
Introduction The contraction method Reducible trees Conclusions

A Contraction Method to Decide
MSO Theories of Trees

Gabriele Puppis

Departement of Mathematics and Computer Science
University of Udine, Italy

gabriele.puppis@dimi.uniud.it

Verona 2007

Introduction The contraction method Reducible trees Conclusions

What is the talk about?

An automaton-based approach to solve model-checking
problems for monadic second-order logics over
(a large class of) trees.

We shall briefly explain what we mean by

tree

monadic second-order (MSO) logic

model-checking problem

automaton-based approach.

Introduction The contraction method Reducible trees Conclusions

What is the talk about?

An automaton-based approach to solve model-checking
problems for monadic second-order logics over
(a large class of) trees.

We shall briefly explain what we mean by

tree

monadic second-order (MSO) logic

model-checking problem

automaton-based approach.

Introduction The contraction method Reducible trees Conclusions

Trees

We shall consider possibly infinite (rooted unranked) trees where

each vertex is associated a color (e.g., black, white)

each edge is associated a label (e.g., 1, 2)

edges departing from the same vertex have different labels
(deterministic trees).

Example

The infinite {1, 2}-labeled {black,white}-colored tree:

1 2

1

1 2

2

1

1 2

1

1 2

2

2

Introduction The contraction method Reducible trees Conclusions

MSO logic

Definition (MSO logic)

Given a tree T = (V , (Ea)a∈A, (Pc)c∈C),
MSO-formulas over T are defined as follows:

node variables x , y , z , ... denote single elements in V

set variables X ,Y ,Z , ... denote subsets of V

atomic formulas have one of the following forms:

Ea(x , y) meaning ‘(x , y) denotes an a-labeled edge’
Pc(x) meaning ‘x denotes a c-colored vertex’
X (y) meaning ‘y denotes a vertex in the set X ’

more complex formulas are build up via

the Boolean connectives ∧ , ∨ ,¬
quantifications ∃x ,∀x over node variables
quantifications ∃X ,∀X over set variables

Introduction The contraction method Reducible trees Conclusions

MSO logic

Example 1

The reflexive and transitive closure E ∗ of a
successor relation E is definable in MSO logic:

E∗(x , y) := ∀ X . X (x) ∧ ∀ z ,w .
(
X (z) ∧ E (z ,w)→ X (w)

)
→ X (y)

Example 2

‘Any two vertices have a common ancestor’
is translated into

∀ x , y . ∃ z . E∗(z , x) ∧ E∗(z , y)

Example 3

‘One can always reach a bad vertex from a good one’
is translated into

∀ x . Pgood(x) → ∃ y . Pbad(y) ∧ E∗(x , y)

Introduction The contraction method Reducible trees Conclusions

MSO logic

Example 1

The reflexive and transitive closure E ∗ of a
successor relation E is definable in MSO logic:

E∗(x , y) := ∀ X . X (x) ∧ ∀ z ,w .
(
X (z) ∧ E (z ,w)→ X (w)

)
→ X (y)

Example 2

‘Any two vertices have a common ancestor’
is translated into

∀ x , y . ∃ z . E∗(z , x) ∧ E∗(z , y)

Example 3

‘One can always reach a bad vertex from a good one’
is translated into

∀ x . Pgood(x) → ∃ y . Pbad(y) ∧ E∗(x , y)

Introduction The contraction method Reducible trees Conclusions

MSO logic

Example 1

The reflexive and transitive closure E ∗ of a
successor relation E is definable in MSO logic:

E∗(x , y) := ∀ X . X (x) ∧ ∀ z ,w .
(
X (z) ∧ E (z ,w)→ X (w)

)
→ X (y)

Example 2

‘Any two vertices have a common ancestor’
is translated into

∀ x , y . ∃ z . E∗(z , x) ∧ E∗(z , y)

Example 3

‘One can always reach a bad vertex from a good one’
is translated into

∀ x . Pgood(x) → ∃ y . Pbad(y) ∧ E∗(x , y)

Introduction The contraction method Reducible trees Conclusions

Model-checking problem

Note that we can get rid of node variables x , y , z , ... by
simulating them via set (singleton) variables X ,Y ,Z ,

Given a tree T with vertices colored over {c1, ..., cn},
we are interested in solving the following problem, denoted MThT :

Definition (model-checking problem)

Input: a formula ϕ with free set variables X1, ...,Xn

Problem: to decide whether ϕ holds in T (shortly, T � ϕ)
by interpreting each variable Xi

with the set of ci -colored vertices.

Introduction The contraction method Reducible trees Conclusions

Model-checking problem

Example

Check whether the formula

ϕ(X) = X (root) ∧ ∀ x , y .
(
Eleft(x , y) → X (y)

)
holds in the following tree by interpreting
X with the set of black-colored vertices:

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

We solve the model-checking problem by means of automata ...

Definition (Rabin tree automaton)

A Rabin tree automaton running on A-labeled C -colored trees
is a tuple A =

(
Q,∆, I, {p1, ..., pk}

)
, where

Q is a finite set of states

∆ ⊆ Q × C × QA is a transition relation

I ⊆ Q is a set of initial states

each pi is an accepting pair
(
Good i ,Bad i

)
,

with Good i ,Bad i ⊆ Q.

... But, how does a Rabin tree
automaton run on a tree?

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

We solve the model-checking problem by means of automata ...

Definition (Rabin tree automaton)

A Rabin tree automaton running on A-labeled C -colored trees
is a tuple A =

(
Q,∆, I, {p1, ..., pk}

)
, where

Q is a finite set of states

∆ ⊆ Q × C × QA is a transition relation

I ⊆ Q is a set of initial states

each pi is an accepting pair
(
Good i ,Bad i

)
,

with Good i ,Bad i ⊆ Q.

... But, how does a Rabin tree
automaton run on a tree?

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

First, the automaton A non-deterministically
generates a computation on the input tree T :

it marks the root of T with any arbitrary state

it marks the successors of each vertex of T on the basis of
the current color and the transition relation ∆.

Then, it checks whether the computation is successful:

the state at the root should be an initial state

for every infinite path π,
there should be a pair pi =

(
Good i ,Bad i

)
such that

(i) at least one state in Good i occurs infinitely often in π

(ii) every state in Bad i occurs only finitely often in π.

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

First, the automaton A non-deterministically
generates a computation on the input tree T :

it marks the root of T with any arbitrary state

it marks the successors of each vertex of T on the basis of
the current color and the transition relation ∆.

Then, it checks whether the computation is successful:

the state at the root should be an initial state

for every infinite path π,
there should be a pair pi =

(
Good i ,Bad i

)
such that

(i) at least one state in Good i occurs infinitely often in π

(ii) every state in Bad i occurs only finitely often in π.

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

Example

Consider a {blue, red , green}-colored tree

and a Rabin tree automaton having

three states b, r , g , that keep track of which color was seen last

transitions
(b, blue, b, b) (r , blue, b, b) (g , blue, b, b)
(b, red , r , r) (r , red , r , r) (g , red , r , r)
(b, green, g , g) (r , green, g , g) (g , green, g , g)

a single accepting pair p1 =
(
Good1,Red1

)
,

with Good1 = {b} and Red1 = {r}

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

Example

Consider a {blue, red , green}-colored tree

r

and a Rabin tree automaton having

three states b, r , g , that keep track of which color was seen last

transitions
(b, blue, b, b) (r , blue, b, b) (g , blue, b, b)
(b, red , r , r) (r , red , r , r) (g , red , r , r)
(b, green, g , g) (r , green, g , g) (g , green, g , g)

a single accepting pair p1 =
(
Good1,Red1

)
,

with Good1 = {b} and Red1 = {r}

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

Example

Consider a {blue, red , green}-colored tree

r

g g

and a Rabin tree automaton having

three states b, r , g , that keep track of which color was seen last

transitions
(b, blue, b, b) (r , blue, b, b) (g , blue, b, b)
(b, red , r , r) (r , red , r , r) (g , red , r , r)
(b, green, g , g) (r , green, g , g) (g , green, g , g)

a single accepting pair p1 =
(
Good1,Red1

)
,

with Good1 = {b} and Red1 = {r}

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

Example

Consider a {blue, red , green}-colored tree

r

g g

r r b b

and a Rabin tree automaton having

three states b, r , g , that keep track of which color was seen last

transitions
(b, blue, b, b) (r , blue, b, b) (g , blue, b, b)
(b, red , r , r) (r , red , r , r) (g , red , r , r)
(b, green, g , g) (r , green, g , g) (g , green, g , g)

a single accepting pair p1 =
(
Good1,Red1

)
,

with Good1 = {b} and Red1 = {r}

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

Example

Consider a {blue, red , green}-colored tree

r

g g

r r b b

g g r r r r g g

and a Rabin tree automaton having

three states b, r , g , that keep track of which color was seen last

transitions
(b, blue, b, b) (r , blue, b, b) (g , blue, b, b)
(b, red , r , r) (r , red , r , r) (g , red , r , r)
(b, green, g , g) (r , green, g , g) (g , green, g , g)

a single accepting pair p1 =
(
Good1,Red1

)
,

with Good1 = {b} and Red1 = {r}

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

Theorem (Rabin 1969)

Given any MSO-formula ϕ with free variables X1, ...,Xn,
one can compute a Rabin tree automaton A such that
for every tree T with vertices colored over {c1, ..., cn}

ϕ holds in T iff A accepts T

⇒ Given a tree T , the following problem,
denoted AccT , becomes crucial:

Definition (acceptance problem)

Input: a Rabin tree automaton A

Problem: to decide whether A accepts T (shortly, T ∈ L (A)).

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

Theorem (Rabin 1969)

Given any MSO-formula ϕ with free variables X1, ...,Xn,
one can compute a Rabin tree automaton A such that
for every tree T with vertices colored over {c1, ..., cn}

ϕ holds in T iff A accepts T

⇒ Given a tree T , the following problem,
denoted AccT , becomes crucial:

Definition (acceptance problem)

Input: a Rabin tree automaton A

Problem: to decide whether A accepts T (shortly, T ∈ L (A)).

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

Proposition

The acceptance problem of any regular tree T is decidable.

Proof sketch

a regular tree T is bisimilar to a finite graph

use this graph to produce a Rabin tree automaton B
such that L (B) = {T}, namely, B accepts only T

given any Rabin tree automaton A,
test whether L (A) ∩L (B) is non-empty.

Problem

What about non-regular trees?

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

Proposition

The acceptance problem of any regular tree T is decidable.

Proof sketch

a regular tree T is bisimilar to a finite graph

use this graph to produce a Rabin tree automaton B
such that L (B) = {T}, namely, B accepts only T

given any Rabin tree automaton A,
test whether L (A) ∩L (B) is non-empty.

Problem

What about non-regular trees?

Introduction The contraction method Reducible trees Conclusions

The automaton-based approach

Proposition

The acceptance problem of any regular tree T is decidable.

Proof sketch

a regular tree T is bisimilar to a finite graph

use this graph to produce a Rabin tree automaton B
such that L (B) = {T}, namely, B accepts only T

given any Rabin tree automaton A,
test whether L (A) ∩L (B) is non-empty.

Problem

What about non-regular trees?

Introduction The contraction method Reducible trees Conclusions

Basic idea

An automaton A can only distinguish between finitely many trees!

⇒ This allows us to introduce an
equivalence relation ≡A such that

≡A has finite index

if T1 ≡A T2, then A generates
similar computations on T1 and T2.

Introduction The contraction method Reducible trees Conclusions

Basic idea

An automaton A can only distinguish between finitely many trees!

⇒ This allows us to introduce an
equivalence relation ≡A such that

≡A has finite index

if T1 ≡A T2, then A generates
similar computations on T1 and T2.

Introduction The contraction method Reducible trees Conclusions

Basic idea

An automaton A can only distinguish between finitely many trees!

⇒ This allows us to introduce an
equivalence relation ≡A such that

≡A has finite index

if T1 ≡A T2, then A generates
similar computations on T1 and T2.

Introduction The contraction method Reducible trees Conclusions

Tree substitutions

Proposition

The equivalence relation ≡A is compatible with tree substitutions.

Intuitive explanation

Consider a tree T and a factor F inside it.
Take F ′ such that F ′ ≡A F and let T ′ := T JF/F ′K.
Then T ′ ≡A T .

T

F

T ′

F ′

same ≡A-class

⇓
same ≡A-class

Introduction The contraction method Reducible trees Conclusions

Contractions

⇒ We can replace any portion of a tree T with its ≡A-class ...

1 we decompose T into factors
2 we associate to each factor its equivalence class w.r.t. ≡A

(these classes can be thought of as colors!)
3 we reason on the abstracted tree

−�
T , called A-contraction.

Introduction The contraction method Reducible trees Conclusions

Contractions

⇒ We can replace any portion of a tree T with its ≡A-class ...
1 we decompose T into factors

2 we associate to each factor its equivalence class w.r.t. ≡A
(these classes can be thought of as colors!)

3 we reason on the abstracted tree
−�
T , called A-contraction.

Introduction The contraction method Reducible trees Conclusions

Contractions

⇒ We can replace any portion of a tree T with its ≡A-class ...
1 we decompose T into factors
2 we associate to each factor its equivalence class w.r.t. ≡A

(these classes can be thought of as colors!)

3 we reason on the abstracted tree
−�
T , called A-contraction.

Introduction The contraction method Reducible trees Conclusions

Contractions

⇒ We can replace any portion of a tree T with its ≡A-class ...
1 we decompose T into factors
2 we associate to each factor its equivalence class w.r.t. ≡A

(these classes can be thought of as colors!)
3 we reason on the abstracted tree

−�
T , called A-contraction.

Introduction The contraction method Reducible trees Conclusions

Main result

Theorem (Main result)

Given an automaton A, a tree T , and its A-contraction
−�
T

one can build an automaton
−�
A such that

−�
T ∈ L

(−�
A
)

iff T ∈ L (A).

Proof idea

Define
−�
A in such a way that it mimics the

computations of A on T at a “coarser level”:

the input alphabet of
−�
A is the set of all ≡A-classes

the states of
−�
A encode the finite amount of information

processed by A up to a certain point,

the transitions of
−�
A compute new states by “merging” the

information of the current state with the information provided
by the input symbol (i.e., the ≡A-class of the current factor).

Introduction The contraction method Reducible trees Conclusions

Main result

Theorem (Main result)

Given an automaton A, a tree T , and its A-contraction
−�
T

one can build an automaton
−�
A such that

−�
T ∈ L

(−�
A
)

iff T ∈ L (A).

Proof idea

Define
−�
A in such a way that it mimics the

computations of A on T at a “coarser level”:

the input alphabet of
−�
A is the set of all ≡A-classes

the states of
−�
A encode the finite amount of information

processed by A up to a certain point,

the transitions of
−�
A compute new states by “merging” the

information of the current state with the information provided
by the input symbol (i.e., the ≡A-class of the current factor).

Introduction The contraction method Reducible trees Conclusions

Main result

Corollary

If a tree T has a regular A-contraction
−�
T ,

then one can decide whether T ∈ L (A).

... We can also iterate contractions on a tree T
in oder to decide whether T ∈ L (A) !

Example

If T has an A-contraction
−�
T

and
−�
T has a regular

−�
A-contraction

−�−�
T

then we can decide if
−�−�
T ∈ L

(−�−�
A
)
,
−�
T ∈ L

(−�
A
)
, and T ∈ L

(
A).

Introduction The contraction method Reducible trees Conclusions

Main result

Corollary

If a tree T has a regular A-contraction
−�
T ,

then one can decide whether T ∈ L (A).

... We can also iterate contractions on a tree T
in oder to decide whether T ∈ L (A) !

Example

If T has an A-contraction
−�
T

and
−�
T has a regular

−�
A-contraction

−�−�
T

then we can decide if
−�−�
T ∈ L

(−�−�
A
)
,
−�
T ∈ L

(−�
A
)
, and T ∈ L

(
A).

Introduction The contraction method Reducible trees Conclusions

Reducible trees

Definition

It comes natural to define a

hierarchy of reducible trees:

rank 0 trees := regular trees

rank n + 1 trees := trees enjoying a rank n A-contraction,
for any automaton A.

Corollary

The acceptance problem (and hence the model-checking problem)
of any reducible tree is decidable.

Introduction The contraction method Reducible trees Conclusions

Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example

Consider the infinite {left, right}-labeled tree T2.

We can describe the infinite {a, b, c}-labeled tree T3 inside T2:

La = {left} Lb = {right.left} Lc = {right.right}

Introduction The contraction method Reducible trees Conclusions

Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example

Consider the infinite {left, right}-labeled tree T2.

We can describe the infinite {a, b, c}-labeled tree T3 inside T2:

La = {left} Lb = {right.left} Lc = {right.right}

Introduction The contraction method Reducible trees Conclusions

Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example

Consider the infinite {left, right}-labeled tree T2.

We can describe the infinite {a, b, c}-labeled tree T3 inside T2:

La = {left} Lb = {right.left} Lc = {right.right}

Introduction The contraction method Reducible trees Conclusions

Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example

Consider the infinite {left, right}-labeled tree T2.

We can describe the infinite {a, b, c}-labeled tree T3 inside T2:

La = {left} Lb = {right.left} Lc = {right.right}

Introduction The contraction method Reducible trees Conclusions

Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example

Consider the infinite {left, right}-labeled tree T2.

We can describe the infinite {a, b, c}-labeled tree T3 inside T2:

La = {left} Lb = {right.left} Lc = {right.right}

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof idea

By induction on the rank n of the tree T (case n = 0 is trivial...).

T

rank n + 1

rank n

T ′

rank n + 1

rank n

f

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof idea

By induction on the rank n of the tree T (case n = 0 is trivial...).

T

rank n + 1

rank n

T ′

A rank n + 1

rank n

f

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof idea

By induction on the rank n of the tree T (case n = 0 is trivial...).

T

A′rank n + 1

rank n

T ′

A rank n + 1

rank n

f

g

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof idea

By induction on the rank n of the tree T (case n = 0 is trivial...).

T

A′rank n + 1

−�
T

rank n

T ′

A rank n + 1

rank n

f

g

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof idea

By induction on the rank n of the tree T (case n = 0 is trivial...).

T

A′rank n + 1

−�
T

rank n

T ′

A rank n + 1

−�
T ′

rank n

f

g

h

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof idea

By induction on the rank n of the tree T (case n = 0 is trivial...).

T

A′rank n + 1

−�
T

rank n

T ′

A rank n + 1

−�
T ′

rank n

f

g

h

Introduction The contraction method Reducible trees Conclusions

Closure properties

Theorem

The class of reducible trees is closed under the operation of
unfolding with backward edges and loops FlipUnfolding.

More precisely, for every n ∈ N,
if T is a rank n tree, then FlipUnfolding(T) is a rank n + 1 tree.

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

C0

1 1 1 1

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

C0

1 1 1 1

3 3 3 3
2 2 2 2

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

C0

1 1 1 1

3 3 3 3
2 2 2 2

2

2

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

C0

1 1 1 1

3 3 3 3
2 2 2 2

2

2

1

1

2

2

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

C0

1 1 1 1

3 3 3 3
2 2 2 2

2

2

1

1

2

2

3

3

1

1

F0

F0

F0

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

C0

1 1 1 1

3 3 3 3
2 2 2 2

2

2

1

1

2

2

3

3

1

1

2

2

1

1

2

2

1

1

3

3

3

3

1

1

1

1

1

1

F0

F0

F1

F1

F2

F2

F0 F1 F2 F3

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof by example

Every factor is obtained from its predecessor via a substitution:

Fn+1 = Unfolding
(

1

3

x next
1

2

)q
x/Fn

y
.

C0

2

2

1

1

2

2

3

3

1

1

2

2

1

1

2

2

1

1

3

3

3

3

1

1

1

1

1

1

F0

F0

F1

F1

F2

F2

F0 F1 F2 F3

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof by example

Since ≡A is a congruence with respect to substitutions,
the sequence of the ≡A-classes C0,C1,C2, ... of factors
F0,F1,F2, ... can be recursively characterized as follows:{

C0 =
[
F0

]
≡A

Cn+1 = f
(
Cn

)
(for a suitable function f)

C0

2

2

1

1

2

2

3

3

1

1

2

2

1

1

2

2

1

1

3

3

3

3

1

1

1

1

1

1

F0

F0

F1

F1

F2

F2

F0 F1 F2 F3

Introduction The contraction method Reducible trees Conclusions

Closure properties

Proof by example

From Pigeonhole Principle,

the A-contraction
−�
T of T is a rank 0 (i.e., regular) tree

⇒ T is a rank 1 tree.

C0 f (C0) f 2(C0) f 3(C0)

2

2

1

1

2

2

3

3

1

1

2

2

1

1

2

2

1

1

3

3

3

3

1

1

1

1

1

1

F0

F0

F1

F1

F2

F2

F0 F1 F2 F3

Introduction The contraction method Reducible trees Conclusions

Caucal hierarchy

Theorem

All deterministic trees of the Caucal hierarchy can be obtained
from regular trees via inverse forward rational mappings and
unfoldings with backward edges and loops.

Caucal0 = {T : T deterministic regular tree}

Caucaln+1 =

{
f
(
FlipUnfolding(T)

)
:

T ∈ Caucaln,
f inverse forward mapping

}

Corollary

The reducible trees include all deterministic trees of the Caucal
hierarchy: Rankn ⊇ Caucaln for all n ∈ N.

Introduction The contraction method Reducible trees Conclusions

Caucal hierarchy

Theorem

All deterministic trees of the Caucal hierarchy can be obtained
from regular trees via inverse forward rational mappings and
unfoldings with backward edges and loops.

Caucal0 = {T : T deterministic regular tree}

Caucaln+1 =

{
f
(
FlipUnfolding(T)

)
:

T ∈ Caucaln,
f inverse forward mapping

}

Corollary

The reducible trees include all deterministic trees of the Caucal
hierarchy: Rankn ⊇ Caucaln for all n ∈ N.

Introduction The contraction method Reducible trees Conclusions

Caucal hierarchy

Actually, the inclusion is proper for each level:

regular

R
ed

u
ci

b
le

tr
ee

s
︷

︸︸
︷

rank 0

(

rank 1

⊆

rank 2

⊆

rank 3

⊆

...

C
au

cal
trees

︷
︸︸

︷level 0

(

level 1

(

level 2

(

level 3

(

...

Introduction The contraction method Reducible trees Conclusions

Other results

Characterization of languages recognized by
two-way alternating tree automata

Decidability of MSO theories of morphic trees

Open problems

To establish whether the hierarchy of reducible trees
is strictly increasing or not

To capture trees generated by
higher-order recursive program schemes

To generalize the approach towards colored graphs.

Introduction The contraction method Reducible trees Conclusions

Other results

Characterization of languages recognized by
two-way alternating tree automata

Decidability of MSO theories of morphic trees

Open problems

To establish whether the hierarchy of reducible trees
is strictly increasing or not

To capture trees generated by
higher-order recursive program schemes

To generalize the approach towards colored graphs.

Further details

Definition

The ≡A-class of a (marked) tree T
is represented by a set of triples of the form R(root){

InfOcc(R|π) : π branch of F
}{

(F (w),R(w),Occ(R|w)) : w leaf of F
}


over all possible partial runs R of A on F .

b1

b2

Further details

Definition

The ≡A-class of a (marked) tree T
is represented by a set of triples of the form R(root){

InfOcc(R|π) : π branch of F
}{

(F (w),R(w),Occ(R|w)) : w leaf of F
}


over all possible partial runs R of A on F .

state at the root

b1

b2

Further details

Definition

The ≡A-class of a (marked) tree T
is represented by a set of triples of the form R(root){

InfOcc(R|π) : π branch of F
}{

(F (w),R(w),Occ(R|w)) : w leaf of F
}


over all possible partial runs R of A on F .

for each infinite path,
states occurring infinitely often

b1

b2

Further details

Definition

The ≡A-class of a (marked) tree T
is represented by a set of triples of the form R(root){

InfOcc(R|π) : π branch of F
}{

(F (w),R(w),Occ(R|w)) : w leaf of F
}


over all possible partial runs R of A on F .

for each leaf,
marker + state +
states along access path

b1

b2

	Introduction
	Trees
	MSO logic
	Model-checking problem
	The automaton-based approach

	The contraction method
	Basic idea
	Tree substitutions
	Contractions
	Main result

	Reducible trees
	Reducible trees
	Closure properties
	Caucal hierarchy

	Conclusions
	Appendix
	Further details

