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Reachability is semi-decidable
A path connecting two sets, if exists, can be found in finitely many steps.J

Forward analysis Backward analysis

b ()8

§& The problem is of course termination,
namely, to detect non-reachability...
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Sometimes non-reachability can be checked effectively
using ‘“safe” over-approximations of reachable sets

Acceleration / pumping Invariant analysis
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§& Both approaches require symbolic representations of infinite sets
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Backward reachability for pushdown systems

Given a pushdown system P = (Q, X, T, A) and
aset By € Q-I* of target configurations, define:

Brsi = Bn U {qgz|3¢'2 €B,. 3aeX. gz 25 q'7'}

Bw = UneN Bn

§& B, contains the configurations from which one can reach By

B, is usually infinite, but is it perhaps regular?

Example

Consider the pushdown system
pop 7y

Bo = {ge} Bi={ge.qv} B> ={qe qv.qv}

B, = ge* is indeed regular, but how to efficiently compute it?
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\Q’ “Pump” the changes from B, to B,;1 to obtain

a new sequence Cy, Cq, ...that converges more quickly:
(completeness) vYneN. B, ¢ C,
(soundness) VheN. G, ¢ By,
(termination) IneN. C, = Cphs1

§& the limit U,y C, coincides with B,
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\Q’ “Pump” the changes from B, to B,;1 to obtain

a new sequence Cy, Cq, ...that converges more quickly:
(completeness) vYneN. B, ¢ C,
(soundness) VheN. G, ¢ By,
(termination) IneN. C, = Cphs1

§& the limit U,y C, coincides with B,

The sets Cy, Cq, ...will be defined by
automata Ag, A1, ... sharing the same state space...
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Initial conditions

The pushdown system P has m states g1, ..., dm

The automaton Ap recognizing Cy = By has a single
initial non-final state sy, m distinct states si, ..., Sm,
and possibly other states

No transition in Ag reaches the initial state sy
The unique gj-labelled transition in Ag is (so, i, Sj)

The other transitions in Ag are labelled by stack symbols
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Saturation procedure

Construct A,,1 from A, by adding transitions, as follows:

© select a transition rule (gj, a, gjz) in the pushdown system P

@ select a state s’ in A, reachable from sp via a gjz-labelled path

© add transition (s;j,7,s”)

An

-

Termination: straightforward |

Soundness: by induction on n]

~

Completeness:
V config. giyw € Byi1 \ By

J trans. giyw Ta’ qjzw
with gjzw € B,

& Select rule (giv, a,gjz) in P
and path sp %%, s’ in A,
to prove that giyw € £ (Ap1)
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Example
Consider the target set By = {qoy17727y3} over the pushdown system

Ys/€ Ya/V1Y2

5 s /¥4y ' Co = {@M17273}

@ G = {17273, YaY3}
G = {®117273. @2YaY3, 15}

Y6 G = {@M17273. G2YaY3, G1Ye s}




Theorem (Bouajjani, Esparza & Maler '97)

Given a pushdown system P and a regular set B of configurations,
the set of configurations that can reach B
is regular and can be computed in polynomial time.
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Theorem (Bouajjani, Esparza & Maler '97)

Given an alternating pushdown system P and a regular set B of conf.,
the winning region for the B-reachability game
is regular and can be computed in polynomial time.

Similar generalizations can be proved for:

@ tree rewriting systems
(Loding '06, ...)

@ reachability games on higher-order pushdown systems
(Bouajjani & Meyer '04, Hague & Ong '07, ...)



Next we will focus on reachability for systems that use
variables over natural numbers instead of a stack...

(x.y)=1(0,0) y
while (x, y) # (0,1) do

if [input is north west] then
(x.¥) = (xy)+(1,3)

else if [input is north east] then
(x.y)=(x,y) +(-1.1)

else if [input is south] then
(x,y) = (x.y) +(0,-2)




Next we will focus on reachability for systems that use
variables over natural numbers instead of a stack...

(x.y)=1(0,0) y
while (x, y) # (0,1) do

if [input is north west] then : :
()=o) +@3) e - A

else if [input is north east] then

(x.y)=(x,y) +(-1.1)

(x,y) = (x,y) +(0,-2)

else if [input is south] then jj

Definition
A vector addition system (VAS) is a transition system (N¥, A),
where A is a finite subset of Z* and

_ X, y>0
X —> _)_/ iff
y-Xxe A
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Definition
A lossy VAS is a transition system (NK, A),
where A is a finite subset of Q x Z* x Q and
X, y20
X — y iff
V' -xe A forsomey >y

A VAS with states is a transition system (Q x Nk A),
where A is a finite subset of Q x ZX x @ and
_ _ _ x,y>0
(p.X) — (q.y) iff o
(p.y-% q) A

§i& States do not add power, as they can be implemented by counters

e.g. 2 states = 2 additional counters that sum up to 1
(p,X) — (q,¥) becomes (0,1,x) — (1,0,¥)
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VAS are the same as Petri nets:

—O0—

%N

—0—

§F configurations = tokens per location (e.g. (2,1,3,0,0))
transitions = transfers of tokens (e.g. (0,-1,-1,0,1))
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We may expect that reachable sets are linear...

(0,0) + (3,1)N + (-1,1)N + (0,-2)N




We may expect that reachable sets are linear...

(0.0)+ B DN+ (-1, DN+ (0,-2N © 0 O 0 O

Theorem (Ginsburg '66) OOOOOOQOO
Finite unions of linear sets are QQQQQ
precisely the Presburger sets @i @ @@ @
i.e. sets definable in FO[N, +] 0 0 0 @ @

ed. o(x,y) = z. x+y=z+2z OOOOO
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(+1,-1,+1) (-1, +1,+1) ---------- ---------- ----------- --------

' (+1,0,+1) ' ‘“.‘
o -lll-C :

(0,+1,+1)




We may expect that reachable sets are linear... but they are not! \3

000006 0O0COGCOINOOONOIIOGOS
z 00060600060 0O6OOGIGS
00000600 OCGCONOGIOGNOSIS
000060600 OCGOINOSIOS
o000

(+1,-1,+1) (-1,+1,+1) R X
' (+1,0,+1) ' ooo::::
O=lli»-0 L

(0,+1,+1)

X+Yy

(x+y) < z < O((x+y)?)
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To overcome the problem of representing reachable sets,
we try to over-approximate by downward closures:

Vi = {z]|3yeV.z2 <y}

§& This is not an approximation for lossy VAS! X—> 7

Dickson's Lemma 1913

The pointwise order < on N¥ is a well partial order
(i.e. all decreasing chains and all antichains are finite)

Lemma
For all subsets V/ of (N u {o0})X, there is an antichain W such that

vt = wt

= we can finitely represent downward-closed sets by antichains
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Saturation of downward-closed sets via transition function A

€ acceleration on emerging dominating sets...

Example
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Correctness of acceleration
X >, x+0 for some § e NK
U (by linearity)
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€ acceleration on emerging dominating sets...

Example
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| (by linearity)
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Karp & Miller Algorithm '69
Saturation of downward-closed sets via transition function A

€ acceleration on emerging dominating sets...

Example

y ,,,,,,,,,,,,,,,,,,,,,,,,,,,/,,,,,i;,,,i>
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Theorem (Rackoff '78)

Coverability on VAS (i.e. given X, y, tell if 3
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Theorem (Rackoff '78)

Coverability on VAS (i.e. given X, y, tell if 3z >
is EXPSPACE-complete.

<l
I
L\j/l

Corollary 1
Reachability on lossy VAS is EXPSPACE-complete.

Corollary 2
Control-state reachability on VAS is EXPSPACE-complete.




There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson '96, ...)
Coverability is decidable (non-primitive recursive) on VAS with
o resets (e.g. x:=0)
o transfers (e.g. x:=y + 2)
o positive guards (e.g. if [x > 0] then ...)

Reachability is decidable on analogous extensions of lossy VAS.
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There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson '96, ...)
Coverability is decidable (non-primitive recursive) on VAS with
o resets (e.g. x:=0)
o transfers (e.g. x:=y + 2)
o positive guards (e.g. if [x > 0] then ...)

Reachability is decidable on analogous extensions of lossy VAS.

Unfortunately, acceleration for the above systems does not work,
e.g. (1,0) ==, (0, 1) x=x*2, (2,0), but (1,0) = (3,0)

Q’ However, we can still exploit Dickson’s Lemma with

© upward-closed sets
they cover more vectors than downward-closed sets!

@ backward reachability
i.e. compute By = {X |3y €eBy X —y}
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Lemma

VAS transitions with resets, transfers, and positive guards
are backward-compatible with upward-closures, i.c.

Example of backward coverability analysis

-

B D a a q
Termination by Dickson’s Lemma:

infinitely many emerging points

l

infinite decreasing chain or antichain

N
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LN\ 777777777
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These ideas for coverability analysis can be extended to:

@ Lossy Channel Systems

(instead of Dickson's Lemma,
use Higman's Lemma for the sub-sequence partial order)

@ Timed Petri nets

(token have time-stamps, transitions have time constraints)

@ Alternating Finite Memory Automata

(finite control states + one register to store
and compare symbols from an infinite alphabet)



Now, back to the original reachability problem on VAS...

Separation Theorem (Leroux '92, '09, ..., '12)
If X —2f ¥, then there is a partition (X, Y) of N such that

@ X and Y are finite unions of linear sets
(or, equally, sets definable in Presburger logic FO[N, +])

Q xeXandyeVY
@ X is a forward invariant, i.e. (X +A)nNk ¢ X
@ Y is a backward invariant, i.e. (Y -A)nNk c Y
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Corollary (Lipton '76, Mayr '81, Kosaraju '82, Reutenauer '90, ...)

The reachability problem for VAS is decidable
with complexity between EXPSPACE and non-primitive recursive.
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N

Q Enumerate in parallel:

@ the possible finite sequences 7 of transitions

(answer positively if x " ¥)

@ the possible Presburger formulas defining partitions (X, Y) of NX

(answer negatively if (X, Y') is an invariant separating X and ¥)






