MAXIMUM
20 km

le' me driving!

MAXIMUM
10 km

MAXIMUM
2 km

Welcome
to
MAXIMUM

I they want me
to die here!

)

0

Reachability via saturation

Gabriele Puppis

LaBRI / CNRS

Reachability is semi-decidable
A path connecting two sets, if exists, can be found in finitely many steps.J

Forward analysis

Reachability is semi-decidable
A path connecting two sets, if exists, can be found in finitely many steps.J

Forward analysis

Reachability is semi-decidable
A path connecting two sets, if exists, can be found in finitely many steps.J

Forward analysis

Reachability is semi-decidable
A path connecting two sets, if exists, can be found in finitely many steps.J

Forward analysis

Reachability is semi-decidable
A path connecting two sets, if exists, can be found in finitely many steps.J

Forward analysis

Reachability is semi-decidable
A path connecting two sets, if exists, can be found in finitely many steps.J

Forward analysis Backward analysis

b ()8

§& The problem is of course termination,
namely, to detect non-reachability...

Sometimes non-reachability can be checked effectively
using “safe” over-approximations of reachable sets

Sometimes non-reachability can be checked effectively
using “safe” over-approximations of reachable sets

Acceleration / pumping

Sometimes non-reachability can be checked effectively
using ‘“safe” over-approximations of reachable sets

Acceleration / pumping

Sometimes non-reachability can be checked effectively
using ‘“safe” over-approximations of reachable sets

Acceleration / pumping

Sometimes non-reachability can be checked effectively
using ‘“safe” over-approximations of reachable sets

Acceleration / pumping

Sometimes non-reachability can be checked effectively
using ‘“safe” over-approximations of reachable sets

Acceleration / pumping

Sometimes non-reachability can be checked effectively
using ‘“safe” over-approximations of reachable sets

Acceleration / pumping

Sometimes non-reachability can be checked effectively
using ‘“safe” over-approximations of reachable sets

Acceleration / pumping Invariant analysis

I

Sometimes non-reachability can be checked effectively
using ‘“safe” over-approximations of reachable sets

Acceleration / pumping Invariant analysis

srssssss

separator

Sometimes non-reachability can be checked effectively
using ‘“safe” over-approximations of reachable sets

Acceleration / pumping Invariant analysis

srss

guess a
separator

§& Both approaches require symbolic representations of infinite sets

Backward reachability for pushdown systems

Given a pushdown system P = (Q, X, T, A) and
aset Bp € Q-I* of target configurations, define:

Brsi = Bn U {qgz|3¢'2 €B,. 3aeX. gz 25 q'7'}

Bw UneN Bn

Backward reachability for pushdown systems

Given a pushdown system P = (Q, X, T, A) and
aset Bp € Q-I* of target configurations, define:

Brsi = Bn U {qgz|3¢'2 €B,. 3aeX. gz 25 q'7'}

Bw UneN Bn

§& B, contains the configurations from which one can reach By

Backward reachability for pushdown systems

Given a pushdown system P = (Q, X, T, A) and
aset Bp € Q-I* of target configurations, define:

Bri = Bnu {qgz|3¢'zeB, JacX. gz 2 q¢'Z'}

Bw UneN Bn

§& B, contains the configurations from which one can reach By

B, is usually infinite, but is it perhaps regular?

Backward reachability for pushdown systems

Given a pushdown system P = (Q, X, T, A) and
aset Bp € Q-I* of target configurations, define:

Brsi = Bn U {qgz|3¢'2 €B,. 3aeX. gz 25 q'7'}

Bw = UneN Bn

§& B, contains the configurations from which one can reach By

B, is usually infinite, but is it perhaps regular?

Example

Consider the pushdown system
pop 7y

Bo = {ge} Bi={ge.qv} B> ={qe qv.qv}

Backward reachability for pushdown systems

Given a pushdown system P = (Q, X, T, A) and
aset By € Q-I* of target configurations, define:

Brsi = Bn U {qgz|3¢'2 €B,. 3aeX. gz 25 q'7'}

Bw = UneN Bn

§& B, contains the configurations from which one can reach By

B, is usually infinite, but is it perhaps regular?

Example

Consider the pushdown system
pop 7y

Bo = {ge} Bi={ge.qv} B> ={qe qv.qv}

B, = ge* is indeed regular, but how to efficiently compute it?

N

\Q’ “Pump” the changes from B, to B,;1 to obtain

a new sequence Cy, Cq, ...that converges more quickly:
(completeness) vYneN. B, ¢ C,
(soundness) VheN. G, ¢ By,
(termination) IneN. C, = Cphs1

§& the limit U,y C, coincides with B,

N

\Q’ “Pump” the changes from B, to B,;1 to obtain

a new sequence Cy, Cq, ...that converges more quickly:
(completeness) vYneN. B, ¢ C,
(soundness) VheN. G, ¢ By,
(termination) IneN. C, = Cphs1

§& the limit U,y C, coincides with B,

The sets Cy, Cq, ...will be defined by
automata Ag, A1, ... sharing the same state space...

Initial conditions

@ The pushdown system P has m states g

Initial conditions
@ The pushdown system P has m states q1,...,qm
@ The automaton Ag recognizing Co = By has a single

initial non-final state sy, m distinct states si, ..., Sm,
and possibly other states

Initial conditions

@ The pushdown system P has m states q1,...,qm

@ The automaton Ag recognizing Cy = By has a single
initial non-final state sy, m distinct states si, ..., Sm,
and possibly other states

@ No transition in Ag reaches the initial state sy

Initial conditions

@ The pushdown system P has m states q1,...,qm

@ The automaton Ag recognizing Cy = By has a single
initial non-final state sy, m distinct states si, ..., Sm,
and possibly other states

@ No transition in Ag reaches the initial state sy

@ The unique g;-labelled transition in Ag is (so, g;, S)

Initial conditions

The pushdown system P has m states g1, ..., dm

The automaton Ap recognizing Cy = By has a single
initial non-final state sy, m distinct states si, ..., Sm,
and possibly other states

No transition in Ag reaches the initial state sy
The unique gj-labelled transition in Ag is (so, i, Sj)

The other transitions in Ag are labelled by stack symbols

Saturation procedure
Construct A,.1 from A, by adding transitions, as follows:

© select a transition rule (gj, a, gjz) in the pushdown system P

Saturation procedure
Construct A,.1 from A, by adding transitions, as follows:

© select a transition rule (gj, a, gjz) in the pushdown system P

@ select a state s’ in A, reachable from sp via a gjz-labelled path

Saturation procedure
Construct A,.1 from A, by adding transitions, as follows:

© select a transition rule (gj, a, gjz) in the pushdown system P

@ select a state s’ in A, reachable from sp via a gjz-labelled path

© add transition (s;j,7,s”)

Saturation procedure

Construct A,,1 from A, by adding transitions, as follows:
© select a transition rule (gj, a, gjz) in the pushdown system P
@ select a state s’ in A, reachable from sp via a gjz-labelled path

© add transition (s;j,7,s”)

Termination: straightforward

A o Only polynomially many
" transitions can be added

(= reachability in PTIME)

Saturation procedure

Construct A,,1 from A, by adding transitions, as follows:

© select a transition rule (gj, a, gjz) in the pushdown system P

@ select a state s’ in A, reachable from sp via a gjz-labelled path

© add transition (s;j,7,s”)

-

Termination: straightforward

Soundness: by induction on n

N

Saturation procedure

Construct A,,1 from A, by adding transitions, as follows:

© select a transition rule (gj, a, gjz) in the pushdown system P

@ select a state s’ in A, reachable from sp via a gjz-labelled path

© add transition (s;j,7,s”)

An

-

Termination: straightforward |

Soundness: by induction on n]

~

Completeness:
V config. giyw € Byi1 \ By

J trans. giyw Ta’ qjzw
with gjzw € B,

& Select rule (giv, a,gjz) in P
and path sp %%, s’ in A,
to prove that giyw € £ (Ap1)

Example
Consider the target set By = {qoy17727y3} over the pushdown system

Ys/€ Ya/V1Y2

g s /¥4y ' Co = {@M17273}

Example
Consider the target set By = {qoy17727y3} over the pushdown system

Ys/€ ’Y4/’Yl’)'2

g s /¥4y 5 Co = {@M17273}

Example
Consider the target set By = {qoy17727y3} over the pushdown system

Ys/€ Ya/V1Y2

g s /¥4y ' Co = {@M17273}

@ G = {17273, YaY3}

Example
Consider the target set By = {qoy17727y3} over the pushdown system

Ye/€ Ya/ Y172
Co =
' Vs /a3 ' 0 = {P117273}

@ G = {17273, YaY3}

Example
Consider the target set By = {qoy17727y3} over the pushdown system

Ys/€ Ya/V1Y2

5 s /¥4y ' Co = {@M17273}

@ G = {17273, YaY3}
G = {®117273. @2YaY3, 15}

Example
Consider the target set By = {qoy17727y3} over the pushdown system

Ye/€ Ya/ Y172
Ch =
5 oy 5 0 = {P117273}
G = {17273, YaY3}

G = {®117273. @2YaY3, 15}

Example
Consider the target set By = {qoy17727y3} over the pushdown system

Ys/€ Ya/V1Y2

5 s /¥4y ' Co = {@M17273}

@ G = {17273, YaY3}
G = {®117273. @2YaY3, 15}

Y6 G = {@M17273. G2YaY3, G1Ye s}

Theorem (Bouajjani, Esparza & Maler '97)

Given a pushdown system P and a regular set B of configurations,
the set of configurations that can reach B
is regular and can be computed in polynomial time.

Theorem (Bouajjani, Esparza & Maler '97)

Given an alternating pushdown system P and a regular set B of conf.,
the winning region for the B-reachability game
is regular and can be computed in polynomial time.

Theorem (Bouajjani, Esparza & Maler '97)

Given an alternating pushdown system P and a regular set B of conf.,
the winning region for the B-reachability game
is regular and can be computed in polynomial time.

Similar generalizations can be proved for:

@ tree rewriting systems
(Loding '06, ...)

@ reachability games on higher-order pushdown systems
(Bouajjani & Meyer '04, Hague & Ong '07, ...)

Next we will focus on reachability for systems that use
variables over natural numbers instead of a stack...

(x.y)=1(0,0) y
while (x, y) # (0,1) do

if [input is north west] then
(x.¥) = (xy)+(1,3)

else if [input is north east] then
(x.y)=(x,y) +(-1.1)

else if [input is south] then
(x,y) = (x.y) +(0,-2)

Next we will focus on reachability for systems that use
variables over natural numbers instead of a stack...

(x.y)=1(0,0) y
while (x, y) # (0,1) do

if [input is north west] then : :
()=o) +@3) e - A

else if [input is north east] then

(x.y)=(x,y) +(-1.1)

(x,y) = (x,y) +(0,-2)

else if [input is south] then jj

Definition
A vector addition system (VAS) is a transition system (N¥, A),
where A is a finite subset of Z* and

_ X, y>0
X —> _)_/ iff
y-Xxe A

Definition
A lossy VAS is a transition system (NK, A),
where A is a finite subset of Q x ZX x Q and

X, y>0
X —s y iff
V' -xe A forsomey >y

Definition
A lossy VAS is a transition system (NK, A),
where A is a finite subset of Q x Z* x Q and

X, y>0
X — iff
V' -xe A forsomey >y

A VAS with states is a transition system (Q x NK A),
where A is a finite subset of Q x Z* x @ and
_ _ _ x,y>0
(p.X) — (a.y) iff o
(p.y-% q) A

Definition
A lossy VAS is a transition system (NK, A),
where A is a finite subset of Q x Z* x Q and
X, y20
X — y iff
V' -xe A forsomey >y

A VAS with states is a transition system (Q x Nk A),
where A is a finite subset of Q x ZX x @ and
_ _ _ x,y>0
(p.X) — (q.y) iff o
(p.y-% q) A

§i& States do not add power, as they can be implemented by counters

e.g. 2 states = 2 additional counters that sum up to 1
(p,X) — (q,¥) becomes (0,1,x) — (1,0,¥)

c
=
)
)
o
(2]
(g8
(&)
S
(98]
(%2}
(&)
e
)
()
et
(qv]
V)]
<

—O0—
—0—

g

VAS are the same as Petri nets:

c
=
)
)
o
(2]
(g8
(&)
S
(98]
(%2}
(&)
e
)
()
et
(qv]
V)]
<

—0—
—0—

g

c
=
)
)
o
(2]
(g8
(&)
S
(98]
(%2}
(&)
e
)
()
et
(qv]
V)]
<

—0—
—0—

g

c
=
)
)
o
(2]
(g8
(&)
S
(98]
(%2}
(&)
e
)
()
et
(qv]
V)]
<

—O0—
—0—

g

VAS are the same as Petri nets:

c
=
)
)
o
(2]
(g8
(&)
S
(98]
(%2}
(&)
e
)
()
et
(qv]
V)]
<

—O0—
—0—

g

c
=
)
)
o
(2]
(g8
(&)
S
(98]
(%2}
(&)
e
)
()
et
(qv]
V)]
<

—O0—
—0—

g

c
=
)
)
o
(2]
(g8
(&)
S
(98]
(%2}
(&)
e
)
()
et
(qv]
V)]
<

—O0—
—0—

Y]

VAS are the same as Petri nets:

—O0—

%N

—0—

§F configurations = tokens per location (e.g. (2,1,3,0,0))
transitions = transfers of tokens (e.g. (0,-1,-1,0,1))

We may expect that reachable sets are linear...

(0,0)

We may expect that reachable sets are linear...

on+@N | S

We may expect that reachable sets are linear...

(0.0)+ (51N + (11N & e e

We may expect that reachable sets are linear...

(0,0) + (3,1)N + (-1,1)N + (0,-2)N

We may expect that reachable sets are linear...

(0.0)+ B DN+ (-1, DN+ (0,-2N © 0 O 0 O

Theorem (Ginsburg '66) OOOOOOQOO
Finite unions of linear sets are QQQQQ
precisely the Presburger sets @i @ @@ @
i.e. sets definable in FO[N, +] 0 0 0 @ @

ed. o(x,y) = z. x+y=z+2z OOOOO

We may expect that reachable sets are linear... but they are not! \3

We may expect that reachable sets are linear... but they are not! \3

(+1,-1,+1) (-1, +1,+1) ---------- ---------- ----------- --------

' (+1,0,+1) ' ‘“.‘
o -lll-C :

(0,+1,+1)

We may expect that reachable sets are linear... but they are not! \3

000006 0O0COGCOINOOONOIIOGOS
z 00060600060 0O6OOGIGS
00000600 OCGCONOGIOGNOSIS
000060600 OCGOINOSIOS
o000

(+1,-1,+1) (-1,+1,+1) R X
' (+1,0,+1) ' ooo::::
O=lli»-0 L

(0,+1,+1)

X+Yy

(x+y) < z < O((x+y)?)

To overcome the problem of representing reachable sets,
we try to over-approximate by downward closures:

Vi = {z]|3yeV.z2 <y}

To overcome the problem of representing reachable sets,
we try to over-approximate by downward closures:

Vi = {z]|3yeV.z2 <y}

§& This is not an approximation for lossy VAS! X—> 7

. Y
A3

To overcome the problem of representing reachable sets,
we try to over-approximate by downward closures:

Vi = {z]|3yeV.z2 <y}

§& This is not an approximation for lossy VAS! X—> 7

. %
A3

Dickson's Lemma 1913

The pointwise order < on N¥ is a well partial order
(i.e. all decreasing chains and all antichains are finite)

To overcome the problem of representing reachable sets,
we try to over-approximate by downward closures:

§& This is not an approximation for lossy VAS!

Dickson’'s Lemma 1913
The pointwise order < on N¥ is a well partial order

(i.e. all decreasing chains and all antichains are finite)

CNANANAANNY

To overcome the problem of representing reachable sets,
we try to over-approximate by downward closures:

Vi = {z]|3yeV.z2 <y}

§& This is not an approximation for lossy VAS! X—> 7

.

Dickson's Lemma 1913

The pointwise order < on N¥ is a well partial order
(i.e. all decreasing chains and all antichains are finite)

LIIIIIIII IS 777

To overcome the problem of representing reachable sets,
we try to over-approximate by downward closures:

Vi = {z]|3yeV.z2 <y}

§& This is not an approximation for lossy VAS!

Dickson's Lemma 1913

The pointwise order < on N¥ is a well partial order
(i.e. all decreasing chains and all antichains are finite)

To overcome the problem of representing reachable sets,
we try to over-approximate by downward closures:

Vi = {z]|3yeV.z2 <y}

§& This is not an approximation for lossy VAS!

Dickson's Lemma 1913

The pointwise order < on N¥ is a well partial order
(i.e. all decreasing chains and all antichains are finite)

To overcome the problem of representing reachable sets,
we try to over-approximate by downward closures:

Vi = {z]|3yeV.z2 <y}

§& This is not an approximation for lossy VAS! X—> 7

Dickson's Lemma 1913

The pointwise order < on N¥ is a well partial order
(i.e. all decreasing chains and all antichains are finite)

Lemma
For all subsets V/ of (N u {o0})X, there is an antichain W such that

vt = wt

= we can finitely represent downward-closed sets by antichains

Karp & Miller Algorithm '69
Saturation of downward-closed sets via transition function A

€ acceleration on emerging dominating sets...

Karp & Miller Algorithm '69
Saturation of downward-closed sets via transition function A

€ acceleration on emerging dominating sets...

Example

72077777077
77777777777
17777777777
27272707777
71700777
77277777777
77777777777
72777777777
772277777777

Karp & Miller Algorithm '69

Saturation of downward-closed sets via transition function A

€ acceleration on emerging dominating sets...

Example

222272272277

Karp & Miller Algorithm '69
Saturation of downward-closed sets via transition function A

€ acceleration on emerging dominating sets...

Example

Karp & Miller Algorithm '69
Saturation of downward-closed sets via transition function A

€ acceleration on emerging dominating sets...

Example

(-1,+1) (+1,-1)

2
(0,+2) 20 'b
ity
P
:

Karp & Miller Algorithm '69

Saturation of downward-closed sets via transition function A

€ acceleration on emerging dominating sets...

Example

(-1,+1)

(0,+2)

Correctness of acceleration
X >, x+0 for some § e NK
U (by linearity)

X 2sx+n-6 < x+lim(n-8)

n—oo

J

2777

7777

2207;

R

77272777

20207777

272227777

420000827 . =

2207772777770 _Jr777977 2 a

702272727722777727777777777777777777777777

7702077777 77277777777777777777720777772077.

222222227227277727277720777777777777727777.

R A VIIIII IV

770222277722227722227777777 704722227777,

7772777777 7722777772777777 27277777 7l

700272277727277777777777777777777777777777
70227227222227222222227220722220722222277.

X

Karp & Miller Algorithm '69

Saturation of downward-closed sets via transition function A

€ acceleration on emerging dominating sets...

Example

(-1,+1)

(0,+2)

Correctness of acceleration
X >, x+0 for some § e NK
| (by linearity)

X 2sx+n-6 < x+lim(n-8)

n—oo

J

2

2777

22¢7;

0007777 7T

22227277 7777

T, -

I =

222770227777 e -

2227722277770 777797/ 77 2a

20077222579277722277277777777 70005770,

007700027702227772277720777702277707777777.

000020005522252722227720757722277222727777.

R AR

000070227722222722277720777772772777757777.

772770027707227707277777777777772777 7

000070007702227722527777777772777772777777

20022222222222222222222222772222722277777.
X

Karp & Miller Algorithm '69
Saturation of downward-closed sets via transition function A

€ acceleration on emerging dominating sets...

Example

y ,,,,,,,,,,,,,,,,,,,,,,,,,,,/,,,,,i;,,,i>

(-1,+1) (+1,-1)

(+2,0)

(0,+2)

Theorem (Rackoff '78)

Coverability on VAS (i.e. given X, y, tell if 3
is EXPSPACE-complete.

z

>

‘_<|

Theorem (Rackoff '78)

Coverability on VAS (i.e. given X, y, tell if 3z >
is EXPSPACE-complete.

<l
I
L\j/l

Corollary 1
Reachability on lossy VAS is EXPSPACE-complete.

Corollary 2
Control-state reachability on VAS is EXPSPACE-complete.

There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson '96, ...)
Coverability is decidable (non-primitive recursive) on VAS with
o resets (e.g. x:=0)
o transfers (e.g. x:=y + 2)
o positive guards (e.g. if [x > 0] then ...)

Reachability is decidable on analogous extensions of lossy VAS.

There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson '96, ...)
Coverability is decidable (non-primitive recursive) on VAS with
o resets (e.g. x:=0)
o transfers (e.g. x:=y + 2)
o positive guards (e.g. if [x > 0] then ...)

Reachability is decidable on analogous extensions of lossy VAS.

Unfortunately, acceleration for the above systems does not work,

eg. (1,0) —=, (0,1) =22, (2,0), but (1,0) —» (3,0)

There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson '96, ...)
Coverability is decidable (non-primitive recursive) on VAS with
o resets (e.g. x:=0)
o transfers (e.g. x:=y + 2)
o positive guards (e.g. if [x > 0] then ...)

Reachability is decidable on analogous extensions of lossy VAS.

Unfortunately, acceleration for the above systems does not work,
e.g. (1,0) ==, (0, 1) x=x*2, (2,0), but (1,0) = (3,0)

Q’ However, we can still exploit Dickson’s Lemma with

© upward-closed sets
they cover more vectors than downward-closed sets!

@ backward reachability
i.e. compute By = {X |3y €eBy X —y}

Lemma

VAS transitions with resets, transfers, and positive guards
are backward-compatible with upward-closures, i.c.

Lemma

VAS transitions with resets, transfers, and positive guards
are backward-compatible with upward-closures, i.c.

Lemma

VAS transitions with resets, transfers, and positive guards
are backward-compatible with upward-closures, i.c.

Lemma

VAS transitions with resets, transfers, and positive guards
are backward-compatible with upward-closures, i.c.

Lemma
VAS transitions with resets, transfers, and positive guards
are backward-compatible with upward-closures, i.e.

Example of backward coverability analysis

. V72227777

Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.c.

Example of backward coverability analysis

ATIALIALIALIALNALNANNANN NN NN

,/,,,///5/5,1,/5. N

Lemma
VAS transitions with resets, transfers, and positive guards
are backward-compatible with upward-closures, i.c.

y

Lemma

VAS transitions with resets, transfers, and positive guards

are backward-compatible with upward-closures, i.c.

Example of backward coverability analysis

AIAAIAALAALNNANNNINNNNNNNNNANNNY

>

Lemma

VAS transitions with resets, transfers, and positive guards
are backward-compatible with upward-closures, i.e

Example of backward coverability analysis

ARANILALAATNNAINNNNNNNNNNNNANNNY

>

Lemma

VAS transitions with resets, transfers, and positive guards
are backward-compatible with upward-closures, i.c.

Example of backward coverability analysis

-

B D a a q
Termination by Dickson’s Lemma:

infinitely many emerging points

l

infinite decreasing chain or antichain

N

J

LN\ 777777777
A

AN 2777277
9 7777277

X

These ideas for coverability analysis can be extended to:

@ Lossy Channel Systems

(instead of Dickson's Lemma,
use Higman's Lemma for the sub-sequence partial order)

@ Timed Petri nets

(token have time-stamps, transitions have time constraints)

@ Alternating Finite Memory Automata

(finite control states + one register to store
and compare symbols from an infinite alphabet)

Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux '92, '09, ..., '12)
If X —2f ¥, then there is a partition (X, Y) of N such that

@ X and Y are finite unions of linear sets
(or, equally, sets definable in Presburger logic FO[N, +])

Q xeXandyeVY
@ X is a forward invariant, i.e. (X +A)nNk ¢ X
@ Y is a backward invariant, i.e. (Y -A)nNk c Y

Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux '92, '09, ..., '12)
If X —*f> . then there is a partition (X, Y) of NX such that

@ X and Y are finite unions of linear sets
(or, equally, sets definable in Presburger logic FO[N, +])

Q xeXandyeVY
@ X is a forward invariant, i.e. (X +A)nNk ¢ X
@ Y is a backward invariant, i.e. (Y -A)nNf c Y

Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux '92, '09, ..., '12)
If X —*f> . then there is a partition (X, Y) of NX such that

@ X and Y are finite unions of linear sets
(or, equally, sets definable in Presburger logic FO[N, +])

Q xeXandyeVY
@ X is a forward invariant, i.e. (X +A)nNk ¢ X
@ Y is a backward invariant, i.e. (Y -A)nNf c Y

/

v 00000000000000000000000000
: : OOOOOOOOOOOOOOOOOOOOOOOOOOO
0000000000 0000000000000 00
OOOOOOOOOOOOOOOOOOOOOO
00000000000000
000000

000
o0
o0
o

Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux '92, '09, ..., '12)
If X —*f> . then there is a partition (X, Y) of NX such that

@ X and Y are finite unions of linear sets
(or, equally, sets definable in Presburger logic FO[N, +])

Q xeXandyeVY
@ X is a forward invariant, i.e. (X +A)nNk ¢ X
@ Y is a backward invariant, i.e. (Y -A)nNf c Y

/

v 00000000000000000000000000
: : OOOOOOOOOOOOOOOOOOOOOOOOOOO
0000000000 0000000000000 00

OOOOOOOOOOOOOOOOOOOOOO
00000000000000
000000 o
OOOOOOOOOOOOOOOO
OOOOOOOOOOOO
o : = : = : : 0000000000
000000000

000
o0
o0
o

Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux '92, '09, ..., '12)
If X —*f> . then there is a partition (X, Y) of NX such that

@ X and Y are finite unions of linear sets
(or, equally, sets definable in Presburger logic FO[N, +])

Q xeXandyeVY
@ X is a forward invariant, i.e. (X +A)nNk ¢ X
@ Y is a backward invariant, i.e. (Y -A)nNf c Y

00000 OOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOO
OOOOOOOOOOO
0000000

Corollary (Lipton '76, Mayr '81, Kosaraju '82, Reutenauer '90, ...)

The reachability problem for VAS is decidable
with complexity between EXPSPACE and non-primitive recursive.

Corollary (Lipton '76, Mayr '81, Kosaraju '82, Reutenauer '90, ...

The reachability problem for VAS is decidable
with complexity between EXPSPACE and non-primitive recursive.

N

Q Enumerate in parallel:

@ the possible finite sequences 7 of transitions

(answer positively if x " ¥)

@ the possible Presburger formulas defining partitions (X, Y) of NX

(answer negatively if (X, Y') is an invariant separating X and ¥)

