A Contraction Method to Decide MSO Theories of Deterministic Trees

Angelo Montanari and Gabriele Puppis

Departement of Mathematics and Computer Science University of Udine, Italy {angelo.montanari, gabriele.puppis}@dimi.uniud.it

What is the talk about?

We shall consider the **model-checking** problem for **Monadic** Second-Order (MSO) logic over deterministic colored trees.

Example

To decide whether the MSO formula

$$\varphi(X) = X(\texttt{root}) \land \forall x, y. (\texttt{left_child}(x, y) \rightarrow X(y))$$

holds in the binary tree by interpreting the variable X with the set of *black colored vertices*:

Outline

- Short introduction
 (the automaton-based approach to model-checking)
- The proposed method (extension of Elgot-Rabins's contraction method to trees)
- Application examples (reducible trees, closure properties, and open problems)

Reduction to the acceptance problem

Theorem (Rabin '69)

For every MSO formula $\varphi(X_1, ..., X_n)$, we can compute a Rabin tree automaton \mathcal{A} over the alphabet $C = \mathscr{P}(\{1, ..., n\})$ (and vice versa) such that, for every C-colored tree T,

 $T\vDash \varphi(X_1,...,X_n) \qquad \Leftrightarrow \qquad T\in \mathscr{L}(\mathcal{A})$

(read $\varphi(X_1,...,X_n)$ holds in T iff \mathcal{A} accepts T).

Definition

The acceptance problem Acc_T of a tree T is the problem of deciding whether, for any given tree automaton \mathcal{A} , $T \in \mathscr{L}(\mathcal{A})$.

Corollary

The model-checking problem of a tree T is reducible to the acceptance problem of T.

Reduction to the acceptance problem

Fact

For any **regular** tree T, Acc_T is decidable (simply test, for any automaton A, whether the language $\mathscr{L}(A) \cap \{T\}$ is non-empty).

Problem

What about non-regular trees?

Solution idea

Generalize "Contraction method" (Elgot-Rabin '66) to trees.

Given a (non-regular) tree T and an automaton A:

- decompose T into factors,
- 'distill' the relevant features of each factor F w.r.t. the behaviors of A and collect them into an A-type,
- reason on the contraction tree (i.e., a tree-shaped arrangement of A-types).

A picture of the method:

A tree automaton can have similar behaviors on different trees ...

The contraction method

Reducible trees

A picture of the method:

Given a tree T and an automaton A, decompose T into factors ...

Reducible trees

A picture of the method:

... and then consider the **equivalence classes** induced by the behavior of \mathcal{A} on each factor.

The contraction method

Reducible trees

A picture of the method:

⇒ We can replace A with an automaton \vec{A} that runs on the (possibly regular) abstracted tree and mimics A.

Basic ingredients

The following notions will be briefly explained in the following:

- factorization Π of a tree T,
- marked factor $\Pi^+(v)$,
- \mathcal{A} -type $[\Pi^+(v)]_{\mathcal{A}}$,
- \mathcal{A} -contraction \overrightarrow{T} .

We will use the above notions to reduce an instance of Acc_{T} to a (hopefully simpler) instance of $Acc_{\vec{T}}$ (for instance, the case where \vec{T} is a regular tree).

Definition

- $\mathcal{D}om(\Pi)$ is a subset of $\mathcal{D}om(T)$ that includes the root,
- the edges are given by the ancestor relation \sqsubseteq of T,
- the edge labels are arbitrarily chosen from a finite set B.

Definition

- $\mathcal{D}om(\Pi)$ is a subset of $\mathcal{D}om(T)$ that includes the root,
- the edges are given by the *ancestor relation* \sqsubseteq of *T*,
- the edge labels are arbitrarily chosen from a finite set *B*.

Definition

- $\mathcal{D}om(\Pi)$ is a subset of $\mathcal{D}om(T)$ that includes the root,
- the edges are given by the *ancestor relation* \sqsubseteq of *T*,
- the edge labels are arbitrarily chosen from a finite set B.

Definition

- $\mathcal{D}om(\Pi)$ is a subset of $\mathcal{D}om(T)$ that includes the root,
- the edges are given by the ancestor relation \sqsubseteq of T,
- the edge labels are arbitrarily chosen from a finite set B.

Marked factors

Definition

For every vertex v of Π , the factor $\Pi(v)$ of T in v is the subgraph of T induced by the set

 $\{w \in \mathcal{D}om(T) : v \sqsubseteq w \sqsubseteq v' \text{ for all successors } v' \text{ of } v \text{ in } \Pi\}$

Marked factors

Definition

For every vertex v of Π , the **marked factor** $\Pi^+(v)$ is obtained from the (unmarked) factor $\Pi(v)$ by *recoloring* each leaf w with the label of the incoming edge of Π .

Definition

Types

Given an automaton \mathcal{A} and a marked factor F, the \mathcal{A} -**type** $\begin{bmatrix} F \end{bmatrix}_{\mathcal{A}}$ is the set of triples of the form

$$\begin{pmatrix} R(\texttt{root}) \\ \{ Inf \mathcal{O}cc(R|\pi) : \pi \text{ branch of } F \} \\ \{ (F(w), R(w), \mathcal{O}cc(R|w)) : w \text{ leaf of } F \} \end{pmatrix}$$

Definition

Given an automaton \mathcal{A} and a marked factor F, the \mathcal{A} -**type** $\begin{bmatrix} F \end{bmatrix}_{\mathcal{A}}$ is the set of triples of the form

$$\begin{pmatrix} R(\texttt{root}) \\ \{ Inf \mathcal{O}cc(R|\pi) : \pi \text{ branch of } F \} \\ \{ (F(w), R(w), \mathcal{O}cc(R|w)) : w \text{ leaf of } F \} \end{pmatrix}$$

Definition

Given an automaton \mathcal{A} and a marked factor F, the \mathcal{A} -**type** $[F]_{\mathcal{A}}$ is the set of triples of the form

$$\begin{pmatrix} R(\texttt{root}) \\ \{ Inf \mathcal{O}cc(R|\pi) : \pi \text{ branch of } F \} \\ \{ (F(w), R(w), \mathcal{O}cc(R|w)) : w \text{ leaf of } F \} \end{pmatrix}$$

Definition

Given an automaton \mathcal{A} and a marked factor F, the \mathcal{A} -type $\begin{bmatrix} F \end{bmatrix}_{\mathcal{A}}$ is the set of triples of the form

$$\begin{pmatrix} R(\texttt{root}) \\ \{ Inf \mathcal{O}cc(R|\pi) : \pi \text{ branch of } F \} \\ \{ (F(w), R(w), \mathcal{O}cc(R|w)) : w \text{ leaf of } F \} \end{pmatrix}$$

Proposition

The equivalence relation induced by A-types is compatible with second-order tree substitutions.

Intuitive explanation

Consider a tree T and a factor F inside it. Take F' such that $[F']_{\mathcal{A}} = [F]_{\mathcal{A}}$ and let T' = T[[F/F']]. Then $[T']_{\mathcal{A}} = [T]_{\mathcal{A}}$.

Remarks

Types

We shall see that A-types capture the concept of inditinguishability of trees w.r.t. the automaton A.

Moreover, the amount of information stored in an \mathcal{A} -type is bounded.

This implies that:

- there exist *only finitely many* A-types (equivalently, the automaton A can distinguish between only finitely many classes of trees),
- we can see each *A*-type as a *color*,
- we can arrange the A-types of the factors of a tree T in a colored tree structure \vec{T} , called the A-contraction.

Definition

Given a tree T, an automaton A, and a factorization Π of T, the A-contraction \overrightarrow{T} of T is the tree obtained from Π by coloring each vertex v with the A-type $[\Pi^+(v)]_A$.

Definition

Given a tree T, an automaton A, and a factorization Π of T, the A-contraction \overrightarrow{T} of T is the tree obtained from Π by coloring each vertex v with the A-type $[\Pi^+(v)]_A$.

Remark

In the general case, a contraction can be a **non-deterministic** tree.

In order to reason by means of Rabin automata, we need to identify contractions with suitable deterministic trees.

Definition

An A-contraction is said to be **valid** if it is bisimilar to a deterministic tree.

From now on, we restrict ourselves to valid contractions only...

Theorem (Main result)

Given a (valid) A-contraction \overrightarrow{T} of T, we can build a suitable automaton \overrightarrow{A} , running on \overrightarrow{T} , such that

$$\overrightarrow{T} \in \mathscr{L}(\overrightarrow{\mathcal{A}}) \quad \Leftrightarrow \quad T \in \mathscr{L}(\mathcal{A}).$$

Proof idea

Define $\vec{\mathcal{A}}$ in such a way that it *mimics* the computations of \mathcal{A} on \mathcal{T} at a "coarser level":

- the input alphabet of $\vec{\mathcal{A}}$ is the set of all \mathcal{A} -types
- the states of $\vec{\mathcal{A}}$ encode the finite amount of information processed by \mathcal{A} up to a certain point,
- the transitions of *A* compute new states by "merging" the information of the current state with the information provided by the input symbol (i.e., the *A*-type of the current factor).

Application example

Let T be a tree with homogeneously-colored levels, and Π the factorization of T with $\mathcal{D}om(\Pi) = \mathcal{D}om(T)$. Consider now the marked factors at each level: their \mathcal{A} -types uniquely depends on the color of the level they belong to. \Rightarrow The \mathcal{A} -contraction \vec{T} of T is bisimilar to a colored line L.

Application example

Let T be a tree with homogeneously-colored levels, and II the factorization of T with $\mathcal{D}om(II) = \mathcal{D}om(T)$. Consider now the marked factors at each level: their A-types uniquely depends on the color of the level they belong to. \Rightarrow The A-contraction \vec{T} of T is bisimilar to a colored line L.

Application example

Let T be a tree with homogeneously-colored levels, and Π the factorization of T with $\mathcal{D}om(\Pi) = \mathcal{D}om(T)$. Consider now the marked factors at each level: their \mathcal{A} -types uniquely depends on the color of the level they belong to. \Rightarrow The \mathcal{A} -contraction \vec{T} of T is bisimilar to a colored line L.

Reducible trees

Contractions

Application example

Let T be a tree with homogeneously-colored levels, and Π the factorization of T with $\mathcal{D}om(\Pi) = \mathcal{D}om(T)$. Consider now the marked factors at each level: their \mathcal{A} -types uniquely depends on the color of the level they belong to. \Rightarrow The \mathcal{A} -contraction \vec{T} of T is bisimilar to a colored line L.

Application example

In this way we proved a simplified version of Muchnik's Theorem:

Acc_T is reducible to Acc_L.

One can also iterate reductions in order to show that the acceptance problem of a tree T is decidable ...

Example

Consider the problem of deciding if $T \in \mathscr{L}(\mathcal{A})$:

If T has an A-contraction \vec{T} , and \vec{T} has a *regular* \vec{A} -contraction \vec{T}

Then we can decide if $\overrightarrow{T} \in \mathscr{L}(\overrightarrow{A})$, $\overrightarrow{T} \in \mathscr{L}(\overrightarrow{A})$, and $T \in \mathscr{L}(A)$.

Reducible trees

Definition

It comes natural to define a

hierarchy of reducible trees:

- rank 0 trees := regular trees
- rank n+1 trees := trees enjoying a rank n A-contraction, for any automaton A.

Corollary

The acceptance problem of any reducible tree is decidable.

Theorem

Closure properties

Rank n trees are closed under the following operations:

• rational colorings

specified by regular path expressions, in a similar way to inverse rational mappings (alternative specifications in terms of Mealy tree automata)

• rational colorings with bounded lookahead

rational colorings extended with the facility of inspecting the subtree issued from current position, up to bounded depth

• regular tree morphisms

specified by a tuple of regular trees $F_{c_1}, ..., F_{c_k}$ and mapping an input tree T to $T [[c_1/F_{c_1}, ..., c_k/F_{c_k}]]$

⇒ **top-down tree transducers with bounded lookahead** equivalent to functional compositions of rational colorings with bounded lookahead and regular tree morphisms.

Theorem

The class of reducible trees is closed under the operation of unfolding with backward edges and loops *BackUnfolding*.

More precisely, for every $n \in \mathbb{N}$, if T is a rank n tree, then BackUnfolding(T) is a rank n + 1 tree.

Proof by example

Proof by example

Proof by example

Proof by example

Proof by example

Proof by example

Proof by example

Let Π be the factorization of T such that $\mathcal{D}om(\Pi) = a^*$. Every marked factor is obtained from its predecessor via a substitution:

$$F_{n+1} = \mathcal{U}nfolding\left(\bigotimes_{\stackrel{a}{\underbrace{}}} \underbrace{\stackrel{a}{\underbrace{}}}_{a} \underbrace{\partial}_{\#} \underbrace{\partial}_{\#} \underbrace{[x/F_n]}_{\#}\right)$$

Proof by example

⇒ The sequence of the A-types $t_n := [F_n]_A$ of the marked factors can be recursively characterized as follows:

$$\begin{cases} t_0 = [F_0]_{\mathcal{A}} \\ t_{n+1} = f(t_n) & \text{(for a suitable function } f) \end{cases}$$

Proof by example

- $\Rightarrow \text{ The } \mathcal{A}\text{-contraction } \vec{T} \text{ of } T = \mathcal{B}ack\mathcal{U}nfolding(L)$ is a *rational coloring* of *L*, thus a rank 0 tree.
- \Rightarrow T is a rank 1 tree.

Corollary

Reducible trees contain the deterministic trees obtained from regular trees via **unfoldings** and **inverse finite mappings** (see Caucal '02).

Proof idea

Exploit the following facts:

- given an inverse finite mapping g^{-1} and a tree T, there is an inverse finite mapping h^{-1} that preserves bisimilarity and such that $Unfolding(g^{-1}(T)) = h^{-1}(BackUnfolding(T))$ (e.g., for every label a, define $h(a) := g(a)[\varepsilon/\#])$,
- In the implemented by a top-down tree transducer with bounded lookahead (see Colcombet and Löding '04),
- reducible trees are closed under transducers with bounded lookahead and unfoldings with backward edges and loops.

Open problems

Open problem / Conjecture

Generalize closure properties of reducible trees to rational colorings with rational lookahead.

⇒ This would allow us to capture all the deterministic trees in the Caucal hierarchy.

Other open problems:

- to establish whether the hierarchy of reducible trees is *strictly increasing* or not,
- to generalize the approach towards *colored graphs*.