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What is the talk about?

We shall consider the model-checking problem for Monadic
Second-Order (MSO) logic over deterministic colored trees.

Example

To decide whether the MSO formula

ϕ(X ) = X (root) ∧ ∀ x , y .
(
left child(x , y) → X (y)

)
holds in the binary tree by interpreting the variable X
with the set of black colored vertices:
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Outline

1 Short introduction
(the automaton-based approach to model-checking)

2 The proposed method
(extension of Elgot-Rabins’s contraction method to trees)

3 Application examples
(reducible trees, closure properties, and open problems)
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Reduction to the acceptance problem

Theorem (Rabin ’69)

For every MSO formula ϕ(X1, ...,Xn), we can compute a Rabin
tree automaton A over the alphabet C = P

(
{1, ..., n}

)
(and vice versa) such that, for every C-colored tree T ,

T � ϕ(X1, ...,Xn) ⇔ T ∈ L (A)

(read ϕ(X1, ...,Xn) holds in T iff A accepts T ).

Definition

The acceptance problem AccT of a tree T is the problem of
deciding whether, for any given tree automaton A, T ∈ L (A).

Corollary

The model-checking problem of a tree T is reducible to the
acceptance problem of T .
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Reduction to the acceptance problem

Fact

For any regular tree T , AccT is decidable (simply test, for any
automaton A, whether the language L (A) ∩ {T} is non-empty).

Problem

What about non-regular trees?

Solution idea

Generalize “Contraction method” (Elgot-Rabin ’66) to trees.

Given a (non-regular) tree T and an automaton A:

1 decompose T into factors,

2 ‘distill’ the relevant features of each factor F w.r.t.
the behaviors of A and collect them into an A-type,

3 reason on the contraction tree
(i.e., a tree-shaped arrangement of A-types).
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A picture of the method:

A tree automaton can have similar behaviors on different trees ...
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A picture of the method:

Given a tree T and an automaton A, decompose T into factors ...
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A picture of the method:

... and then consider the equivalence classes
induced by the behavior of A on each factor.
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A picture of the method:

⇒ We can replace A with an automaton
−�
A that runs on

the (possibly regular) abstracted tree and mimics A.
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Basic ingredients

The following notions will be briefly explained in the following:

factorization Π of a tree T ,

marked factor Π+(v),

A-type [Π+(v)]A,

A-contraction
−�
T .

We will use the above notions to reduce
an instance of AccT to a (hopefully simpler) instance of Acc−�

T

(for instance, the case where
−�
T is a regular tree).
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Factorizations

Definition

A factorization of a tree T is an uncolored tree Π such that:

Dom(Π) is a subset of Dom(T ) that includes the root,

the edges are given by the ancestor relation v of T ,

the edge labels are arbitrarily chosen from a finite set B.
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Factorizations

Definition

A factorization of a tree T is an uncolored tree Π such that:

Dom(Π) is a subset of Dom(T ) that includes the root,

the edges are given by the ancestor relation v of T ,

the edge labels are arbitrarily chosen from a finite set B.

b1

b1

b2

b2
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Marked factors

Definition

For every vertex v of Π, the factor Π(v) of T in v
is the subgraph of T induced by the set{

w ∈ Dom(T ) : v v w v v ′ for all successors v ′ of v in Π
}

b1

b1

b2

b2
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Marked factors

Definition

For every vertex v of Π, the marked factor Π+(v) is obtained
from the (unmarked) factor Π(v) by recoloring each leaf w with
the label of the incoming edge of Π.

b1

b1

b2

b2

b1

b1
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Types

Definition

Given an automaton A and a marked factor F ,
the A-type

[
F
]
A is the set of triples of the form R(root){
InfOcc(R|π) : π branch of F

}{
(F (w),R(w),Occ(R|w)) : w leaf of F

}


over all possible partial runs R of A on F .

b1

b1
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Types

Definition

Given an automaton A and a marked factor F ,
the A-type

[
F
]
A is the set of triples of the form R(root){
InfOcc(R|π) : π branch of F

}{
(F (w),R(w),Occ(R|w)) : w leaf of F

}


over all possible partial runs R of A on F .

state at the root

b1

b1
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Types

Definition

Given an automaton A and a marked factor F ,
the A-type

[
F
]
A is the set of triples of the form R(root){
InfOcc(R|π) : π branch of F

}{
(F (w),R(w),Occ(R|w)) : w leaf of F

}


over all possible partial runs R of A on F .

for each infinite path,
states occurring infinitely often

b1

b1



The automaton-based approach The contraction method Reducible trees

Types

Definition

Given an automaton A and a marked factor F ,
the A-type

[
F
]
A is the set of triples of the form R(root){
InfOcc(R|π) : π branch of F

}{
(F (w),R(w),Occ(R|w)) : w leaf of F

}


over all possible partial runs R of A on F .

for each leaf,
marker + state +
states along access path

b1

b1
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Types

Proposition

The equivalence relation induced by A-types is
compatible with second-order tree substitutions.

Intuitive explanation

Consider a tree T and a factor F inside it.
Take F ′ such that [F ′]A =

[
F
]
A and let T ′ = T JF/F ′K.

Then [T ′]A =
[
T
]
A.

T

F

T ′

F ′

same A-type

⇓
same A-type
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Types

Remarks

We shall see that A-types capture the concept of
inditinguishability of trees w.r.t. the automaton A.

Moreover, the amount of information stored in an
A-type is bounded.

This implies that:

there exist only finitely many A-types
(equivalently, the automaton A can distinguish
between only finitely many classes of trees),

we can see each A-type as a color,

we can arrange the A-types of the factors

of a tree T in a colored tree structure
−�
T ,

called the A-contraction.
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Contractions

Definition

Given a tree T , an automaton A, and a factorization Π of T ,
the A-contraction

−�
T of T is the tree obtained from Π

by coloring each vertex v with the A-type
[
Π+(v)

]
A.

[Π+(ε)]A

[Π+(11)]A

[Π+(112)]A

b2

b1

b1

b2

b2
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Contractions

Definition

Given a tree T , an automaton A, and a factorization Π of T ,
the A-contraction

−�
T of T is the tree obtained from Π

by coloring each vertex v with the A-type
[
Π+(v)

]
A.

[Π+(ε)]A

[Π+(2)]A

[Π+(11)]A [Π+(21)]A

[Π+(112)]A

b1

b1

b2

b2
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Contractions

Remark

In the general case, a contraction can be a non-deterministic tree.

In order to reason by means of Rabin automata, we need to
identify contractions with suitable deterministic trees.

Definition

An A-contraction is said to be valid
if it is bisimilar to a deterministic tree.

From now on, we restrict ourselves to valid contractions only...
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Contractions

Theorem (Main result)

Given a (valid) A-contraction
−�
T of T , we can build

a suitable automaton
−�
A, running on

−�
T , such that

−�
T ∈ L (

−�
A) ⇔ T ∈ L (A).

Proof idea

Define
−�
A in such a way that it mimics the computations of A on

T at a “coarser level”:

the input alphabet of
−�
A is the set of all A-types

the states of
−�
A encode the finite amount of information

processed by A up to a certain point,

the transitions of
−�
A compute new states by “merging” the

information of the current state with the information provided
by the input symbol (i.e., the A-type of the current factor).
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Contractions

Application example

Let T be a tree with homogeneously-colored levels,
and Π the factorization of T with Dom(Π) = Dom(T ).
Consider now the marked factors at each level: their A-types
uniquely depends on the color of the level they belong to.

⇒ The A-contraction
−�
T of T is bisimilar to a colored line L.

b

b b
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Contractions

Application example

Let T be a tree with homogeneously-colored levels,
and Π the factorization of T with Dom(Π) = Dom(T ).
Consider now the marked factors at each level: their A-types
uniquely depends on the color of the level they belong to.

⇒ The A-contraction
−�
T of T is bisimilar to a colored line L.

b b

b b

b b

b b b b

b b
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b b

b b
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Contractions

Application example

In this way we proved a simplified version of Muchnik’s Theorem:

AccT is reducible to AccL.

b

b b
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One can also iterate reductions in order to show that
the acceptance problem of a tree T is decidable ...

Example

Consider the problem of deciding if T ∈ L (A):

If T has an A-contraction
−�
T , and

−�
T has a regular

−�
A-contraction

−�−�
T

Then we can decide if
−�−�
T ∈ L

(−�−�
A
)
,
−�
T ∈ L

(−�
A
)
, and T ∈ L

(
A).
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Reducible trees

Definition

It comes natural to define a

hierarchy of reducible trees:

rank 0 trees := regular trees

rank n + 1 trees := trees enjoying a rank n A-contraction,
for any automaton A.

Corollary

The acceptance problem of any reducible tree is decidable.
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Closure properties

Theorem

Rank n trees are closed under the following operations:

rational colorings
specified by regular path expressions,
in a similar way to inverse rational mappings
(alternative specifications in terms of Mealy tree automata)

rational colorings with bounded lookahead
rational colorings extended with the facility of inspecting the
subtree issued from current position, up to bounded depth

regular tree morphisms
specified by a tuple of regular trees Fc1 , ..., Fck

and mapping an input tree T to T
q

c1/Fc1 , ..., ck/Fck

y

⇒ top-down tree transducers with bounded lookahead
equivalent to functional compositions of rational colorings
with bounded lookahead and regular tree morphisms.
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Closure properties

Proof idea

By induction on the rank n of the tree T (case n = 0 is trivial...).

T

rank n + 1

rank n

T ′

rank n + 1

rank n

f
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rank n
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Closure properties

Proof idea

By induction on the rank n of the tree T (case n = 0 is trivial...).

T

A′rank n + 1

rank n

T ′

A rank n + 1

rank n

f

g
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Closure properties

Proof idea

By induction on the rank n of the tree T (case n = 0 is trivial...).

T
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−�
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T ′
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rank n
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Closure properties

Proof idea

By induction on the rank n of the tree T (case n = 0 is trivial...).

T

A′rank n + 1

−�
T

rank n

T ′

A rank n + 1

−�
T ′

rank n

f
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Closure properties

Proof idea

By induction on the rank n of the tree T (case n = 0 is trivial...).

T

A′rank n + 1

−�
T

rank n

T ′

A rank n + 1

−�
T ′

rank n

f

g

h
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Closure properties

Theorem

The class of reducible trees is closed under the operation of
unfolding with backward edges and loops BackUnfolding.

More precisely, for every n ∈ N,
if T is a rank n tree, then BackUnfolding(T ) is a rank n + 1 tree.
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Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = BackUnfolding(L) is a rank 1 tree.

t0

a a a a
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Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = BackUnfolding(L) is a rank 1 tree.

t0

a a a a

ā ā ā ā
# # # #
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Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = BackUnfolding(L) is a rank 1 tree.

t0

a a a a

ā ā ā ā
# # # #

#

#
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Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = BackUnfolding(L) is a rank 1 tree.

t0

a a a a

ā ā ā ā
# # # #

#

#

a

a

#

#
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Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = BackUnfolding(L) is a rank 1 tree.

t0

a a a a

ā ā ā ā
# # # #

#

#

a

a

#

#

ā

ā

a

a

F0

F0

F0
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Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = BackUnfolding(L) is a rank 1 tree.

t0

a a a a

ā ā ā ā
# # # #

#

#

a

a

#

#

ā

ā

a

a

#

#

a

a

#

#

a

a

ā

ā

ā

ā

a

a

a

a

a

a

F0

F0

F1

F1

F2

F2

F0 F1 F2 F3
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Closure properties

Proof by example

Let Π be the factorization of T such that Dom(Π) = a∗. Every
marked factor is obtained from its predecessor via a substitution:

Fn+1 = Unfolding
(

a

ā

x a
a

#

)q
x/Fn

y
.

t0

#

#

a

a

#

#

ā

ā

a

a

#

#

a

a

#

#

a

a

ā

ā

ā

ā

a

a

a

a

a

a

F0

F0

F1

F1

F2

F2

F0 F1 F2 F3

a a a a
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Closure properties

Proof by example

⇒ The sequence of the A-types tn :=
[
Fn

]
A of the marked

factors can be recursively characterized as follows:{
t0 =

[
F0

]
A

tn+1 = f (tn) (for a suitable function f )t0

#

#

a

a

#

#

ā

ā

a

a

#

#

a

a

#

#

a

a

ā

ā

ā

ā

a

a

a

a

a

a

F0

F0

F1

F1

F2

F2

F0 F1 F2 F3

a a a a
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Closure properties

Proof by example

⇒ The A-contraction
−�
T of T = BackUnfolding(L)

is a rational coloring of L, thus a rank 0 tree.
⇒ T is a rank 1 tree.

t0 f (t0) f 2(t0) f 3(t0)
a a a a

#

#

a

a

#

#

ā

ā

a

a

#

#

a

a

#

#

a

a

ā

ā

ā

ā

a

a

a

a

a

a

F0

F0

F1

F1

F2

F2

F0 F1 F2 F3

a a a a
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Closure properties

Corollary

Reducible trees contain the deterministic trees obtained from
regular trees via unfoldings and inverse finite mappings
(see Caucal ’02).

Proof idea

Exploit the following facts:

1 given an inverse finite mapping g−1 and a tree T , there is
an inverse finite mapping h−1 that preserves bisimilarity and
such that Unfolding

(
g−1(T )

)
= h−1

(
BackUnfolding(T )

)
(e.g., for every label a, define h(a) := g(a)[ε/#]),

2 h−1 can be implemented by a top-down tree transducer
with bounded lookahead (see Colcombet and Löding ’04),

3 reducible trees are closed under transducers with bounded
lookahead and unfoldings with backward edges and loops.
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Open problems

Open problem / Conjecture

Generalize closure properties of reducible trees
to rational colorings with rational lookahead.

⇒ This would allow us to capture all the
deterministic trees in the Caucal hierarchy.

Other open problems:

to establish whether the hierarchy of reducible trees
is strictly increasing or not,

to generalize the approach towards colored graphs.
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