1− t)k+1Dk+1 =
= (k + 1)(1− t)kDk − (1− t)k+1Dk+1,

hence:

∆n+1 =
n∑

k=0

(−1)k(k + 1)

{
n+ 1

k + 1

}
(1− t)kDk −

n∑
k=0

(−1)k
{
n+ 1

k + 1

}
(1− t)k+1Dk+1 =

=
n+1∑
k=0

(−1)k(k + 1)

{
n+ 1

k + 1

}
(1− t)kDk +

n+1∑
k=1

(−1)k
{
n+ 1

k

}
(1− t)kDk =

=
n+1∑
k=0

(−1)k
{
n+ 2

k + 1

}
(1− t)kDk,

2Usually, the symbol ∆ denotes the difference operator, but this operator will not be used here.
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where we used the recurrence relation for the Stirling numbers of the second kind:

(k + 1)

{
n+ 1

k + 1

}
+

{
n+ 1

k

}
=

{
n+ 2

k + 1

}
.

This proves the formula given by the theorem. 2

At this point, we have the announced formula for the elements in column 0 of the
Akiyama - Tanigawa matrix:

Theorem 2.2 If a(t) is the o.g.f. of row 0 in any Akiyama - Tanigawa matrix and
bn = an(0) is the n-th element of column 0, then we have:

bn =
n∑

k=0

(−1)k
{
n+ 1

k + 1

}
k!ak. (2.1)

Proof: The previous theorem gives us the formula for an(t), the o.g.f. of row n; the
constant term is obtained by setting t = 0 and so we have:

bn =
n∑

k=0

(−1)k
{
n+ 1

k + 1

}
Dka(0),

and since Dka(0) = k!ak is the well-known rule of the differentiation operator, the formula
is proved. 2

Instead of limiting ourselves to any specific case, let us continue with general consid-
erations. The concept of a Riordan Array was introduced by Shapiro et al. [8] and then
used in various ways [3, 4, 5, 6, 9], especially to perform combinatorial sums. In general,
a Riordan Array is a couple of formal power series R = (d(t), h(t)), which defines an
infinite, lower triangular array {dn,k}n,k∈N by the rule:

dn,k = [tn]d(t)(th(t))k, (2.2)

where [tn] denotes “the coefficient of operator”, that is [tn]f(t) = [tn]
∑

k≥0 fkt
k = fn. We

write (d(t), h(t)) = R(dn,k). Here, we only consider the case in which d(0) = h(0) = 1,
but other cases can also be of interest. Riordan Arrays generalize well-known cases
of infinite, lower triangular matrices, as the Pascal, Catalan, Motzkin and Schröder
triangles, but their main property (at least from our present point of view) is their
capability in performing combinatorial sums through the use of generating functions.
In fact, if R = (d(t), h(t)) is any Riordan Array and f(t) is the o.g.f. of any sequence
f0, f1, f2, · · ·, then we have:

n∑
k=0

dn,kfk = [tn]d(t)f(th(t)). (2.3)
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For example, since P = (1/(1− t), 1/(1− t)) is the Riordan Array corresponding to the
Pascal triangle, every sum involving the simple binomial coefficients can be executed by
the so-called Euler transformation:

n∑
k=0

(
n

k

)
fk = [tn]

1

1− t
f

(
t

1− t

)
.

In [9] we have shown many applications of this method, which allows us also to perform
sums involving Stirling numbers of first and second kind, since they correspond to the
two Riordan Arrays:

R
(
k!

n!

[n
k

])
=

(
1,

1

t
ln

1

1− t

)
and R

(
k!

n!

{n
k

})
=

(
1,
et − 1

t

)
,

where
[
n
k

]
denotes a Stirling number of first kind (see, e.g., [1]). In the present case, we

are mostly interested in the related Riordan Array:(
et,

et − 1

t

)
= R

(
k!

n!

{
n+ 1

k + 1

})
.

This correspondence is easily proved by means of the defining relation (2.2):

dn,k = [tn]et(et − 1)k = [tn](et − 1)k+1 + [tn](et − 1)k =

=
(k + 1)!

n!

{
n

k + 1

}
+
k!

n!

{n
k

}
=
k!

n!

(
(k + 1)

{
n

k + 1

}
+
{n
k

})
=
k!

n!

{
n+ 1

k + 1

}
,

where, again, we have used the basic recurrence for the Stirling numbers of the second
kind. At this point, we have a proof of the referee’s observation:

Theorem 2.3 If a(t) is the o.g.f. of row 0 and b(t) is the e.g.f. of column 0 in any
Akiyama - Tanigawa matrix, then we have:

b(t) = eta(1− et). (2.4)

Proof: Formula (2.1) can be written as follows:

bn = n!
n∑

k=0

k!

n!

{
n+ 1

k + 1

}
(−1)kak;

the o.g.f. of (−1)kak is a(−t) and by (2.3), together with the previous considerations
about the Riordan Array (et, (et − 1)/t), we have:

bn = n![tn]eta(1− et),

as desired. 2
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As noted by the referee of the Kaneko paper, the case studied by Akiyama e Tanigawa
is a(t) = − ln(1− t)/t and consequently we have:

bn = n![tn]
et

1− et
ln

1

1− 1 + et
= n![tn]

tet

et − 1
=

= n![tn]

(
t

et − 1
+ t

)
= Bn + δn,1,

where δn,k is the Kronecker symbol. This is just the Riordan Array approach to prove
combinatorial sums; in this case we have proved:

n∑
k=0

{
n+ 1

k + 1

}
(−1)kk!

k + 1
= Bn + δn,1. (2.5)

As a direct consequence of the previous theorem, we obtain a number of well-known
sequences; here is a short list of possible applications, most of which we leave to the
interested reader for verification. A simple Maple program can be written to generate
the upper left corner of the infinite Akiyama - Tanigawa matrix.

Example 2.1 If we start with the sequence: 0, 1, 1/2, 1/3, · · ·, the generating function
of which is a(t) = − ln(1− t), we get:

bn = n![tn]
et

1− 1 + et
= n![tn](−t)et = −n![tn−1]et = −n.

This is the proof of the following combinatorial sum:

n∑
k=1

{
n+ 1

k + 1

}
(−1)k(k − 1)! = −n.

The Akiyama - Tanigawa matrix is rather curious:

0 1 2 3 4
0 0 1 1/2 1/3 1/4
1 −1 1 1/2 1/3 1/4
2 −2 1 1/2 1/3 1/4
3 −3 1 1/2 1/3 1/4
4 −4 1 1/2 1/3 1/4

Example 2.2 Starting with the sequence 1,−1, 1,−1, · · ·, having o.g.f. a(t) = 1/(1 + t),
we get:

bn = n![tn]
et

2− et
= n![tn]

2

2− et
− 1 = n![tn]2O(t)− 1 = 2On − δ0,n,
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where O(t) is the e.g.f. of the ordered Bell numbers:

O(t) =
1

2− et
= 1 + t+

3

2!
t2 +

13

3!
t3 +

75

4!
t4 +

541

5!
t5 + · · · .

The corresponding combinatorial sum is:

n∑
k=0

{
n+ 1

k + 1

}
k! = 2On − δ0,n.

Example 2.3 Starting with the sequence 1, 1, 1, 1, . . ., the generating function of which
is a(t) = (1− t)−1, we obtain:

bn = n![tn]
et

1− 1 + et
= n![tn]1 = δn,0;

The Akiyama - Tanigawa matrix is rather peculiar and the corresponding combinatorial
sum is:

n∑
k=0

{
n+ 1

k + 1

}
(−1)kk! = δn,0.

Example 2.4 Starting with the sequence 1, 0, 0, 0, . . ., the generating function of which
is a(t) = 1, we obtain:

bn = n![tn]et = 1.

This is the rather obvious combinatorial sum:

n∑
k=0

{
n+ 1

k + 1

}
δk.0 =

{
n+ 1

1

}
= 1.

Example 2.5 Starting with the sequence 0,−1, 0, 0, . . ., the generating function of which
is a(t) = −t, we obtain:

bn = n![tn]et(et − 1) = n!

(
2n

n!
− 1

n!

)
= 2n − 1.

This also is a simple combinatorial sum:

n∑
k=0

{
n+ 1

k + 1

}
(−1)k−1k!δk,1 =

{
n+ 1

2

}
= 2n − 1.

Example 2.6 Starting with the sequence of harmonic numbers Hk, the generating func-
tion of which is a(t) = − ln(1− t)/(1− t), we obtain:

bn = n![tn]
et

1− 1 + et
ln

1

1− 1− et
= n![tn](−t) = −δn,1.
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The reader is invited to write down the Akiyama - Tanigawa matrix for this example.
When we did so, we were puzzled by the matrix, but after a bit we realized that it was
obvious and we should have imagined it in advance. The associated combinatorial sum
can be rather interesting:

n∑
k=0

{
n+ 1

k + 1

}
(−1)kk!Hk = −δn,1.

Example 2.7 Starting with the sequence 1,−1, 1/2,−1/6, 1/24, . . ., the generating func-
tion of which is a(t) = e−t, we obtain:

bn = n![tn]et exp(et − 1) = n![tn]
d

dt
exp(et − 1) =

= n!(n+ 1)[tn+1] exp(et − 1) = (n+ 1)!
Bn+1

(n+ 1)!
= Bn+1,

where Bn is the n-th Bell number; in fact:

B(t) = exp(et − 1) = 1 + t+
2

2!
t2 +

5

3!
t3 +

15

4!
t4 +

52

5!
t5 +

203

6!
t6 + · · · .

The upper part of the Akiyama - Tanigawa matrix is worth of being explicitly given:

0 1 2 3 4 5
0 1 −1 1/2 −1/6 1/24 −1/120
1 2 −3 2 −5/6 1/4
2 5 −10 17/2 −13/3
3 15 −37 77/2
4 52 −151
5 203

However, from a combinatorial point of view, the combinatorial sum corresponding to
this matrix is just the well-known defining expression of the Bell numbers, the total
number of possible partitions of a set with n+ 1 elements:

n∑
k=0

{
n+ 1

k + 1

}
= Bn+1.

3. The inverse transformation

It is a simple matter to define the inverse Akiyama - Tanigawa transformation; from the
basic recurrence (1.1): an+1,k = (k+ 1)an,k− (k+ 1)an,k+1, we exchange n and k in order
to transpose the matrix:

bn,k+1 = (n+ 1)bn,k − (n+ 1)bn+1,k
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and since we inductively suppose that row n is known, we compute bn+1,k:

bn+1,k = bn,k −
1

n+ 1
bn,k+1. (3.1)

In this way, row 1 is obtained as the differences of the elements of row 0, and so on.
The construction is easy and the reader can start with the Bernoulli numbers (where
[t1]B∗(t) = 1/2, instead of being −1/2), apply the transformation (3.1) and obtain in
column 0 the sequence 1, 1/2, 1/3, 1/4, . . .. In terms of generating functions, everything
is now obvious:

Theorem 3.4 Let b(t) be the e.g.f. of row 0 in the inverse Akiyama - Tanigawa matrix;
then the o.g.f. of column 0 is given by:

a(t) =
1

1− t
b(ln(1− t)).

Proof: If we set y = 1− et, the relation (2.4) becomes:

b(ln(1− y)) = (1− y)a(y),

since et = 1− y and t = ln(1− y). But this is just the desired formula. 2

By formula (2.3), this transformation corresponds to the Riordan Array:(
1

1− y
, ln(1− y)

)
= R

(
(−1)k

k!

n!

[
n+ 1

k + 1

])
.

In fact, the generic element is:

dn,k = [yn]
1

1− y
(ln(1−y))k = (−1)k[yn]

1

1− y

(
ln

1

1− y

)k

=
(−1)k

k + 1
[yn]

d

dy

(
ln

1

1− y

)k

=

=
(−1)k

k + 1
(n+1)[yn+1]

(
ln

1

1− y

)k+1

= (−1)k
n+ 1

k + 1

(k + 1)!

(n+ 1)!

[
n+ 1

k + 1

]
= (−1)k

k!

n!

[
n+ 1

k + 1

]
.

Therefore, we can invert the combinatorial sums corresponding to the Akiyama - Tani-
gawa transformation; again, let a(t) be the o.g.f. of column 0 and b(t) the e.g.f. of row 0;
then by formula (2.3) we have:

an =
n∑

k=0

k!

n!

[
n+ 1

k + 1

]
(−1)k

bk
k!

=
1

n!

n∑
k=0

[
n+ 1

k + 1

]
(−1)kbk,

which is the sum inverse of (2.1). Sum inversion is a classical problem and often, as in
this case, can be performed quite easily by using Riordan Arrays. The inverse of the
sum (2.5) corresponding to the Bernoulli original application of the Akiyama - Tanigawa
transformation is:

n∑
k=0

[
n+ 1

k + 1

]
(−1)kB∗k =

n!

n+ 1
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Obviously, the examples given in the previous section are also examples of the inverse
Akiyama - Tanigawa transformation, and it is sufficient to transpose the matrices found
there. Consequently, it is more constructive to use the previous theorem to solve a
problem that is naturally occurred to the reader. As we have seen, by using the Akiyama
- Tanigawa transformation we have not exactly obtained the Bernoulli numbers, as we
have not obtained the Bell numbers or the ordered Bell numbers. We can wonder how
these numbers can be obtained, that is what is the right initial sequence giving us the
exact sequence of Bernoulli, Bell or ordered Bell numbers. The reader is invited to write
down the combinatorial sums corresponding to the inverse transformation, involving the
Stirling numbers of the first kind and representing the inverse sum (in the sense of Riordan
[7]) of the ones given in the previous section.

Example 3.8 The e.g.f. of the Bernoulli numbers is B(t) = t/(et− 1), and therefore we
can apply to it the inverse Akiyama - Tanigawa transformation:

B(t) =
t

et − 1
⇒ 1

1− y
· ln(1− y)

1− y − 1
=

1

y(1− y)
ln

1

1− y
.

This is just the shifted sequence of the harmonic numbers, that is 1, 3/2, 11/6, 25/12, . . ..
The corresponding Akiyama - Tanigawa matrix is now easily obtained and the sequence
of Bernoulli numbers is generated in column 0:

0 1 2 3 4
0 1 3/2 11/6 25/12 137/60
1 −1/2 −2/3 −3/4 −4/5
2 1/6 1/6 3/20
3 0 1/30
4 −1/30

The starting sequence is not so simple as 1, 1/2, 1/3, 1/4, . . . and this can justify Kaneko
in proposing the modified Bernoulli numbers as a meaningful example of the method (see
however that row number 1 is composed by the elements −n/(n+ 1), another interesting
example).

Example 3.9 The e.g.f. of the Bell numbers is B(t) = exp(et − 1) and the inverse
transformation gives:

b(y) =
1

1− y
exp(eln(1−y) − 1) =

e−y

1− y
,

that is b(t) represents the partial sums of the coefficients (with alternating signs) of the
exponential function. The starting sequence is therefore 1, 0, 1/2, 1/3, 3/8, 11/30, . . . and
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the Akiyama - Tanigawa matrix is:

0 1 2 3 4 5
0 1 0 1/2 1/3 3/8 11/30
1 1 −1 1/2 −1/6 1/24
2 2 −3 2 −5/6
3 5 −10 17/2
4 15 −37
5 52

Actually, in the second row we recognize the coefficients of the exponential function (i.e.,
the differences of the partial sums).

Example 3.10 The e.g.f. of the ordered Bell numbers is O(t) = 1/(2 − et), so that we
have:

b(t) =
1

1− y
· 1

2− (1− y)
=

1

1− y2
.

Therefore, the starting sequence is 1, 0, 1, 0, 1, . . .:

0 1 2 3 4 5
0 1 0 1 0 1 0
1 1 −2 3 −4 5
2 3 −10 21 −36
3 13 −62 171
4 75 −466
5 541

Example 3.11 A more appropriate example for the inverse Akiyama - Tanigawa matri-
ces is given by the Euler numbers, the e.g.f. of which is E(t) = 2et/(e2t + 1). Now we
have:

b(y) =
1

1− y
· 2 exp(ln(1− y))

exp(ln(1− y)2) + 1
=

2

(1− y)2 + 1
=

1

1− y + y2/2
,

bn =
2

√
2
n+1 sin

(
(n+ 1)π

4

)
.

If we start with the coefficients of this o.g.f., column 0 of the (direct) Akiyama - Tanigawa
matrix contains the Euler numbers:

0 1 2 3 4 5
0 1 1 1/2 0 −1/4 −1/4
1 0 1 3/2 1 0
2 −1 −1 3/2 4
3 0 −5 −15/2
4 5 5
5 0
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Example 3.12 As a last example, similar to the previous one, we consider Genocchi
numbers, the e.g.f. of which is G(t) = 2t/(et + 1):

2t

et + 1
=

1

1!
t− 1

2!
t2 +

1

4!
t4 − 3

6!
t6 +

17

8!
t8 +

155

10!
t10 · · · .

We find:

b(y) =
1

1− y
· 2 ln(1− y)

exp(ln(1− y)) + 1
=

2 ln(1− y)

(1− y)(2− y)
, bn = − 1

2n

n∑
k=0

Hk2k.

This is not a particularly simple function, but the Akiyama - Tanigawa matrix can be
easily built:

0 1 2 3 4 5
0 0 −1 −2 −17/6 −7/2 −121/30
1 1 2 5/2 8/3 8/3
2 −1 −1 −1/2 0
3 0 −1 −3/2
4 1 1
5 0
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