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Introduction

What is the talk about?

An automaton-based approach to solve model-checking
problems for monadic second-order logics over
(a large class of) trees.
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What is the talk about?
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(a large class of) trees.

We shall briefly explain what we mean by
o tree
e monadic second-order (MSO) logic
@ model-checking problem

@ automaton-based approach.
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Trees
We shall consider possibly infinite (rooted unranked) trees where
@ each vertex is associated a color (e.g., black, white)
@ each edge is associated a label (e.g., 1, 2)

@ edges departing from the same vertex have different labels
(deterministic trees).

Example
The infinite {1, 2}-labeled {black, white}-colored tree:
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MSO logic

Definition (MSO logic)

Given a tree T = (V,(Ea)aca, (Pc)cec),
MSO-formulas over T are defined as follows:

@ node variables x, y, z, ... denote single elements in V
@ set variables X, Y, Z, ... denote subsets of V

@ atomic formulas have one of the following forms:
o E.(x,y) meaning ‘(x,y) denotes an a-labeled edge’
e P.(x) meaning ‘x denotes a c-colored vertex’
o X(y) meaning 'y denotes a vertex in the set X’

@ more complex formulas are build up via
e the Boolean connectives A, V ,—
e quantifications Jx, Vx over node variables
e quantifications 3X, VX over set variables
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MSO logic

Example 1

The reflexive and transitive closure E* of a
successor relation E is definable in MSO logic:

E*(x,y) == VX. X(x) A Vz,w. (X(2) A E(z,w) = X(w)) — X(y)
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Example 2

‘Any two vertices have a common ancestor
is translated into

Vx,y.3z. E*(z,x) N E*(z,y)
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MSO logic

Example 1
The reflexive and transitive closure E* of a
successor relation E is definable in MSO logic:

E*(x,y) == VX. X(x) A Vz,w. (X(2) A E(z,w) = X(w)) — X(y)

Example 2
‘Any two vertices have a common ancestor
is translated into

Vx,y.3z. E*(z,x) N E*(z,y)

Example 3

‘One can always reach a bad vertex from a good one’
is translated into

Y x. Pgood(X) - 3}’ Pbad(y) A E*(va)



Introduction
[ I}

Model-checking problem

Note that we can get rid of node variables x, y, z, ... by
simulating them via set (singleton) variables X, Y, Z, ....

Given a tree T with vertices colored over {cy, ..., cn},
we are interested in solving the following problem, denoted MTh:

Definition (model-checking problem)

Input: a formula ¢ with free set variables X, ..., Xj

Problem: to decide whether ¢ holds in T (shortly, T E )
by interpreting each variable X;
with the set of c;-colored vertices.
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Model-checking problem

Example
Check whether the formula

©(X) = X(root) AN V x,y. (E,eft(x,y) — X(y))

holds in the following tree by interpreting
X with the set of black-colored vertices:
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The automaton-based approach
We solve the model-checking problem by means of automata ...

Definition (Rabin tree automaton)

A Rabin tree automaton running on A-labeled C-colored trees
is a tuple A = (Q,A,Z,{p1, ..., px}), where

@ Q@ is a finite set of states

@ A C Qx C x Q" is a transition relation

@ 7 C Q@ is a set of initial states

e each p; is an accepting pair (Good;, Bad,),
with Good;, Bad; C Q.




Introduction
[ Jelelelo)

The automaton-based approach

We solve the model-checking problem by means of automata ...

Definition (Rabin tree automaton)

A Rabin tree automaton running on A-labeled C-colored trees
is a tuple A = (Q,A,Z,{p1, ..., px}), where

@ Q@ is a finite set of states

@ A C Qx C x Q" is a transition relation

@ 7 C Q@ is a set of initial states

e each p; is an accepting pair (Good;, Bad;),
with Good;, Bad; C Q.

. But, how does a Rabin tree
automaton run on a tree?
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The automaton-based approach

First, the automaton A non-deterministically
generates a computation on the input tree T:

@ it marks the root of T with any arbitrary state

@ it marks the successors of each vertex of T on the basis of
the current color and the transition relation A.
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The automaton-based approach

First, the automaton A non-deterministically
generates a computation on the input tree T:

@ it marks the root of T with any arbitrary state

@ it marks the successors of each vertex of T on the basis of
the current color and the transition relation A.

Then, it checks whether the computation is successful:
@ the state at the root should be an initial state

o for every infinite path m,
there should be a pair p; = (Good,-, Bad,-) such that

(i) at least one state in Good; occurs infinitely often in

(i) every state in Bad; occurs only finitely often in 7.
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The automaton-based approach

Example

Consider a {blue, red, green}-colored tree

and a Rabin tree automaton having
@ three states b, r, g, that keep track of which color was seen last
(b, blue, b, b)  (r,blue,b,b) (g, blue, b, b)
@ transitions (b, red,r,r) (r,red,r,r) (g,red,r,r)
(b,green, g,g) (r,green,g,g) (g, green,g,g)
@ a single accepting pair p; = (Goods, Red),
with Good; = {b} and Red; = {r}
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The automaton-based approach

Example

Consider a {blue, red, green}-colored tree
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and a Rabin tree automaton having
@ three states b, r, g, that keep track of which color was seen last
(b, blue, b, b)  (r,blue,b,b) (g, blue, b, b)
@ transitions (b, red,r,r) (r,red,r,r) (g,red,r,r)
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@ a single accepting pair p; = (Goods, Red),
with Good; = {b} and Red; = {r}
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The automaton-based approach

Theorem (Rabin 1969)

Given any MSO-formula ¢ with free variables X1, ..., X,
one can compute a Rabin tree automaton A such that
for every tree T with vertices colored over {ci, ..., cn}

@ holds in T iff A accepts T
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The automaton-based approach

Theorem (Rabin 1969)

Given any MSO-formula ¢ with free variables X1, ..., X,
one can compute a Rabin tree automaton A such that
for every tree T with vertices colored over {ci, ..., cn}

@ holds in T iff A accepts T

= Given a tree T, the following problem,
denoted Acct, becomes crucial:

Definition (acceptance problem)

Input: a Rabin tree automaton A

Problem: to decide whether A accepts T (shortly, T € Z(A)).
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The automaton-based approach

Proposition \

The acceptance problem of any regular tree T is decidable.
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The automaton-based approach

Proposition
The acceptance problem of any regular tree T is decidable.

Proof sketch
@ a regular tree T is bisimilar to a finite graph

@ use this graph to produce a Rabin tree automaton B
such that Z(B) = { T}, namely, B accepts only T

@ given any Rabin tree automaton A,
test whether Z(A) N Z(B) is non-empty.
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The automaton-based approach

Proposition
The acceptance problem of any regular tree T is decidable.

Proof sketch
@ a regular tree T is bisimilar to a finite graph

@ use this graph to produce a Rabin tree automaton B
such that Z(B) = { T}, namely, B accepts only T

@ given any Rabin tree automaton A,
test whether Z(A) N Z(B) is non-empty.

Problem
What about non-regular trees?
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Basic idea

An automaton A can only distinguish between finitely many trees!

= This allows us to introduce an
equivalence relation = 4 such that

@ =4 has finite index

if T1 =4 T, then A generates
similar computations on T1 and T».
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Tree substitutions

Proposition
The equivalence relation = 4 is compatible with tree substitutions.

v

Intuitive explanation

Consider a tree T and a factor F inside it.

Take F’ such that F/ =4 F and let T' := T[F/F'].
Then T"=4 T.

same = 4-class

4

same = 4-class
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Contractions

= We can replace any portion of a tree T with its =4-class ...
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Contractions

= We can replace any portion of a tree T with its =4-class ...

@ we decompose T into factors

@ we associate to each factor its equivalence class w.r.t. =4
(these classes can be thought of as colors!)




The contraction method
°

Contractions
= We can replace any portion of a tree T with its =4-class ...
@ we decompose T into factors
@ we associate to each factor its equivalence class w.r.t. =4
(these classes can be thought of as colors!)
© we reason on the abstracted tree ? called .A-contraction.
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Main result
Theorem (Main result)

Given an automaton A, a treg> T, and its A-contraction T
one can build an automaton A such that

Te2(A) iff TeLA)
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Main result

Theorem (Main result)

Given an automaton A, a treg> T, and its A-contraction T
one can build an automaton A such that

TeL(A) iff TeLA)

Proof idea
—
Define A in such a way that it mimics the
computations of A on T at a “coarser level”:
—
@ the input alphabet of A is the set of all =4-classes

-
@ the states of A encode the finite amount of information
processed by A up to a certain point,

—

@ the transitions of 4 compute new states by “merging” the
information of the current state with the information provided
by the input symbol (i.e., the = 4-class of the current factor).
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Main result

Corollary

If a tree T has a regular A-contraction 7’
then one can decide whether T € £(A).
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Main result

Corollary

If a tree T has a regular A-contraction 7’
then one can decide whether T € £(A).

... We can also iterate contractions on a tree T
in oder to decide whether T € Z(A) !

Example

If T has an A-contraction T

= — 3
and T has a regular A-contraction T
T

then we can decide if?eﬁ( ) T G.Z(jl) and TGX(A).




Reducible trees
°

Reducible trees

Definition
It comes natural to define a

hierarchy of reducible trees:

o rank 0 trees := regular trees

@ rank n+ 1 trees := trees enjoying a rank n A-contraction,
for any automaton A.

Corollary

The acceptance problem (and hence the model-checking problem)
of any reducible tree is decidable.
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Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example
Consider the infinite {/left, right}-labeled tree T>.
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Rank n trees are closed under
inverse forward rational mappings.

Example
Consider the infinite {/left, right}-labeled tree T>.

We can describe the infinite {a, b, c}-labeled tree T3 inside T»:
L, = {left} Ly, = {right.left} L. = {right.right}
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Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example
Consider the infinite {/left, right}-labeled tree T>.
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We can describe the infinite {a, b, c}-labeled tree T3 inside T»:
L, = {left} Ly, = {right.left} L. = {right.right}
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[ Jelele]

Closure properties

Theorem

Rank n trees are closed under
inverse forward rational mappings.

Example
Consider the infinite {/left, right}-labeled tree T>.

A,

\ \ |
\ . Y
\ S

5* ‘* 5*
We can describe the infinite {a, b, c}-labeled tree T3 inside T»:
L, = {left} Ly, = {right.left} L. = {right.right}
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Closure properties

Proof idea

By induction on the rank n of the tree T (case n =0 is trivial...).

f
T T’

rank n+1
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Closure properties

Proof idea

By induction on the rank n of the tree T (case n =0 is trivial...).
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rank n+1
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Closure properties

Proof idea
By induction on the rank n of the tree T (case n =0 is trivial...).
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Closure properties

Proof idea

By induction on the rank n of the tree T (case n =0 is trivial...).

f‘

T T’

g

rank n+1 rank n+1
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Closure properties

Theorem

The class of reducible trees is closed under the operation of
unfolding with backward edges and loops Fliplinfolding.

More precisely, for every n € N,
if T is a rank n tree, then FlipUnfolding(T) is a rank n+ 1 tree.
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Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.
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Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.
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Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.
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Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

52 3 32 . 52 - 5: ............. s
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Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

S
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Closure properties

Proof by example

As a simple case, consider the semiinfinite line L (a rank 0 tree).
We have to show that T = FlipUnfolding(L) is a rank 1 tree.

1 1 1 1
............... >
L foo00000000000000
5 € 5 € 5 g 5 2
2 2 2 2
.'4v1 ............
- ) > P @) >
8 3 Y
2
1
..... >
2
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Closure properties

Proof by example

Every factor is obtained from its predecessor via a substitution:

Y 1

Fpi1 = Unfoldi : F
ni1 = Unfo Ing(®_3'<_52—>next)|]:x/ ,,]].
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Closure properties

Proof by example

Since =4 is a congruence with respect to substitutions,
the sequence of the = 4-classes %, 61, >, ... of factors
Fo, F1, F2, ... can be recursively characterized as follows:

Gnt1 = f(%n) (for a suitable function f)

AL AL AL
. / . : o /
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Closure properties

Proof by example
From Pigeonhole Principle,

the A-contraction 7 of T is a rank 0 (i.e., regular) tree
= T isarank 1 tree.
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Caucal hierarchy

Theorem
All deterministic trees of the Caucal hierarchy can be obtained

from regular trees via inverse forward rational mappings and
unfoldings with backward edges and loops.

Caucalg = {T : T deterministic regular tree}

. . T € Caucal,,
Caucal,i; = {f(}"//pl/{nfo/d/ng(T)) " £ inverse forward mapping }
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Caucal hierarchy

Theorem

All deterministic trees of the Caucal hierarchy can be obtained
from regular trees via inverse forward rational mappings and
unfoldings with backward edges and loops.

Caucalg = {T : T deterministic regular tree}

. . T € Caucal,,
Caucal,i; = {f(}"//pl/{nfo/d/ng(T)) " £ inverse forward mapping }

Corollary

The reducible trees include all deterministic trees of the Caucal
hierarchy: Rank, D Caucal, for all n € N.




Caucal hierarchy

Reducible trees
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Actually, the inclusion is proper for each level:

Reducible trees

Ul
rank 3
Ul
rank 2
Ul
rank 1
Ut
rank 0

Ut
level 3
Ut
level 2
Ut
level 1
Ut
level 0

regular J

S9a11 |eone)
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Other results

@ Characterization of languages recognized by
two-way alternating tree automata

@ Decidability of MSO theories of morphic trees




Conclusions

Other results

@ Characterization of languages recognized by
two-way alternating tree automata

@ Decidability of MSO theories of morphic trees

Open problems

@ To establish whether the hierarchy of reducible trees
is strictly increasing or not

@ To capture trees generated by
higher-order recursive program schemes

@ To generalize the approach towards colored graphs.



Further details

Definition
The = 4-class of a (marked) tree T
is represented by a set of triples of the form

R(root)
{InfOcc(R|7r) : m branch of F}
{(F(w), R(w),Occ(R|w)) : w leaf of F}

over all possible partial runs R of A on F.

T~
/\
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The = 4-class of a (marked) tree T
is represented by a set of triples of the form

R(root)
{InfOcc(R|7r) : m branch of F}
{(F(w), R(w), Occ(R|w)) : w leaf of F}

over all possible partial runs R of A on F.

state at the root
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The = 4-class of a (marked) tree T
is represented by a set of triples of the form

R(root)
{ZnfOcc(R|r) : m branch of F}
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over all possible partial runs R of A on F.

for each infinite path,
states occurring infinitely often
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Further details

Definition
The = 4-class of a (marked) tree T
is represented by a set of triples of the form

R(root)
{ZnfOcc(R|r) : m branch of F}
{(F(w), R(w), Occ(R|w)) : w leaf of F}

over all possible partial runs R of A on F.

for each leaf, () Q
marker + state + ¥ ¥ X
states along access path
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