A Contraction Method to Decide
MSO Theories of Trees

Gabriele Puppis

Departement of Mathematics and Computer Science
University of Udine, Italy
gabriele.puppis@dimi.uniud.it

Verona 2007

Introduction

What is the talk about?

An automaton-based approach to solve model-checking
problems for monadic second-order logics over
(a large class of) trees.

Introduction

What is the talk about?

An automaton-based approach to solve model-checking
problems for monadic second-order logics over
(a large class of) trees.

We shall briefly explain what we mean by
o tree
e monadic second-order (MSO) logic
@ model-checking problem

@ automaton-based approach.

Introduction
°

Trees
We shall consider possibly infinite (rooted unranked) trees where
@ each vertex is associated a color (e.g., black, white)
@ each edge is associated a label (e.g., 1, 2)

@ edges departing from the same vertex have different labels
(deterministic trees).

Example
The infinite {1, 2}-labeled {black, white}-colored tree:

Introduction
[1e}

MSO logic

Definition (MSO logic)

Given a tree T = (V,(Ea)aca, (Pc)cec),
MSO-formulas over T are defined as follows:

@ node variables x, y, z, ... denote single elements in V
@ set variables X, Y, Z, ... denote subsets of V

@ atomic formulas have one of the following forms:
o E.(x,y) meaning ‘(x,y) denotes an a-labeled edge’
e P.(x) meaning ‘x denotes a c-colored vertex’
o X(y) meaning 'y denotes a vertex in the set X’

@ more complex formulas are build up via
e the Boolean connectives A, V ,—
e quantifications Jx, Vx over node variables
e quantifications 3X, VX over set variables

Introduction
oce

MSO logic

Example 1

The reflexive and transitive closure E* of a
successor relation E is definable in MSO logic:

E*(x,y) == VX. X(x) A Vz,w. (X(2) A E(z,w) = X(w)) — X(y)

Introduction
oce

MSO logic

Example 1

The reflexive and transitive closure E* of a
successor relation E is definable in MSO logic:

E*(x,y) == VX. X(x) A Vz,w. (X(2) A E(z,w) = X(w)) — X(y)

Example 2

‘Any two vertices have a common ancestor
is translated into

Vx,y.3z. E*(z,x) N E*(z,y)

Introduction
oce

MSO logic

Example 1
The reflexive and transitive closure E* of a
successor relation E is definable in MSO logic:

E*(x,y) == VX. X(x) A Vz,w. (X(2) A E(z,w) = X(w)) — X(y)

Example 2
‘Any two vertices have a common ancestor
is translated into

Vx,y.3z. E*(z,x) N E*(z,y)

Example 3

‘One can always reach a bad vertex from a good one’
is translated into

Y x. Pgood(X) - 3}’ Pbad(y) A E*(va)

Introduction
[I}

Model-checking problem

Note that we can get rid of node variables x, y, z, ... by
simulating them via set (singleton) variables X, Y, Z,

Given a tree T with vertices colored over {cy, ..., cn},
we are interested in solving the following problem, denoted MTh:

Definition (model-checking problem)

Input: a formula ¢ with free set variables X, ..., Xj

Problem: to decide whether ¢ holds in T (shortly, T E)
by interpreting each variable X;
with the set of c;-colored vertices.

Introduction
oce

Model-checking problem

Example
Check whether the formula

©(X) = X(root) AN V x,y. (E,eft(x,y) — X(y))

holds in the following tree by interpreting
X with the set of black-colored vertices:

Introduction
[Jelelelo)

The automaton-based approach
We solve the model-checking problem by means of automata ...

Definition (Rabin tree automaton)

A Rabin tree automaton running on A-labeled C-colored trees
is a tuple A = (Q,A,Z,{p1, ..., px}), where

@ Q@ is a finite set of states

@ A C Qx C x Q" is a transition relation

@ 7 C Q@ is a set of initial states

e each p; is an accepting pair (Good;, Bad,),
with Good;, Bad; C Q.

Introduction
[Jelelelo)

The automaton-based approach

We solve the model-checking problem by means of automata ...

Definition (Rabin tree automaton)

A Rabin tree automaton running on A-labeled C-colored trees
is a tuple A = (Q,A,Z,{p1, ..., px}), where

@ Q@ is a finite set of states

@ A C Qx C x Q" is a transition relation

@ 7 C Q@ is a set of initial states

e each p; is an accepting pair (Good;, Bad;),
with Good;, Bad; C Q.

. But, how does a Rabin tree
automaton run on a tree?

Introduction
0®000

The automaton-based approach

First, the automaton A non-deterministically
generates a computation on the input tree T:

@ it marks the root of T with any arbitrary state

@ it marks the successors of each vertex of T on the basis of
the current color and the transition relation A.

Introduction
0®000

The automaton-based approach

First, the automaton A non-deterministically
generates a computation on the input tree T:

@ it marks the root of T with any arbitrary state

@ it marks the successors of each vertex of T on the basis of
the current color and the transition relation A.

Then, it checks whether the computation is successful:
@ the state at the root should be an initial state

o for every infinite path m,
there should be a pair p; = (Good,-, Bad,-) such that

(i) at least one state in Good; occurs infinitely often in

(i) every state in Bad; occurs only finitely often in 7.

Introduction
00®00

The automaton-based approach

Example

Consider a {blue, red, green}-colored tree

and a Rabin tree automaton having
@ three states b, r, g, that keep track of which color was seen last
(b, blue, b, b) (r,blue,b,b) (g, blue, b, b)
@ transitions (b, red,r,r) (r,red,r,r) (g,red,r,r)
(b,green, g,g) (r,green,g,g) (g, green,g,g)
@ a single accepting pair p; = (Goods, Red),
with Good; = {b} and Red; = {r}

Introduction
00®00

The automaton-based approach

Example

Consider a {blue, red, green}-colored tree

r

and a Rabin tree automaton having
@ three states b, r, g, that keep track of which color was seen last
(b, blue, b, b) (r,blue,b,b) (g, blue, b, b)
@ transitions (b, red,r,r) (r,red,r,r) (g,red,r,r)
(b,green, g,g) (r,green,g,g) (g, green,g,g)
@ a single accepting pair p; = (Goods, Red),
with Good; = {b} and Red; = {r}

Introduction
00®00

The automaton-based approach

Example

Consider a {blue, red, green}-colored tree

and a Rabin tree automaton having
@ three states b, r, g, that keep track of which color was seen last
(b, blue, b, b) (r,blue,b,b) (g, blue, b, b)
@ transitions (b, red,r,r) (r,red,r,r) (g,red,r,r)
(b,green, g,g) (r,green,g,g) (g, green,g,g)
@ a single accepting pair p; = (Goods, Red),
with Good; = {b} and Red; = {r}

Introduction
00®00

The automaton-based approach

Example

Consider a {blue, red, green}-colored tree

and a Rabin tree automaton having
@ three states b, r, g, that keep track of which color was seen last
(b, blue, b, b) (r,blue,b,b) (g, blue, b, b)
@ transitions (b, red,r,r) (r,red,r,r) (g,red,r,r)
(b,green, g,g) (r,green,g,g) (g, green,g,g)
@ a single accepting pair p; = (Goods, Red),
with Good; = {b} and Red; = {r}

Introduction
00®00

The automaton-based approach

Example

Consider a {blue, red, green}-colored tree

g/\

g g
L o e e L] bl L]
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥y
and a Rabin tree automaton having
@ three states b, r, g, that keep track of which color was seen last
(b, blue, b, b) (r,blue,b,b) (g, blue, b, b)
@ transitions (b, red,r,r) (r,red,r,r) (g,red,r,r)
(b,green, g,g) (r,green,g,g) (g, green,g,g)
@ a single accepting pair p; = (Goods, Red),
with Good; = {b} and Red; = {r}

Introduction
000®0

The automaton-based approach

Theorem (Rabin 1969)

Given any MSO-formula ¢ with free variables X1, ..., X,
one can compute a Rabin tree automaton A such that
for every tree T with vertices colored over {ci, ..., cn}

@ holds in T iff A accepts T

Introduction
000®0

The automaton-based approach

Theorem (Rabin 1969)

Given any MSO-formula ¢ with free variables X1, ..., X,
one can compute a Rabin tree automaton A such that
for every tree T with vertices colored over {ci, ..., cn}

@ holds in T iff A accepts T

= Given a tree T, the following problem,
denoted Acct, becomes crucial:

Definition (acceptance problem)

Input: a Rabin tree automaton A

Problem: to decide whether A accepts T (shortly, T € Z(A)).

Introduction
ooo0e

The automaton-based approach

Proposition \

The acceptance problem of any regular tree T is decidable.

Introduction
ooo0e

The automaton-based approach

Proposition
The acceptance problem of any regular tree T is decidable.

Proof sketch
@ a regular tree T is bisimilar to a finite graph

@ use this graph to produce a Rabin tree automaton B
such that Z(B) = { T}, namely, B accepts only T

@ given any Rabin tree automaton A,
test whether Z(A) N Z(B) is non-empty.

Introduction
ooo0e

The automaton-based approach

Proposition
The acceptance problem of any regular tree T is decidable.

Proof sketch
@ a regular tree T is bisimilar to a finite graph

@ use this graph to produce a Rabin tree automaton B
such that Z(B) = { T}, namely, B accepts only T

@ given any Rabin tree automaton A,
test whether Z(A) N Z(B) is non-empty.

Problem
What about non-regular trees?

Basic idea

An automaton A can only distinguish between finitely many trees!

Basic idea

An automaton A can only distinguish between finitely many trees!

The contraction method
°

Basic idea

An automaton A can only distinguish between finitely many trees!

= This allows us to introduce an
equivalence relation = 4 such that

@ =4 has finite index

if T1 =4 T, then A generates
similar computations on T1 and T».

The contraction method
°

Tree substitutions

Proposition
The equivalence relation = 4 is compatible with tree substitutions.

v

Intuitive explanation

Consider a tree T and a factor F inside it.

Take F’ such that F/ =4 F and let T' := T[F/F'].
Then T"=4 T.

same = 4-class

4

same = 4-class

The contraction method
°

Contractions

= We can replace any portion of a tree T with its =4-class ...

The contraction method
°

Contractions

= We can replace any portion of a tree T with its =4-class ...
@ we decompose T into factors

The contraction method
°

Contractions

= We can replace any portion of a tree T with its =4-class ...

@ we decompose T into factors

@ we associate to each factor its equivalence class w.r.t. =4
(these classes can be thought of as colors!)

The contraction method
°

Contractions
= We can replace any portion of a tree T with its =4-class ...
@ we decompose T into factors
@ we associate to each factor its equivalence class w.r.t. =4
(these classes can be thought of as colors!)
© we reason on the abstracted tree ? called .A-contraction.

The contraction method
[I}

Main result
Theorem (Main result)

Given an automaton A, a treg> T, and its A-contraction T
one can build an automaton A such that

Te2(A) iff TeLA)

The contraction method
[I}

Main result

Theorem (Main result)

Given an automaton A, a treg> T, and its A-contraction T
one can build an automaton A such that

TeL(A) iff TeLA)

Proof idea
—
Define A in such a way that it mimics the
computations of A on T at a “coarser level”:
—
@ the input alphabet of A is the set of all =4-classes

-
@ the states of A encode the finite amount of information
processed by A up to a certain point,

—

@ the transitions of 4 compute new states by “merging” the
information of the current state with the information provided
by the input symbol (i.e., the = 4-class of the current factor).

The contraction method
oce

Main result

Corollary

If a tree T has a regular A-contraction 7’
then one can decide whether T € £(A).

The contraction method
oce

Main result

Corollary

If a tree T has a regular A-contraction 7’
then one can decide whether T € £(A).

... We can also iterate contractions on a tree T
in oder to decide whether T € Z(A) !

Example

If T has an A-contraction T

= — 3
and T has a regular A-contraction T
T

then we can decide if?eﬁ() T G.Z(jl) and TGX(A).

Reducible trees
°

Reducible trees

Definition
It comes natural to define a

hierarchy of reducible trees:

o rank 0 trees := regular trees

@ rank n+ 1 trees := trees enjoying a rank n A-contraction,
for any automaton A.

Corollary

The acceptance problem (and hence the model-checking problem)
of any reducible tree is decidable.

Reducible trees
[Jelele]

Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example
Consider the infinite {/left, right}-labeled tree T>.

Reducible trees
[Jelele]

Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example
Consider the infinite {/left, right}-labeled tree T>.

We can describe the infinite {a, b, c}-labeled tree T3 inside T»:
L, = {left} Ly, = {right.left} L. = {right.right}

Reducible trees
[Jelele]

Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example
Consider the infinite {/left, right}-labeled tree T>.

—

We can describe the infinite {a, b, c}-labeled tree T3 inside T»:
L, = {left} Ly, = {right.left} L. = {right.right}

Reducible trees
[Jelele]

Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example
Consider the infinite {/left, right}-labeled tree T>.

AN

\ l
. [)
\ A

5* ‘* 5*
We can describe the infinite {a, b, c}-labeled tree T3 inside T»:
L, = {left} Ly, = {right.left} L. = {right.right}

Reducible trees
[Jelele]

Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example
Consider the infinite {/left, right}-labeled tree T>.

A,

\ \ |
\ . Y
\ S

5* ‘* 5*
We can describe the infinite {a, b, c}-labeled tree T3 inside T»:
L, = {left} Ly, = {right.left} L. = {right.right}

Reducible trees
[STeX Yololele}

Closure properties

Proof idea

By induction on the rank n of the tree T (case n =0 is trivial...).

f
T T’

rank n+1

Reducible trees
[STeX Yololele}

Closure properties

Proof idea

By induction on the rank n of the tree T (case n =0 is trivial...).

f
T T’

rank n+1 @

Reducible trees
[STeX Yololele}

Closure properties

Proof idea

By induction on the rank n of the tree T (case n =0 is trivial...).

f

g

rank n+1

Reducible trees
[STeX Yololele}

Closure properties

Proof idea
By induction on the rank n of the tree T (case n =0 is trivial...).

f‘

g

rank n+1

-
7

rank n

Reducible trees
[STeX Yololele}

Closure properties

Proof idea

By induction on the rank n of the tree T (case n =0 is trivial...).

f‘

g

rank n+1

Reducible trees
[STeX Yololele}

Closure properties

Proof idea

By induction on the rank n of the tree T (case n =0 is trivial...).

f‘

T T’

g

rank n+1 rank n+1

Reducible trees
coeo

Closure properties

Theorem

The class of reducible trees is closed under the operation of
unfolding with backward edges and loops Fliplinfolding.

More precisely, for every n € N,
if T is a rank n tree, then FlipUnfolding(T) is a rank n+ 1 tree.

Reducible trees
ocooe

Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

Reducible trees
ocooe

Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

52 3 52 . 52 - 5: ''''''''''''' ks

Reducible trees
ocooe

Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

32 3 52 : 52 - 5: ''''''''''''' 3’

Reducible trees
ocooe

Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

52 3 32 . 52 - 5: s

Reducible trees
ocooe

Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

S

Reducible trees
ocooe

Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

1 1 1 1
............... >
L foo00000000000000
5 € 5 € 5 g 5 2
2 2 2 2
.'4v1
-) > P @) >
8 3 Y
2
1
..... >
2

Reducible trees
ocooe

Closure properties

Proof by example

Every factor is obtained from its predecessor via a substitution:

Y 1

Fpi1 = Unfoldi : F
ni1 = Unfo Ing(®_3'<_52—>next)|]:x/ ,,]].

Reducible trees
ocooe

Closure properties

Proof by example

Since =4 is a congruence with respect to substitutions,
the sequence of the = 4-classes %, 61, >, ... of factors
Fo, F1, F2, ... can be recursively characterized as follows:

Gnt1 = f(%n) (for a suitable function f)

AL AL AL
. / . : o /

Reducible trees
ocooe

Closure properties

Proof by example
From Pigeonhole Principle,

the A-contraction 7 of T is a rank 0 (i.e., regular) tree
= T isarank 1 tree.

Reducible trees
[I}

Caucal hierarchy

Theorem
All deterministic trees of the Caucal hierarchy can be obtained

from regular trees via inverse forward rational mappings and
unfoldings with backward edges and loops.

Caucalg = {T : T deterministic regular tree}

. . T € Caucal,,
Caucal,i; = {f(}"//pl/{nfo/d/ng(T)) " £ inverse forward mapping }

Reducible trees
[I}

Caucal hierarchy

Theorem

All deterministic trees of the Caucal hierarchy can be obtained
from regular trees via inverse forward rational mappings and
unfoldings with backward edges and loops.

Caucalg = {T : T deterministic regular tree}

. . T € Caucal,,
Caucal,i; = {f(}"//pl/{nfo/d/ng(T)) " £ inverse forward mapping }

Corollary

The reducible trees include all deterministic trees of the Caucal
hierarchy: Rank, D Caucal, for all n € N.

Caucal hierarchy

Reducible trees
oce

Actually, the inclusion is proper for each level:

Reducible trees

Ul
rank 3
Ul
rank 2
Ul
rank 1
Ut
rank 0

Ut
level 3
Ut
level 2
Ut
level 1
Ut
level 0

regular J

S9a11 |eone)

Conclusions

Other results

@ Characterization of languages recognized by
two-way alternating tree automata

@ Decidability of MSO theories of morphic trees

Conclusions

Other results

@ Characterization of languages recognized by
two-way alternating tree automata

@ Decidability of MSO theories of morphic trees

Open problems

@ To establish whether the hierarchy of reducible trees
is strictly increasing or not

@ To capture trees generated by
higher-order recursive program schemes

@ To generalize the approach towards colored graphs.

Further details

Definition
The = 4-class of a (marked) tree T
is represented by a set of triples of the form

R(root)
{InfOcc(R|7r) : m branch of F}
{(F(w), R(w),Occ(R|w)) : w leaf of F}

over all possible partial runs R of A on F.

T~
/\

Further details

Definition
The = 4-class of a (marked) tree T
is represented by a set of triples of the form

R(root)
{InfOcc(R|7r) : m branch of F}
{(F(w), R(w), Occ(R|w)) : w leaf of F}

over all possible partial runs R of A on F.

state at the root

o] Q
FAUOFN

Further details

Definition
The = 4-class of a (marked) tree T
is represented by a set of triples of the form

R(root)
{ZnfOcc(R|r) : m branch of F}
{(F(w), R(w),Occ(R|w)) : w leaf of F}

over all possible partial runs R of A on F.

for each infinite path,
states occurring infinitely often

F X

Further details

Definition
The = 4-class of a (marked) tree T
is represented by a set of triples of the form

R(root)
{ZnfOcc(R|r) : m branch of F}
{(F(w), R(w), Occ(R|w)) : w leaf of F}

over all possible partial runs R of A on F.

for each leaf, () Q
marker + state + ¥ ¥ X
states along access path

	Introduction
	Trees
	MSO logic
	Model-checking problem
	The automaton-based approach

	The contraction method
	Basic idea
	Tree substitutions
	Contractions
	Main result

	Reducible trees
	Reducible trees
	Closure properties
	Caucal hierarchy

	Conclusions
	Appendix
	Further details

